An Optical Approach to Computation

Sama Goliaei

Tarbiat Modares University, Tehran, Iran

Content

- Optical computing
- Optical 3-satisfiability
- Optical graph 3-colorability
- Future works

OPTICAL COMPUTING

Light Properties

- Special physical properties of light
 - High parallel nature
 - High speed
 - Splitting abilities
 - Many different wavelengths in a single ray

Optical Computing In Different Areas

- Data transmission
- Data storage
- Data processing
 - Optical logic gates
 - Processors based on light properties

Optical Data Processing

- Continuous space machine
 - Images as memory cells
 - Optical operations
 - Copy, Fourier transformation, \cdots
 - Contributions on solving NPC problems
- Optical non-deterministic Turing machine
 - Light rays pass different computational path
 - Split light rays in decision points
 - Contributions on solving NPC problems

OPTICAL GRAPH 3-COLORABILITY

The 3–Sat Problem

- Is the given Boolean formula satisfiable?
 - Conjunctive of some clauses
 - Clause: disjunction of some literals
 - Literal: variable or negation of a variable

Literal

$$(x_1 \lor \overline{x_3} \lor x_4) \land (\overline{x_2} \lor x_3 \lor x_5) \land (\overline{x_4} \lor \overline{x_5} \lor \overline{x_1}) \land (\overline{x_2} \lor x_1 \lor x_5)$$

Clause

WaveIngths as Value-Assignments

WaveIngths as Value-Assignments

		x_3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Divide a wavelength spectrum into 2^n sections. Consider each section as a possible value-assignment.

Filters

$\sigma_F(R)$ drops wavelengths not satisfying F from a given light ray R

Literal Selector

Punch an opaque ribbon where the literal is satisfied

Simple Clause Selectors

Punch an opaque ribbon where the clause is satisfied.

Combined Clause Selectors

CNF Formula Selector

$$\sigma_{C_1 \wedge C_2 \wedge \cdots \wedge C_m}$$

Drop wavelengths not satisfying clauses each after other. At the end, remaining wavelengths indicate that the formula is satisfiable.

Complexity

- Preprocessing
 - Simple clause selectors
 - $O(n^3 2^n)$ time
 - $O(n^3)$ filters
 - Combined clause selectors
 - $O(mn2^n)$ time
 - O(mn) filters

Complexity (cont'd)

- Each problem instance
 - -O(m) time
 - -O(m) optical devices
- $O(2^n)$ long filters - 1.3 m long filters for n = 15
- $O(2^n)$ different wavelengths

17

OPTICAL GRAPH 3-COLORABILITY

3-Colorability Problem

- Is the given graph 3-colorable?
 - Graph coloring
 - Assign a color to each vertex of a graph
 - Proper 3-coloring
 - Using at most 3 colors
 - Different colors for adjacent vertices

Graph Colorings as Binary Sequences

Write the color of vertices in binary format each after other

Light Rays as Binary Numbers

- Consider a wide ribbon of light
 - Divide the ribbon into 2^{2n} sections
 - Assign each section to binary number

Filter

- An opaque ribbon
 Punched in some places
 - Use to drop some binary numbers

Filters to Drop Improper Colorings

- A valid color for each vertex
 - -n vertex filters
 - f_i drops rays where 00 is assigned to v_i
- Different colors for adjacent vertices
 - -e edge filters
 - $f_{(i,j)}$ drops light rays where the same color is assigned to v_i and v_j

Filters are created in preprocessing phase

Is the Graph 3-Colorable?

Complexity

- Preprocessing
 - -n vertex filters
 - $O(n2^{2n})$ time
 - $-\binom{n}{2}$ edge filters
 - $O(n^2 2^{2n})$ time
- Each problem instance -O(n+e) time
- $O(2^{2n})$ long filters
 - -1.3 m long filters for n = 15 (square shape filters)
- $O(2^{2n})$ number of photons

FUTURE WORKS

Future Works

Computational power

Polynomial time solutions for NPC problems

• Reduce filter sizes

