Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics

Luidnel Maignan
Alchemy: INRIA Saclay, LRI, Univ. Paris XI
luidnel.maignan@inria.fr

New World of Computation 2011
Orléan-23-24 May 2011

Introduction

Spatial Computing and Cellular Automata
■ Massively Distributed Systems \Rightarrow Spatial Features

Introduction

Spatial Computing and Cellular Automata
■ Massively Distributed Systems \Rightarrow Spatial Features
■ Why? Physics and Locality

Introduction

Spatial Computing and Cellular Automata
■ Massively Distributed Systems \Rightarrow Spatial Features
■ Why? Physics and Locality
■ Exemple? Computer Architecture, Communication

Introduction

Spatial Computing and Cellular Automata

- Spatial Computing: focus on space
- Cellular Automata: simple framework, precise results

Global Statement

In the same manner that geometry is deeply based on distances, basing spatial algorithmics on the intrinsic metric of the spatial computers leads to more precise and generic formulation.

Outline

1 Space, Time, and Cellular Automata

2 Distance Fields and Gradients

3 Density Uniformisation

4 Convex Hulls

5 Gabriel graphs

6 Conclusion and Perpectives

Space, Time, and Cellular Automata

-Space, Time, and Cellular Automata

LClassical Considerations

Cellular Automata

Cellular Automata

- Regular lattice of cells, also called sites, (or points)
- All sites states are updated synchronously

■ State updates depends only on neighborhood sites states

Hexagonal

$\square_{\text {Space, Time, and Cellular Automata }}$

-Classical Considerations

Cellular Automata

Cellular Automata

- Regular lattice of cells, also called sites, (or points)

■ All sites states are updated synchronously
■ State updates depends only on neighborhood sites states

8-Square

Hexagonal

Cellular Automata

Cellular Automata

- Regular lattice of cells, also called sites, (or points)
- All sites states are updated synchronously

■ State updates depends only on neighborhood sites states

4-Square 8-Square Hexagonal

Cellular Automata and Distances

Directions and Distances

- Traditionnaly, neighbors are named North, South, East, West

■ In this work, no direction, only the graph and its metric

- Distances only \Leftrightarrow Rotational invariance

8-Square

Hexagonal

Distance Fields and Gradients

Classical Definition and Computation

Definition (Distance Map)

The distance map D_{P} of a given set of particles P associates to each point x its distance $d(x, y)$ to the closest particle $y \in P$.

$$
D_{P}(x)=d(P, x)=\min \{d(x, y) \mid y \in P\}
$$

Classical Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

L Distance Fields and Gradients
-Classical Definition and Computation

Distance Field Evolution

Classical Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

$L_{\text {Classical Definition and Computation }}$

Distance Field Evolution

Classical Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

L Distance Fields and Gradients
$L_{\text {Classical Definition and Computation }}$

Distance Field Evolution

Classical Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

$L_{\text {Classical Definition and Computation }}$

Distance Field Evolution

Classical Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

$L_{\text {Classical Definition and Computation }}$

Distance Field Evolution

Classical Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

$L_{\text {Classical Definition and Computation }}$

Distance Field Evolution

Classical Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

$L_{\text {Classical Definition and Computation }}$

Distance Field Evolution

Classical Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

$L_{\text {Classical Definition and Computation }}$

Distance Field Evolution

Classical Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

$L_{\text {Classical Definition and Computation }}$

Distance Field Evolution

Classical Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

$L_{\text {Classical Definition and Computation }}$

Distance Field Evolution

Classical Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

- Corrected Distance Field Evolution

Corrected Distance Field Evolution

Corrected Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t+1} \text { else: } \\
0.5 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

- Corrected Distance Field Evolution

Corrected Distance Field Evolution

Corrected Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t+1} \text { else: } \\
0.5 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

-Corrected Distance Field Evolution

Corrected Distance Field Evolution

Corrected Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t+1} \text { else: } \\
0.5 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

