Luidnel Maignan ALCHEMY: INRIA SACLAY, LRI, UNIV. PARIS XI luidnel.maignan@inria.fr

New World of Computation 2011 Orléan - 23-24 May 2011

Spatial Computing and Cellular Automata

 \blacksquare Massively Distributed Systems \Rightarrow Spatial Features

Spatial Computing and Cellular Automata

- \blacksquare Massively Distributed Systems \Rightarrow Spatial Features
- Why? Physics and Locality

Spatial Computing and Cellular Automata

- Massively Distributed Systems \Rightarrow Spatial Features
- Why? Physics and Locality
- Exemple? Computer Architecture, Communication

Spatial Computing and Cellular Automata

- Spatial Computing: focus on space
- Cellular Automata: simple framework, precise results

Global Statement

In the same manner that geometry is deeply based on distances, basing spatial algorithmics on the intrinsic metric of the spatial computers leads to more precise and generic formulation.

Outline

1 Space, Time, and Cellular Automata

- 2 Distance Fields and Gradients
- 3 Density Uniformisation
- 4 Convex Hulls
- 5 Gabriel graphs

6 Conclusion and Perpectives

Space, Time, and Cellular Automata

Space, Time, and Cellular Automata

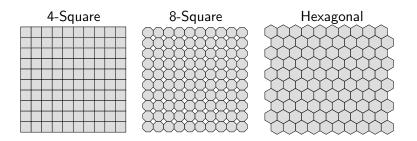
Space, Time, and Cellular Automata

Classical Considerations

Cellular Automata

Cellular Automata

- Regular lattice of cells, also called sites, (or points)
- All sites states are updated synchronously
- State updates depends only on neighborhood sites states



Space, Time, and Cellular Automata

Classical Considerations

Cellular Automata

Cellular Automata

- Regular lattice of cells, also called sites, (or points)
- All sites states are updated synchronously
- State updates depends only on neighborhood sites states

4-Square	8-Square	Hexagonal

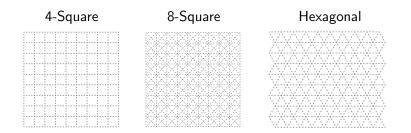
Space, Time, and Cellular Automata

Classical Considerations

Cellular Automata

Cellular Automata

- Regular lattice of cells, also called sites, (or points)
- All sites states are updated synchronously
- State updates depends only on neighborhood sites states



Space, Time, and Cellular Automata

Classical Considerations

Cellular Automata and Distances

Directions and Distances

- Traditionnaly, neighbors are named North, South, East, West
- In this work, no direction, only the graph and its metric
- Distances only ⇔ Rotational invariance

4-Square	8-Square	Hexagonal

Distance Fields and Gradients

Distance Fields and Gradients

Distance Fields and Gradients

Classical Definition and Computation

Classical Definition and Computation

Definition (Distance Map)

The distance map D_P of a given set of particles P associates to each point x its distance d(x, y) to the closest particle $y \in P$.

$$D_P(x) = d(P, x) = \min\{ d(x, y) \mid y \in P \}.$$

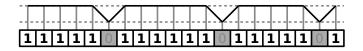
$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

Distance Fields and Gradients

Classical Definition and Computation

Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

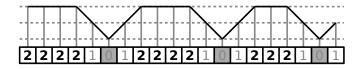


Distance Fields and Gradients

Classical Definition and Computation

Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

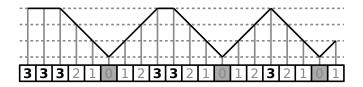


Distance Fields and Gradients

Classical Definition and Computation

Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

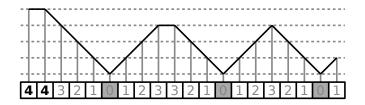


Distance Fields and Gradients

Classical Definition and Computation

Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

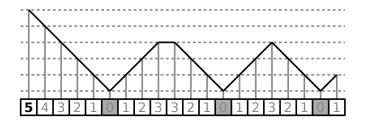


Distance Fields and Gradients

Classical Definition and Computation

Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

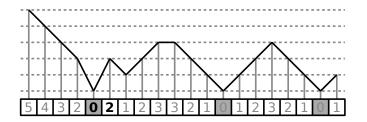


Distance Fields and Gradients

Classical Definition and Computation

Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

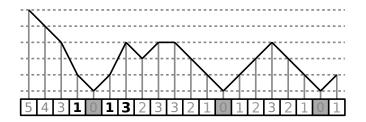


Distance Fields and Gradients

Classical Definition and Computation

Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$



Distance Fields and Gradients

Classical Definition and Computation

Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$



Distance Fields and Gradients

Classical Definition and Computation

Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

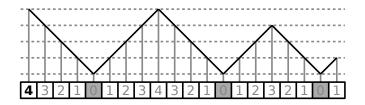


Distance Fields and Gradients

Classical Definition and Computation

Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

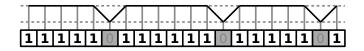


Distance Fields and Gradients

Corrected Distance Field Evolution

Corrected Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_{t+1} \text{ else:} \\ 0.5 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\} \end{cases}$$

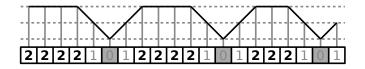


Distance Fields and Gradients

Corrected Distance Field Evolution

Corrected Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_{t+1} \text{ else:} \\ 0.5 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$



Distance Fields and Gradients

Corrected Distance Field Evolution

Corrected Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_{t+1} \text{ else:} \\ 0.5 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

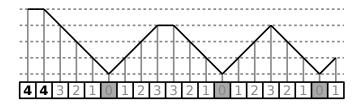


Distance Fields and Gradients

Corrected Distance Field Evolution

Corrected Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_{t+1} \text{ else:} \\ 0.5 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$



