An Optical Approach to Computation

Sama Goliaei
Tarbiat Modares University, Tehran, Iran

Content

ГOptical computing
■Optical 3-satisfiability
\square Optical graph 3-colorability
Г Future works

OPTIGAL COMPUTING

Light Properties

- Special physical properties of light
- High parallel nature
- High speed
- Splitting abilities
- Many different wavelengths in a single ray

Optical Computing In Different Areas

- Data transmission
- Data storage
- Data processing
- Optical logic gates
- Processors based on light properties

Optical Data Processing

- Continuous space machine
- Images as memory cells
- Optical operations
- Copy, Fourier transformation,…
- Contributions on solving NPC problems
- Optical non-deterministic Turing machine
- Light rays pass different computational path
- Split light rays in decision points
- Contributions on solving NPC problems

OPTIGAL GRAPH 3-COLORABILITY

The 3-Sat Problem

- Is the given Boolean formula satisfiable?
- Conjunctive of some clauses
- Clause: disjunction of some literals
- Literal: variable or negation of a variable

Literal
↔
$\left(x_{1} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{5}\right) \wedge\left(\overline{x_{4}} \vee \overline{x_{5}} \vee \overline{x_{1}}\right) \wedge\left(\overline{x_{2}} \vee x_{1} \vee x_{5}\right)$

Clause

Wavelngths as Value-Assignments

Wavelngths as Value-Assignments

Divide a wavelength spectrum into 2^{n} sections.
Consider each section as a possible value-assignment.

Filters

$\sigma_{F}(R)$ drops wavelengths not satisfying F from a given light ray R

Literal Selector

σ_{l}

Punch an opaque ribbon where the literal is satisfied

Simple Clause Selectors

Punch an opaque ribbon where the clause is satisfied.

Combined Clause Selectors

$$
C=l_{1} \vee l_{2} \vee l_{3}
$$

R

CNF Formula Selector

$$
\sigma_{C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}}
$$

Drop wavelengths not satisfying clauses each after other. At the end, remaining wavelengths indicate that the formula is satisfiable.

Complexity

- Preprocessing
- Simple clause selectors
- $O\left(n^{3} 2^{n}\right)$ time
- $O\left(n^{3}\right)$ filters
- Combined clause selectors
- $O\left(m n 2^{n}\right)$ time
- $O(m n)$ filters

Complexity (cont' d)

- Each problem instance
$-O(m)$ time
$-O(m)$ optical devices
- $O\left(2^{n}\right)$ long filters
$-1.3 m$ long filters for $n=15$
- $O\left(2^{n}\right)$ different wavelengths

OPTIGAL GRAPH 3-COLORABILITY

3-Golorability Problem

- Is the given graph 3-colorable?
- Graph coloring
- Assign a color to each vertex of a graph
- Proper 3-coloring
- Using at most 3 colors
- Different colors for adjacent vertices

Graph Colorings as Binary Sequences

Light Rays as Binary Numbers

- Consider a wide ribbon of light
- Divide the ribbon into $2^{2 n}$ sections
- Assign each section to binary number

Filter

- An opaque ribbon
- Punched in some places
- Use to drop some binary numbers

Filters to Drop Improper Colorings

- A valid color for each vertex
- n vertex filters
- f_{i} drops rays where 00 is assigned to v_{i}
- Different colors for adjacent vertices
$-e$ edge filters
- $f_{(i, j)}$ drops light rays where the same color is assigned to v_{i} and v_{j}

Filters are created in preprocessing phase

Is the Graph 3-Colorable?

vertex filters

Complexity

- Preprocessing
$-n$ vertex filters
- $O\left(n 2^{2 n}\right)$ time
$-\binom{n}{2}$ edge filters
- $O\left(n^{2} 2^{2 n}\right)$ time
- Each problem instance
$-O(n+e)$ time
- $O\left(2^{2 n}\right)$ long filters
- 1.3 m long filters for $n=15$ (square shape filters)
- $O\left(2^{2 n}\right)$ number of photons

FUTURE WORKS

Future Works

- Computational power
- Polynomial time solutions for NPC problems
- Reduce filter sizes