-Corrected Distance Field Evolution

Corrected Distance Field Evolution

Corrected Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t+1} \text { else: } \\
0.5 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

-Corrected Distance Field Evolution

Corrected Distance Field Evolution

Corrected Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t+1} \text { else: } \\
0.5 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

-Corrected Distance Field Evolution

Corrected Distance Field Evolution

Corrected Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t+1} \text { else: } \\
0.5 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

-Corrected Distance Field Evolution

Corrected Distance Field Evolution

Corrected Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t+1} \text { else: } \\
0.5 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

-Corrected Distance Field Evolution

Corrected Distance Field Evolution

Corrected Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t+1} \text { else: } \\
0.5 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

-Corrected Distance Field Evolution

Corrected Distance Field Evolution

Corrected Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t+1} \text { else: } \\
0.5 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

- Distance Fields and Gradients

-Corrected Distance Field Evolution

Corrected Distance Field Evolution

Corrected Distance Field

$$
D[P]_{t+1}(x)=\left\{\begin{array}{l}
0 \text { if } x \in P_{t+1} \text { else: } \\
0.5 \text { if } x \in P_{t} \text { else: } \\
\min \left\{1+D[P]_{t}(y) \mid y \in N(x)\right\}
\end{array}\right.
$$

L Distance Fields and Gradients
-From Infinite To Finite Field

From Infinite To Finite Field

Checkpoint

■ We have: distances locally, globally, and dynamically

- We don't have: finite number of states

From Infinite To Finite Field

Checkpoint

- We have: distances locally, globally, and dynamically
- We don't have: finite number of states

Bounded information

■ No bound on distances

- Bounded gradient (differences between neighboring sites)
- What about modulo ?

L Distance Fields and Gradients
-From Infinite To Finite Field
From Infinite To Finite Field (Cont.)

Modulo in action

- Particles maximal speed determines maximal gradient

L Distance Fields and Gradients

LFrom Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

■ Particles maximal speed determines maximal gradient

L Distance Fields and Gradients

LFrom Infinite To Finite Field
From Infinite To Finite Field (Cont.)

Modulo in action

- Particles maximal speed determines maximal gradient

- Distance Fields and Gradients

LFrom Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

- Particles maximal speed determines maximal gradient

L Distance Fields and Gradients

LFrom Infinite To Finite Field
From Infinite To Finite Field (Cont.)

Modulo in action

- Particles maximal speed determines maximal gradient

- Distance Fields and Gradients

LFrom Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

- Particles maximal speed determines maximal gradient

- Distance Fields and Gradients

LFrom Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

- Particles maximal speed determines maximal gradient

— Distance Fields and Gradients

-From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

- Particles maximal speed determines maximal gradient

■ In this case: 2 consecutive moves \Rightarrow gradient bound of 3

- Distance Fields and Gradients

LFrom Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

■ Particles maximal speed determines maximal gradient

- In this case: gradient bound of $3 \Rightarrow$ modulo 7

Building on top of distances

Distance fields as building blocks

■ Moving according to the distance field

- Detecting patterns of distances and particles

Case Study

- Density Uniformisation (unidimensional)
- Convex Hull (multidimensional)

■ Gabriel Graph (multidimensional)

Density Uniformisation

L Density Uniformisation

L Problem Statement

Problem Statement

Problem Definition

■ Move the particles to a uniform distribution
■ Input:

- Output:

Problem Analysis

Intuition

■ Each particle needs to occupy its space

- Boundary between individual spaces \Leftrightarrow middles

■ Occupy its space \Leftrightarrow be at the middles

- Density Uniformisation

- Problem Analysis

Application: 1D Uniformisation

Solution

L Density Uniformisation

$L_{\text {Solution Description }}$

The resulting system

Initial system state

$$
\left\{\begin{aligned}
\mathrm{p}_{0}(x) & =x \in P \\
\mathrm{w}_{0}(x) & =x \notin P
\end{aligned}\right.
$$