Distance Fields and Gradients

Corrected Distance Field Evolution

Corrected Distance Field Evolution

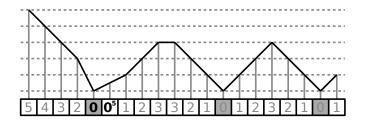
$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_{t+1} \text{ else:} \\ 0.5 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

Distance Fields and Gradients

Corrected Distance Field Evolution

Corrected Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_{t+1} \text{ else:} \\ 0.5 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

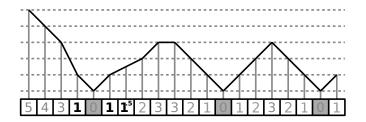


Distance Fields and Gradients

Corrected Distance Field Evolution

Corrected Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_{t+1} \text{ else:} \\ 0.5 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$



Distance Fields and Gradients

Corrected Distance Field Evolution

Corrected Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_{t+1} \text{ else:} \\ 0.5 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

Distance Fields and Gradients

Corrected Distance Field Evolution

Corrected Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_{t+1} \text{ else:} \\ 0.5 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

Distance Fields and Gradients

Corrected Distance Field Evolution

Corrected Distance Field Evolution

$$D[P]_{t+1}(x) = \begin{cases} 0 \text{ if } x \in P_{t+1} \text{ else:} \\ 0.5 \text{ if } x \in P_t \text{ else:} \\ \min\{1 + D[P]_t(y) \mid y \in N(x)\}. \end{cases}$$

Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field

Checkpoint

- We have: distances locally, globally, and dynamically
- We don't have: finite number of states

Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field

Checkpoint

- We have: distances locally, globally, and dynamically
- We don't have: finite number of states

Bounded information

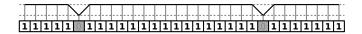
- No bound on distances
- Bounded gradient (differences between neighboring sites)
- What about modulo ?

Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

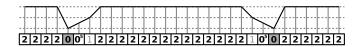


Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

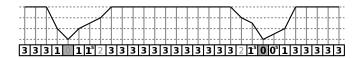


Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

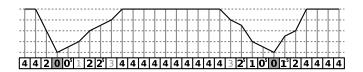


Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

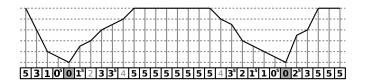


Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

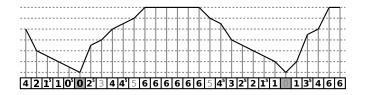


Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

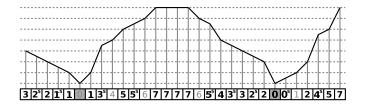


Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action



Distance Fields and Gradients

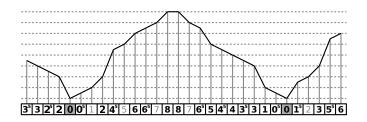
From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

Particles maximal speed determines maximal gradient

In this case: 2 consecutive moves \Rightarrow gradient bound of 3



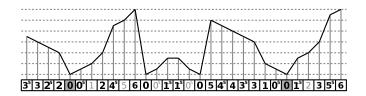
Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

- Particles maximal speed determines maximal gradient
- In this case: gradient bound of $3 \Rightarrow$ modulo 7



Distance Fields and Gradients

From Infinite To Finite Field

Building on top of distances

Distance fields as building blocks

- Moving according to the distance field
- Detecting patterns of distances and particles

Case Study

- Density Uniformisation (unidimensional)
- Convex Hull (multidimensional)
- Gabriel Graph (multidimensional)

Density Uniformisation

Density Uniformisation

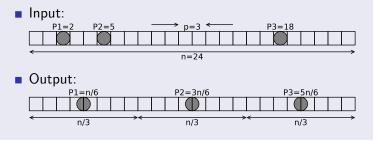
Density Uniformisation

Problem Statement

Problem Statement

Problem Definition

Move the particles to a uniform distribution



Density Uniformisation

Problem Analysis

Problem Analysis

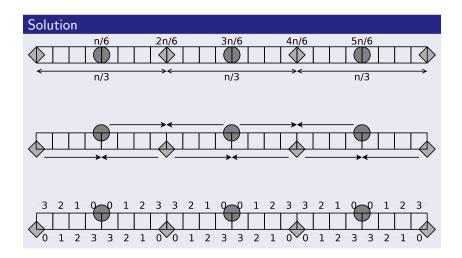
Intuition

- Each particle needs to occupy its space
- Boundary between individual spaces ⇔ middles
- Occupy its space \Leftrightarrow be at the middles

Density Uniformisation

Problem Analysis

Application: 1D Uniformisation



Density Uniformisation

Solution Description

The resulting system

Initial system state

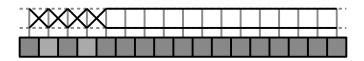
$$\begin{cases} p_0(x) = x \in P \\ w_0(x) = x \notin P \end{cases}$$

System fields composition

$$\begin{cases} d\mathsf{p} &= D[\mathsf{p}] \\ d\mathsf{w} &= D[\mathsf{w}] \\ \mathsf{p} &= M[\mathsf{p}_0, B[\mathsf{d}\mathsf{p}] \land \mathsf{Dir}[\mathsf{d}\mathsf{w}, \leq]] \\ \mathsf{w} &= M[\mathsf{w}_0, B[\mathsf{d}\mathsf{w}] \land \mathsf{Dir}[\mathsf{d}\mathsf{p}, \leq]] \end{cases}$$

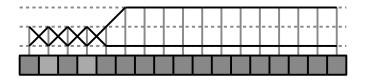
Density Uniformisation

Solution Description



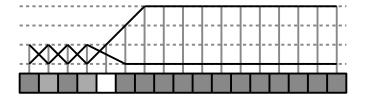
Density Uniformisation

Solution Description



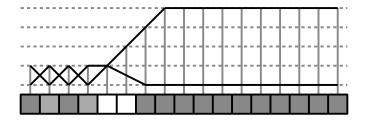
Density Uniformisation

Solution Description



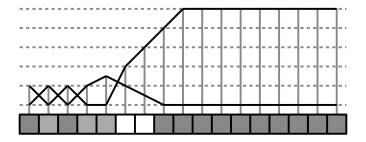
Density Uniformisation

Solution Description



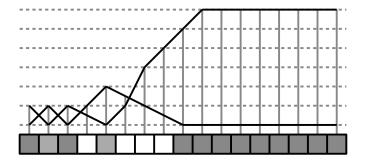
Density Uniformisation

Solution Description



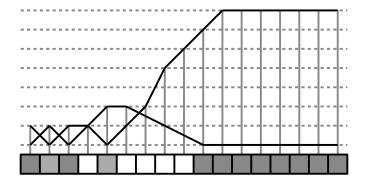
Density Uniformisation

Solution Description



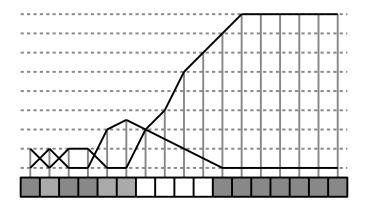
Density Uniformisation

Solution Description



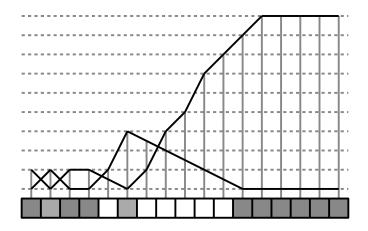
Density Uniformisation

Solution Description



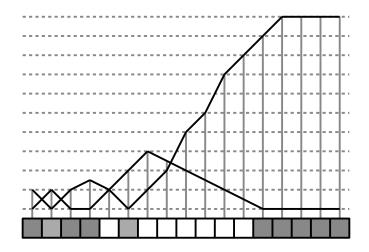
Density Uniformisation

Solution Description



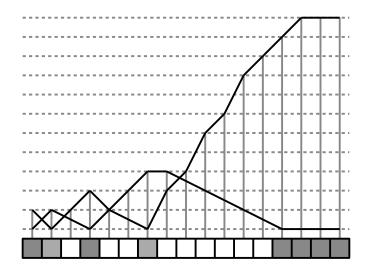
Density Uniformisation

Solution Description



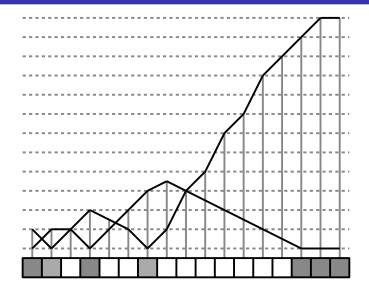
Density Uniformisation

Solution Description



Density Uniformisation

Solution Description



Density Uniformisation

Solution Description

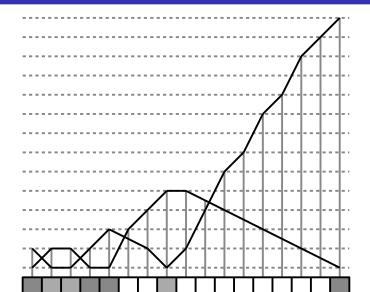
The resulting evolution



Density Uniformisation

Solution Description

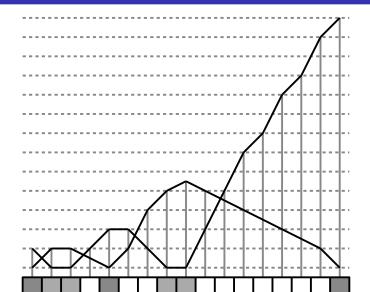
The resulting evolution



Density Uniformisation

Solution Description

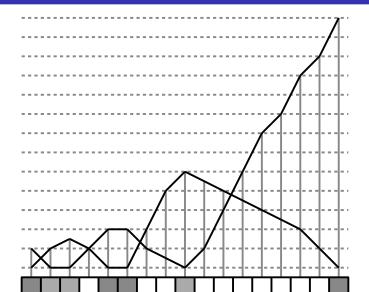
The resulting evolution



Density Uniformisation

Solution Description

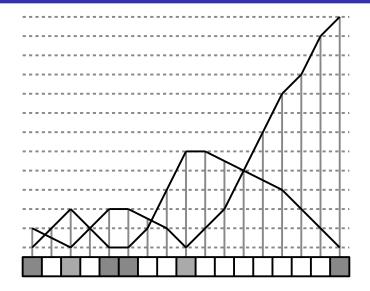
The resulting evolution



Density Uniformisation

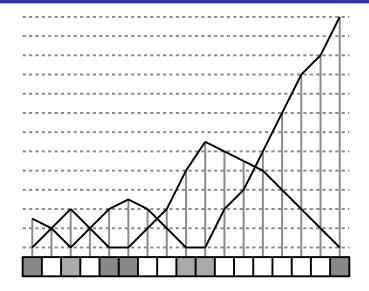
Solution Description

The resulting evolution



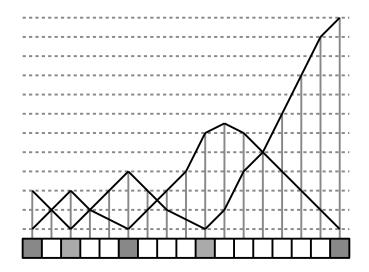
Density Uniformisation

Solution Description



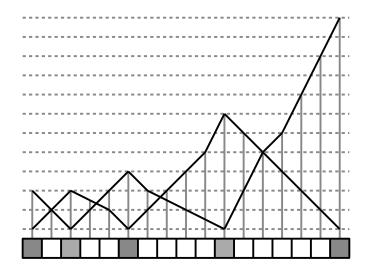
Density Uniformisation

Solution Description



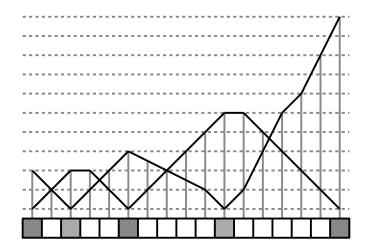
Density Uniformisation

Solution Description



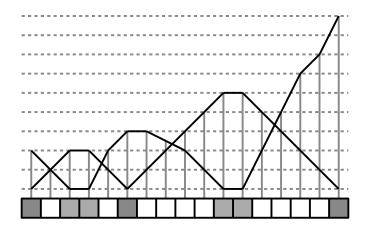
Density Uniformisation

Solution Description



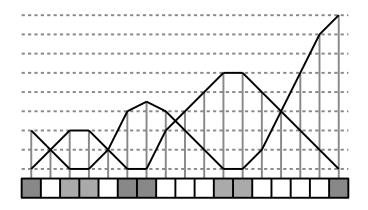
Density Uniformisation

Solution Description



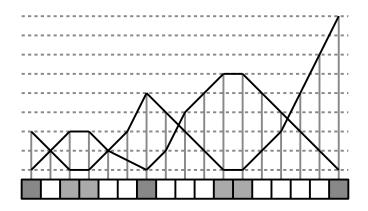
Density Uniformisation

Solution Description



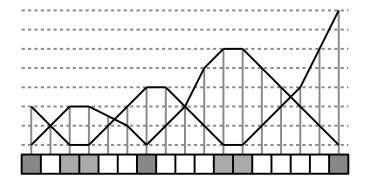
Density Uniformisation

Solution Description



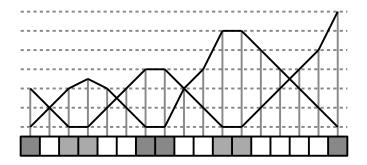