System fields composition

$$
\left\{\begin{aligned}
\mathrm{dp} & =D[\mathrm{p}] \\
\mathrm{dw} & =D[\mathrm{w}] \\
\mathrm{p} & =M\left[\mathrm{p}_{\mathrm{p}}, B[\mathrm{dp}] \wedge \operatorname{Dir}[\mathrm{dw}, \leq]\right] \\
\mathrm{w} & =M\left[\mathrm{w}_{0}, B[\mathrm{dw}] \wedge \operatorname{Dir}[\mathrm{dp}, \leq]\right]
\end{aligned}\right.
$$

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

- Density Uniformisation

$\left\llcorner_{\text {Solution Description }}\right.$

The resulting evolution

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

- Density Uniformisation

$\left\llcorner_{\text {Solution Description }}\right.$

The resulting evolution

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

LDensity Uniformisation

LSolution Description

The resulting evolution

L Density Uniformisation

LSolution Description

The resulting evolution

L Density Uniformisation

LSolution Description

The resulting evolution

L Density Uniformisation

LSolution Description

The resulting evolution

L Density Uniformisation

LSolution Description

The resulting evolution

L Density Uniformisation

LSolution Description

The resulting evolution

L Density Uniformisation

LSolution Description

The resulting evolution

L Density Uniformisation

$\left\llcorner_{\text {Solution Description }}\right.$

The resulting evolution

L Density Uniformisation

$\left\llcorner_{\text {Solution Description }}\right.$

The resulting evolution

L Density Uniformisation

$\left\llcorner_{\text {Solution Description }}\right.$

The resulting evolution

L Density Uniformisation

$\left\llcorner_{\text {Solution Description }}\right.$

The resulting evolution

L Density Uniformisation

LSolution Description

The resulting evolution

L Density Uniformisation

LSolution Description

The resulting evolution

Lensity Uniformisation

$\left\llcorner_{\text {Solution Description }}\right.$

The resulting evolution

Lensity Uniformisation

$\left\llcorner_{\text {Solution Description }}\right.$

The resulting evolution

Lensity Uniformisation

$\left\llcorner_{\text {Solution Description }}\right.$

The resulting evolution

L Density Uniformisation

LSolution Description

The resulting evolution

Lensity Uniformisation

$\left\llcorner_{\text {Solution Description }}\right.$

The resulting evolution

Lensity Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

L Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

L Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

L Density Uniformisation
$L_{\text {Solution Description }}$

The resulting evolution

L Density Uniformisation
$L_{\text {Solution Description }}$

The resulting evolution

L Density Uniformisation
$L_{\text {Solution Description }}$

The resulting evolution

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

L Density Uniformisation
$L_{\text {Solution Description }}$

The resulting evolution

$L_{\text {Density Uniformisation }}$
$L_{\text {Solution Description }}$

The resulting evolution

L Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

$L_{\text {Density Uniformisation }}$
$L_{\text {Solution Description }}$

The resulting evolution

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals

■ Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals
- Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals

■ Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals

■ Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals

■ Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals

■ Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals

■ Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals

■ Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals

■ Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals

■ Defined by fields; composed for global system

- Density Uniformisation

$L_{\text {Solution Description }}$

The resulting evolution

Signal and Dynamics

- We can see that signals travels through the space
- We can assign energy and momentum to these signals

■ Defined by fields; composed for global system

Space-time diagram of the uniformisation

Convex Hulls

Convexity in Euclidean Space

Definition (Euclidean convex region)

A convex region contains all segments joining two of its points

Convex Polygon

Concave Polygon

Convexity in Euclidean Space (Cont.)

Definition (Convex Hull)

The convex hull is the smallest convex region containing a set

Convexity in Euclidean Space (Cont.)

Definition (Convex Hull)

The convex hull is the smallest convex region containing a set

- Convex Hulls

$\square_{\text {Definition and Problem Statement }}$

Convexity in Euclidean Space (Cont.)

Definition (Convex Hull)

The convex hull is the smallest convex region containing a set

Convexity in Cellular Space

Definition (Metric convex region)

A convex region contain all shortest paths joining two of its points

Convexity for Metric Cellular Space

-Convex Hulls

Convexity in Cellular Space (Cont.)