Density Uniformisation

Solution Description



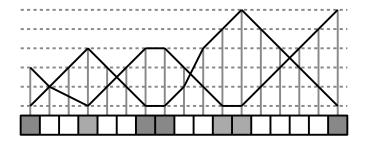
Density Uniformisation

Solution Description



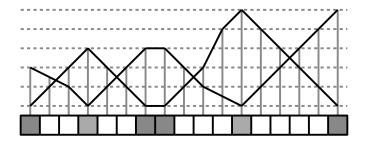
Density Uniformisation

Solution Description



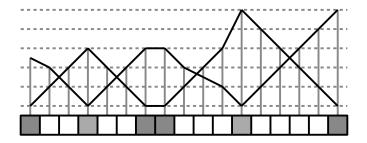
Density Uniformisation

Solution Description



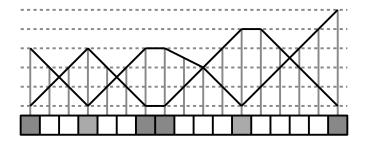
Density Uniformisation

Solution Description



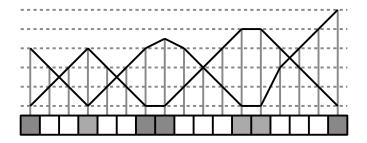
Density Uniformisation

Solution Description



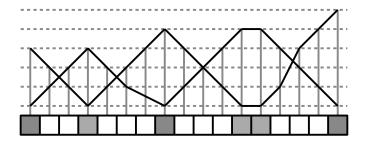
Density Uniformisation

Solution Description



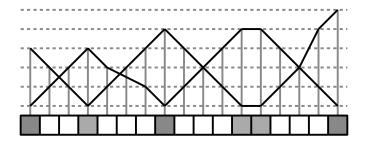
Density Uniformisation

Solution Description



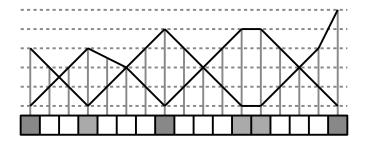
Density Uniformisation

Solution Description



Density Uniformisation

Solution Description

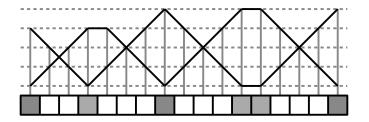


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

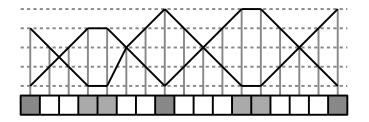


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system



Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

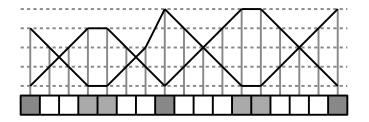


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

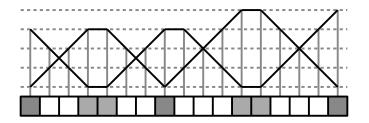


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

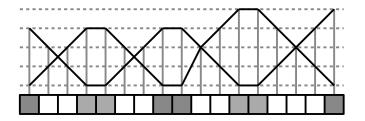


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

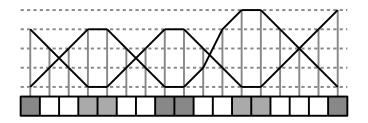


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

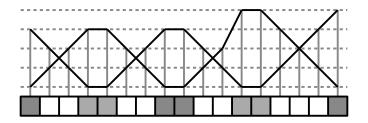


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

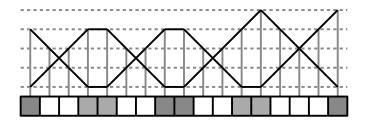


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

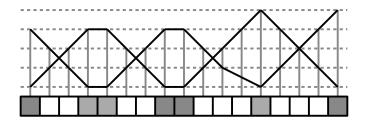


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

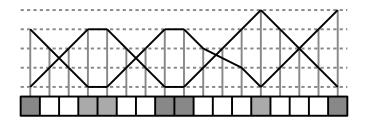


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

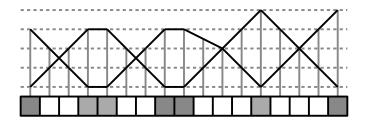


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system



Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

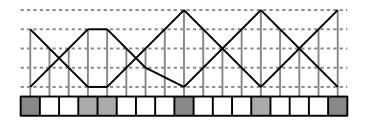


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

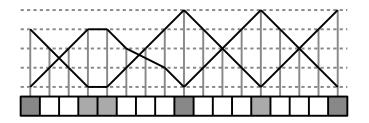


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

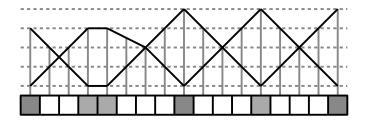


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

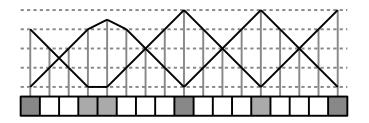


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

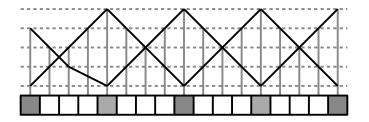


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

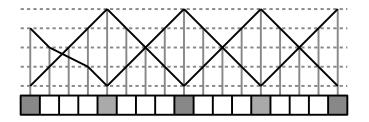


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

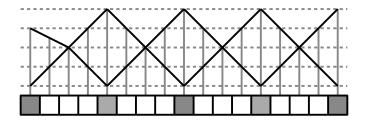


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

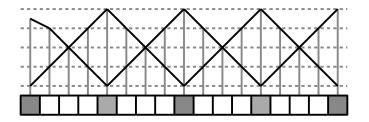


Density Uniformisation

Solution Description

The resulting evolution

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

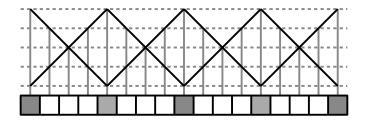


Density Uniformisation

Solution Description

The resulting evolution

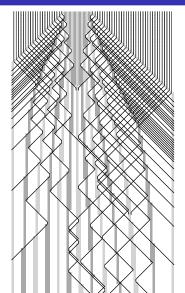
- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

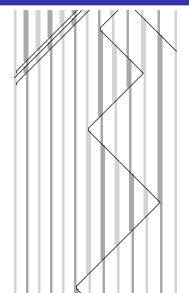


Density Uniformisation

Solution Description

Space-time diagram of the uniformisation





Convex Hulls

Convex Hulls

Convex Hulls

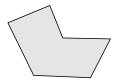
Definition and Problem Statement

Convexity in Euclidean Space

Definition (Euclidean convex region)

A convex region contains all segments joining two of its points

Convex Polygon



Concave Polygon

Convex Hulls

Definition and Problem Statement

Convexity in Euclidean Space (Cont.)

Definition (Convex Hull)

The convex hull is the smallest convex region containing a set

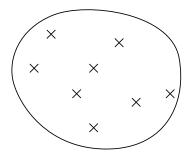
Convex Hulls

Definition and Problem Statement

Convexity in Euclidean Space (Cont.)

Definition (Convex Hull)

The convex hull is the smallest convex region containing a set



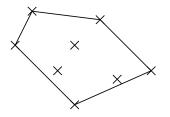
Convex Hulls

Definition and Problem Statement

Convexity in Euclidean Space (Cont.)

Definition (Convex Hull)

The convex hull is the smallest convex region containing a set



Convex Hulls

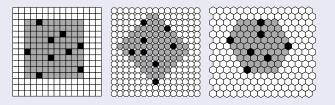
Definition and Problem Statement

Convexity in Cellular Space

Definition (Metric convex region)

A convex region contain all shortest paths joining two of its points

Convexity for Metric Cellular Space



Convex Hulls

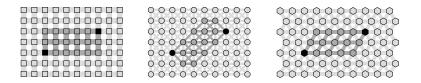
Definition and Problem Statement

Convexity in Cellular Space (Cont.)