Shortest paths between two points

- Many shortest path between two points: Interval

■ $[x, y]=\{z \in S \mid d(x, z)+d(z, y)=d(x, y)\}$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

First Step: Local convexity

Definition

$$
\operatorname{conv}_{t}(x)=\exists y_{0}, y_{1} \in\left\{y \in N(x) \mid y \in P_{t} \vee \operatorname{conv}_{t-1}(y)\right\} ; x \in\left[y_{0}, y_{1}\right]
$$

Second Step: Global Convexity for Two Particles

Required Fields:

■ Grow a distance field modulo 3 (static particles)

Second Step: Global Convexity for Two Particles

Required Fields:

■ Grow a distance field modulo 3 (static particles)

Second Step: Global Convexity for Two Particles

Required Fields:

- Grow a distance field modulo 3 (static particles)

Second Step: Global Convexity for Two Particles

Required Fields:

- Grow a distance field modulo 3 (static particles)

Second Step: Global Convexity for Two Particles

Required Fields:

- Grow a distance field modulo 3 (static particles)

Second Step: Global Convexity for Two Particles

Required Fields:

- Grow a distance field modulo 3 (static particles)
- Detect the middles of the shortest paths

Second Step: Global Convexity for Two Particles

Required Fields:

- Grow a distance field modulo 3 (static particles)
- Detect the middles of the shortest paths
- Go back from the middles to the particles

Second Step: Global Convexity for Two Particles

Required Fields:

- Grow a distance field modulo 3 (static particles)
- Detect the middles of the shortest paths
- Go back from the middles to the particles

Second Step: Global Convexity for Two Particles

Required Fields:

- Grow a distance field modulo 3 (static particles)
- Detect the middles of the shortest paths
- Go back from the middles to the particles

Second Step: Global Convexity for Two Particles

Required Fields:

- Grow a distance field modulo 3 (static particles)
- Detect the middles of the shortest paths
- Go back from the middles to the particles

Last Step: Global Convexity for Many Particles

Convex Hull of Two Points

- Grow a distance field modulo 3

■ Detect the middles of the shortest paths

- Go back from the middles to the points

Last Step: Global Convexity for Many Particles

Convex Hull of Many Points

- Grow a distance field modulo 3

■ Detect the middles of the shortest paths

- Go back from the middles to the points

Real Challenge: Global Convexity

Proximity Graph Characterisation

Distance Field and Voronoi Diagram

Proximity Graph Characterisation

Delaunay graph ?

Proximity Graph Characterisation

Delaunay graph ? No, only a subset

Proximity Graph Characterisation

Gabriel Graph !

Gabriel graphs

- Gabriel graphs

- Original Gabriel graphs

Original Gabriel graphs

Definition (Gabriel Graph)

- Euclidean spaces
- Connects two particles x and y if and only if the ball using the segment $[x y]$ as diameter does not contain any other particle.

Gabriel graphs on Cellular Spaces

■ Connected for Euclidean... and for cellular spaces ?

- Gabriel graphs

- Original Gabriel graphs

Gabriel graphs on Cellular Spaces

(a) Each point

(b) Each line

(c) Each diagonal

(d) Subcase of (c)

Generalisation

■ Connectedness is not ensured in general

- The cause is the non-uniqness of diameters and minimal balls
- We need to generalize the definition

LGabriel graphs

$L_{\text {Metric Gabriel Graphs }}$

Principles of Gabriel Graphs

Connectedness, Minimality, and Locality

■ Minimality and connectedness:
■ minimum spanning trees
■ Locality and connectedness :

- arbitrarily choice implies global coherence
- union of all minimum spanning trees
- Locality and minimality :

■ Edge decision should be local
■ union of all local minimum spanning trees

L Gabriel graphs

L Metric Gabriel Graphs

From Principles to Definition

Definition (Metric Gabriel Graph)

- Any metric space
- Connects two particles x and y if and only if there is a ball $B(c, r)$ such that $d(x, y)=2 r$ and $\{x, y\}$ is an edge of a minimum spanning tree of $P \cap B(c, r)$.