Shortest paths between two points

Many shortest path between two points: Interval

$$[x,y] = \{ z \in S \mid d(x,z) + d(z,y) = d(x,y) \}$$

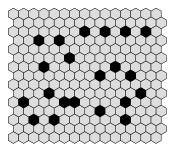


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

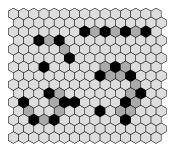


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

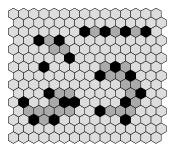


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

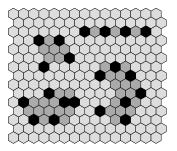


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

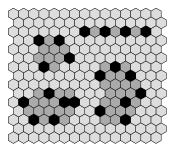


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

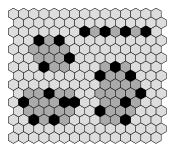


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

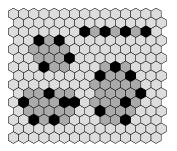


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

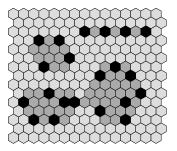


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

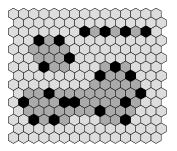


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

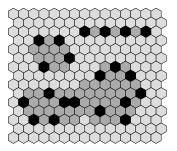


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

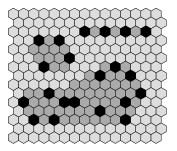


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

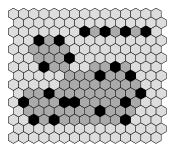


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

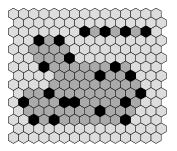


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

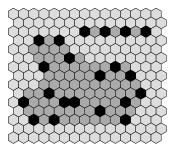


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

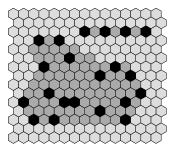


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

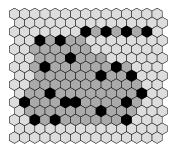


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

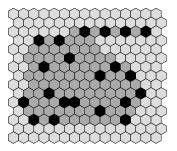


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

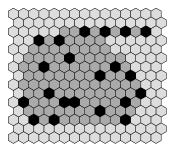


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

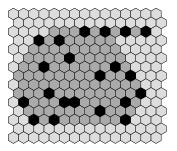


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

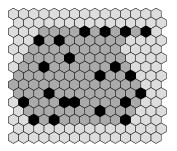


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

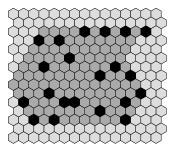


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

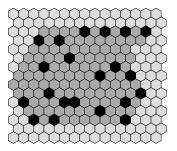


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

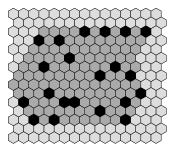


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

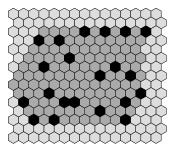


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

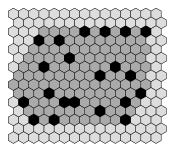


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

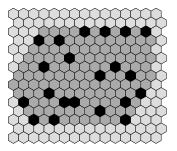


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

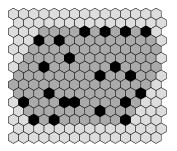


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition

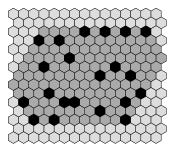


Convex Hulls

First Step: Local convexity

First Step: Local convexity

Definition



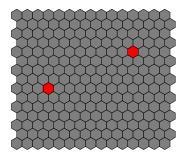
Convex Hulls

Second Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

Grow a distance field modulo 3 (static particles)

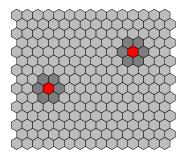


Convex Hulls

Second Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

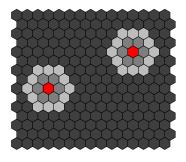


Convex Hulls

Second Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

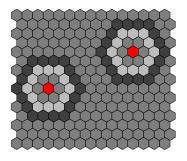


Convex Hulls

Second Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

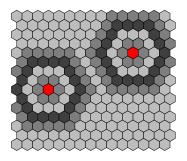


Convex Hulls

Second Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

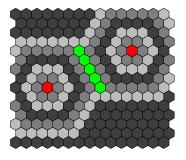


Convex Hulls

Second Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

- Grow a distance field modulo 3 (static particles)
- Detect the middles of the shortest paths

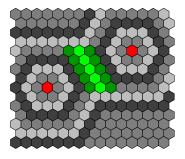


Convex Hulls

└─Second Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

- Grow a distance field modulo 3 (static particles)
- Detect the middles of the shortest paths
- Go back from the middles to the particles

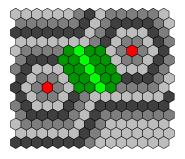


Convex Hulls

└─Second Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

- Grow a distance field modulo 3 (static particles)
- Detect the middles of the shortest paths
- Go back from the middles to the particles

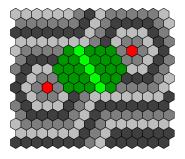


Convex Hulls

└─Second Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

- Grow a distance field modulo 3 (static particles)
- Detect the middles of the shortest paths
- Go back from the middles to the particles

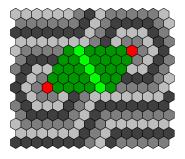


Convex Hulls

└─Second Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

- Grow a distance field modulo 3 (static particles)
- Detect the middles of the shortest paths
- Go back from the middles to the particles



Convex Hulls

Last Step: Global Convexity for Many Particles

Last Step: Global Convexity for Many Particles

Convex Hull of Two Points

- Grow a distance field modulo 3
- Detect the middles of the shortest paths
- Go back from the middles to the points

Convex Hulls

Last Step: Global Convexity for Many Particles

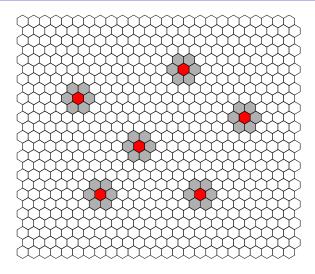
Last Step: Global Convexity for Many Particles

Convex Hull of Many Points

- Grow a distance field modulo 3
- Detect the middles of the shortest paths
- Go back from the middles to the points

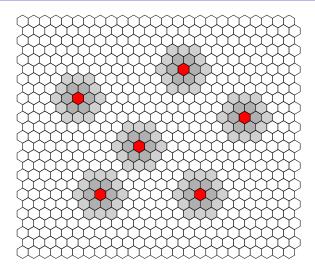
Convex Hulls

Solution Description: Global Convexity for Many Particles



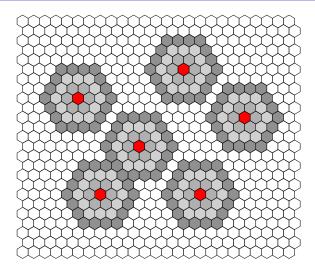
Convex Hulls

Solution Description: Global Convexity for Many Particles



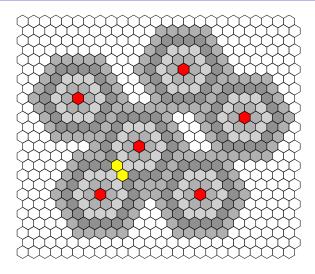
Convex Hulls

Solution Description: Global Convexity for Many Particles



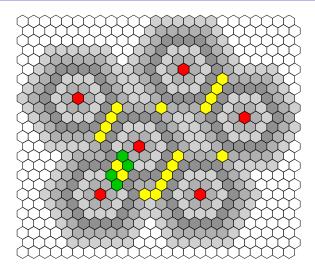
Convex Hulls

Solution Description: Global Convexity for Many Particles



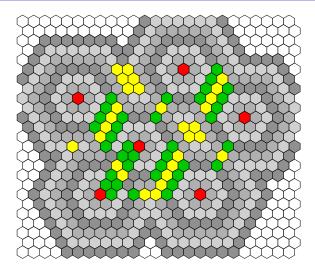
Convex Hulls

Solution Description: Global Convexity for Many Particles



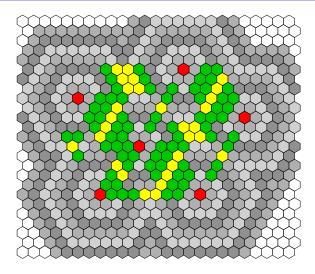
Convex Hulls

Solution Description: Global Convexity for Many Particles



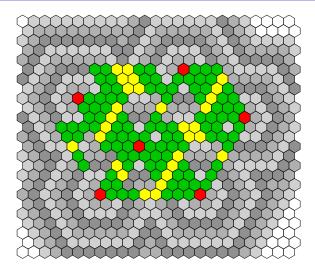
Convex Hulls

Solution Description: Global Convexity for Many Particles



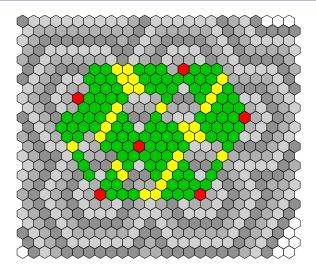
Convex Hulls

Solution Description: Global Convexity for Many Particles



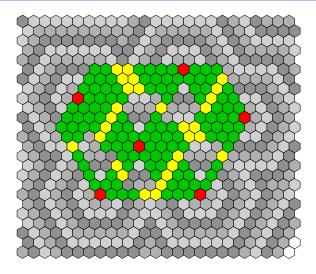
Convex Hulls

Solution Description: Global Convexity for Many Particles



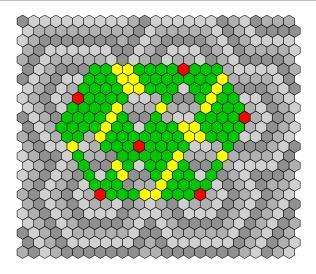
Convex Hulls

Solution Description: Global Convexity for Many Particles



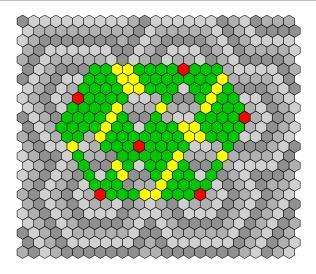
Convex Hulls

Solution Description: Global Convexity for Many Particles



Convex Hulls

Solution Description: Global Convexity for Many Particles

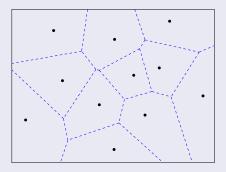


Convex Hulls

Solution Description: Global Convexity for Many Particles

Proximity Graph Characterisation

Distance Field and Voronoi Diagram

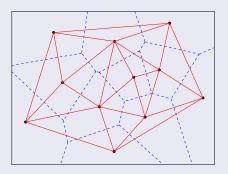


Convex Hulls

Solution Description: Global Convexity for Many Particles

Proximity Graph Characterisation

Delaunay graph ?

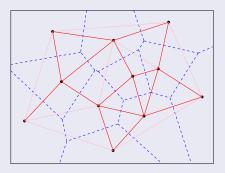


Convex Hulls

Solution Description: Global Convexity for Many Particles

Proximity Graph Characterisation

Delaunay graph ? No, only a subset

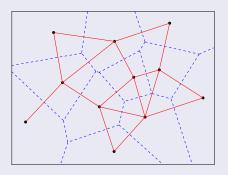


Convex Hulls

Solution Description: Global Convexity for Many Particles

Proximity Graph Characterisation

Gabriel Graph !



└─ Gabriel graphs

Gabriel graphs

Gabriel graphs

└─Original Gabriel graphs

Original Gabriel graphs

Definition (Gabriel Graph)

- Euclidean spaces
- Connects two particles x and y if and only if the ball using the segment [xy] as diameter does not contain any other particle.

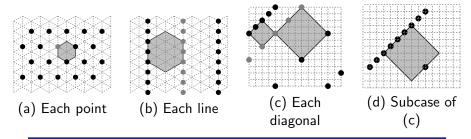
Gabriel graphs on Cellular Spaces

Connected for Euclidean... and for cellular spaces ?

Gabriel graphs

└─Original Gabriel graphs

Gabriel graphs on Cellular Spaces



Generalisation

- Connectedness is not ensured in general
- The cause is the non-uniquess of diameters and minimal balls
- We need to generalize the definition

Gabriel graphs

Metric Gabriel Graphs

Principles of Gabriel Graphs

Connectedness, Minimality, and Locality

- Minimality and connectedness:
 - minimum spanning trees
- Locality and connectedness :
 - arbitrarily choice implies global coherence
 - union of all minimum spanning trees
- Locality and minimality :
 - Edge decision should be local
 - union of all local minimum spanning trees

Gabriel graphs

Metric Gabriel Graphs

From Principles to Definition

Definition (Metric Gabriel Graph)

- Any metric space
- Connects two particles x and y if and only if there is a ball B(c, r) such that d(x, y) = 2r and {x, y} is an edge of a minimum spanning tree of P ∩ B(c, r).

Gabriel graphs

Metric Gabriel Graphs

From Principles to Definition (Cont.)