L Gabriel graphs

$\left\llcorner_{\text {Metric Gabriel Graphs }}\right.$

From Principles to Definition (Cont.)

Definition (Metric Gabriel Graph)

- Any metric space
- Connects two particles x and y of P if and only if there is a ball $B(c, r)$ such that there is a cut $\left\{P_{0}, P_{1}\right\}$ of $P \cap B(c, r)$ with $(x, y) \in P_{0} \times P_{1}$ and $d\left(P_{0}, P_{1}\right)=2 r$.

From Principles to Definition (Cont.)

Definition (Metric Gabriel Graph)

- Any metric space
- Connects two particles x and y of P if and only if there is a ball $B(c, r)$ such that there is a cut $\left\{P_{0}, P_{1}\right\}$ of $P \cap B(c, r)$ with $(x, y) \in P_{0} \times P_{1}$ and $d\left(P_{0}, P_{1}\right)=2 r$.

Preservation of the Properties

- Metric Gabriel graphs are always connected

■ On Euclidean spaces, they are Gabriel graphs

- Gabriel graphs

LMetric Gabriel Graphs on Cellular Automata

Distance fields and dilations

Example of a metric Gabriel ball center

- Gabriel graphs

LMetric Gabriel Graphs on Cellular Automata

Distance fields and dilations (Cont.)

Example of a non-metric Gabriel ball center

LGabriel graphs

-Metric Gabriel Graphs on Cellular Automata

Dilations and interval slices

One particle

Two particles

$r=4$

$r=3$

The metric Gabriel ball centers field

$$
\operatorname{cent}_{t}(x)=\left\{\begin{array}{l}
\perp \text { if } t=0 \\
\top \text { if } \overline{\operatorname{cent}}_{t}(x, x) \\
\top \text { if } \exists y \in N(x), \overline{\operatorname{cent}}_{t}(x, y) \\
\perp \text { otherwise; }
\end{array}\right.
$$

$$
\begin{aligned}
\overline{\operatorname{cent}}_{t}(x, y) & =\left|\bar{Q}_{t}(x, y) / C_{2 r_{x y}}^{+}\right| \geq 2 \\
\bar{Q}_{t}(x, y) & =\left\{z \in B\left(x y, r_{x y}\right) \mid D[P]_{t-1}(z)+r_{x y}=\bar{D}[P]_{t-1}(x, y)\right\}
\end{aligned}
$$

Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Gabriel graphs
$\left\llcorner_{\text {Metric Gabriel Graphs on Cellular Automata }}\right.$

The resulting cellular automaton

L Gabriel graphs
LMetric Gabriel Graphs on Cellular Automata

The resulting cellular automaton

L Gabriel graphs
$\left\llcorner_{\text {Metric Gabriel Graphs on Cellular Automata }}\right.$

The resulting cellular automaton

L Gabriel graphs
LMetric Gabriel Graphs on Cellular Automata

The resulting cellular automaton

L Gabriel graphs
LMetric Gabriel Graphs on Cellular Automata

The resulting cellular automaton

L Gabriel graphs
LMetric Gabriel Graphs on Cellular Automata

The resulting cellular automaton

L Gabriel graphs
LMetric Gabriel Graphs on Cellular Automata

The resulting cellular automaton

L Gabriel graphs
LMetric Gabriel Graphs on Cellular Automata

The resulting cellular automaton

Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Gabriel graphs
LMetric Gabriel Graphs on Cellular Automata

The resulting cellular automaton

Conclusion and Perpectives

Perspectives

In the same framework

■ Voronoi Diagram Field

- Firing Squad Synchronisation Problem

Extending the framework

- Cayley Graphs
- Asynchronicity
- Amorphous Computers