Definition (Metric Gabriel Graph)

- Any metric space
- Connects two particles x and y of P if and only if there is a ball B(c, r) such that there is a cut $\{P_0, P_1\}$ of $P \cap B(c, r)$ with $(x, y) \in P_0 \times P_1$ and $d(P_0, P_1) = 2r$.

Gabriel graphs

Metric Gabriel Graphs

From Principles to Definition (Cont.)

Definition (Metric Gabriel Graph)

- Any metric space
- Connects two particles x and y of P if and only if there is a ball B(c, r) such that there is a cut $\{P_0, P_1\}$ of $P \cap B(c, r)$ with $(x, y) \in P_0 \times P_1$ and $d(P_0, P_1) = 2r$.

Preservation of the Properties

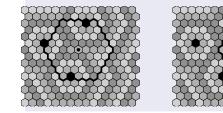
- Metric Gabriel graphs are always connected
- On Euclidean spaces, they are Gabriel graphs

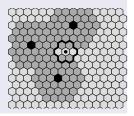
Gabriel graphs

Metric Gabriel Graphs on Cellular Automata

Distance fields and dilations

Example of a metric Gabriel ball center



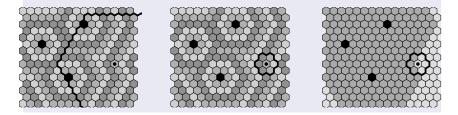


Gabriel graphs

Metric Gabriel Graphs on Cellular Automata

Distance fields and dilations (Cont.)

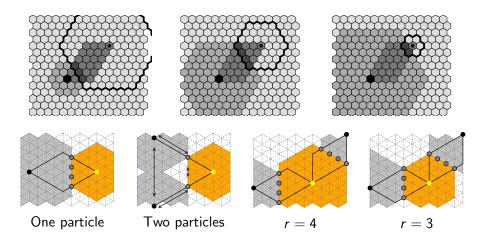
Example of a non-metric Gabriel ball center



Gabriel graphs

└─ Metric Gabriel Graphs on Cellular Automata

Dilations and interval slices



Gabriel graphs

Metric Gabriel Graphs on Cellular Automata

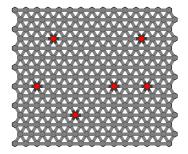
The metric Gabriel ball centers field

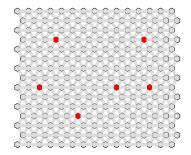
$$\operatorname{cent}_t(x) = \begin{cases} \bot \text{ if } t = 0 \\ \top \text{ if } \overline{\operatorname{cent}}_t(x, x) \\ \top \text{ if } \exists y \in N(x), \overline{\operatorname{cent}}_t(x, y) \\ \bot \text{ otherwise;} \end{cases}$$

$$\overline{\operatorname{cent}}_t(x, y) = |\overline{Q}_t(x, y)/C^+_{2r_{xy}}| \ge 2 \overline{Q}_t(x, y) = \{ z \in B(xy, r_{xy}) \mid D[P]_{t-1}(z) + r_{xy} = \overline{D}[P]_{t-1}(x, y) \}$$

Gabriel graphs

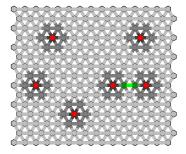
└─ Metric Gabriel Graphs on Cellular Automata

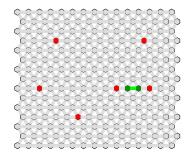




Gabriel graphs

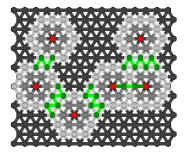
└─ Metric Gabriel Graphs on Cellular Automata

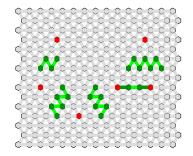




Gabriel graphs

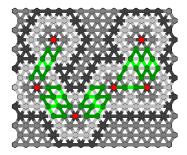
└─ Metric Gabriel Graphs on Cellular Automata

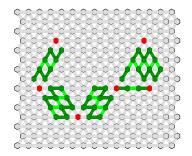




Gabriel graphs

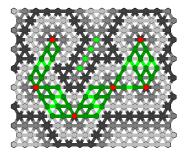
└─ Metric Gabriel Graphs on Cellular Automata

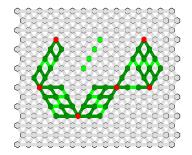




Gabriel graphs

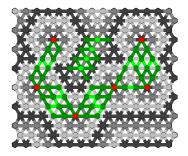
└─ Metric Gabriel Graphs on Cellular Automata

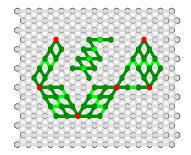




Gabriel graphs

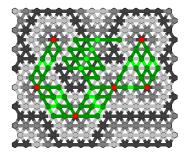
└─ Metric Gabriel Graphs on Cellular Automata

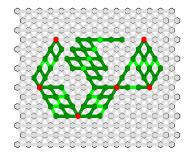




Gabriel graphs

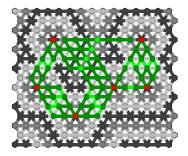
└─ Metric Gabriel Graphs on Cellular Automata

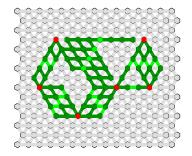




Gabriel graphs

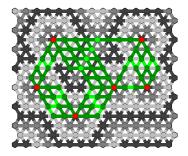
└─ Metric Gabriel Graphs on Cellular Automata

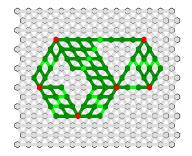




Gabriel graphs

└─ Metric Gabriel Graphs on Cellular Automata





Conclusion and Perpectives

Conclusion and Perpectives

Conclusion and Perpectives

Perspectives

In the same framework

- Voronoi Diagram Field
- Firing Squad Synchronisation Problem

Extending the framework

- Cayley Graphs
- Asynchronicity
- Amorphous Computers