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Quantum Information Processing (QIP)
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• Quantum computation

• Quantum protocols



QIP involving measurements
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• Models of quantum computation:
– Measurement-based QC with graph states (One-way QC)
– Measurement-only QC

• Quantum protocols:
– Teleportation
– Blind QC
– Secret Sharing with graph states

• To model the environment:
– Error Correcting Codes



Information-Preserving Evolution

Information preserving = each branch is reversible
= each branch is equivalent to an isometry
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Information-Preserving Evolution

Information preserving = each branch is reversible
= each branch is equivalent to an isometry
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where ∀b, Ub is an isometry i.e. ∀ |ϕ〉 , ||Ub |ϕ〉 || = || |ϕ〉 ||.



Information-Preserving Evolution
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Theorem
A computation is info. preserving ⇐⇒ the probability of each branch is
independent of the initial state |ϕ〉.
Proof (⇐): For each branch, at ith measurement:
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Information-Preserving Evolution
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Information-Preserving Evolution
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Theorem
A computation is info. preserving ⇐⇒ the probability of each branch is
independent of the initial state |ϕ〉.
Proof (⇒): (intuition)

Dependent probability =⇒ Disturbance =⇒ Irreversibility.



Information-Preserving Evolution
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• Constant Probability = Information Preserving: every branch
occur with a probability independent of the input state.

• Equi-probability: every branch occurs with the same probability.

• Determinism: every branch implements the same isometry U .

• Strong Determinism: determinism and equi-probability.



Determinism (every branch implements the same isometry)

Equi-Prob. (every branch occurs with the same prob.)

Constant-Prob. (= information preserving)

Strong Determinism (= Det. ∩ Equi-Prob.)



Quantum Information Processing

with Graph states.



Graph States

s

ss

s
s

q1 q2

q3

q4
q5

For a given graph G = (V, E), let |G〉 ∈ C2|V |

|G〉 =
1√
2n

∑

x∈{0,1}n

(−1)q(x) |x〉

where q(x) = xT .Γ.x is the number of edges in the subgraph Gx induced
by the subset of vertices {qi | xi = 1}.



Open Graph States
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Given an open graph (G, I, O), with I, O ⊆ V (G) and |ϕ〉 ∈ C2|I|

, let

|Gϕ〉 = N |ϕ〉

where

N : |y〉 7→ 1√
2n

∑

x∈{0,1}n

(−1)q(y,x) |y, x〉



Measurements / Corrections

• Measurement in the (X, Y )-plane: for any α,

cos(α)X + sin(α)Y

{ 1√
2
(|0〉 + eiα |1〉), 1√

2
(|0〉 − eiα |1〉)}

• Measurement of qubit i produces a classical outcome si ∈ {0, 1}.
• Corrections Xsi , Zsi



Probabilistic Evolution
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Uniformity

The evolution depends on:

• the initial open graph (G, I, O);

• the angle of measurements (αi) ;

• the correction strategy ;

Focusing on combinatorial properties:
(G, I, O) guarantees uniform determinism (resp. constant probability,
equi-probability, . . . ) if there exists a correction strategy that makes the
computation deterministic (resp. constant probabilistic,
equi-probabilistic, . . . ) for any angle of measurements.



Determinism (every branch implements the same isometry)

Equi-Prob. (every branch occurs with the same prob.)

Constant-Prob. (= information preserving)

Strong Determinism (= Det. ∩ Equi-Prob.)



Sufficient conditon for Strong Det.: Gflow

Theorem (BKMP’07)
An open graph guarantees uniform strong determinism if it has a gflow.

Definition (Gflow)
(g,≺) is a gflow of (G, I, O), where g : Oc → 2Ic

, if for any u,
— if v ∈ g(u), then u ≺ v
— u ∈ Odd(g(u)) = {v ∈ V, |N(v) ∩ g(u)| = 1[2]}
— if v ≺ u then v /∈ Odd(g(u)).

Theorem (MMPST’11)
(G, I, O) has a gflow iff ∃ a DAG F s.t.

A(G,I,O).A(F,O,I) = 1



Determinism (every branch implements the same isometry)

Equi-Prob. (every branch occurs with the same prob.)

Constant-Prob. (= information preserving)

Strong Determinism (= Det. ∩ Equi-Prob.)

Gflow = Stepwise Strong Determinism

(any partial computation is strongly det.)

Open question: Strong determinism = Gflow?



Characterisation of Equi Prob.

Theorem
An open graph (G, I, O) guarantees uniform equi. probability iff

∀W ⊆ Oc, Odd(W ) ⊆ W ∪ I =⇒ W = ∅

Where Odd(W ) = {v ∈ V, |N(v) ∩ W | = 1mod 2} is the odd
neighborhood of W .



Characterisation of Constant Prob.

Theorem
An open graph (G, I, O) guarantees uniform constant probability if and
only if

∀W ⊆ Oc, Odd(W ) ⊆ W ∪ I =⇒ (W ∪ Odd(W )) ∩ I = ∅



Determinism (every branch implements the same isometry)

Equi-Prob. (every branch occurs with the same prob.)

Constant-Prob. (= information preserving)

Strong Determinism (= Det. ∩ Equi-Prob.)

Gflow = Stepwise Strong Determinism

(any partial computation is strongly det.)

Open questions: Strong determinism = Gflow? Characterisation of Determinism?



When |I| = |O|: Equi. Prob. ⊆ Gflow

Determinism (every branch implements the same isometry)

Constant-Prob. (= information preserving)

Gflow = Strong Determinism = Equi-Prob



When |I| = |O|

Theorem
An open graph (G, I, O) with |I| = |O| guarantees equi-probability iff it
has a gflow.

Corollary
An open graph is uniformly and strongly deterministic iff it has a
gflow. (stepwise condition is not necessary in the case |I| = |O|)



Sketch of the proof

Lemma
If |I| = |O|, (G, I, O) has a gflow iff (G, O, I) has a gflow.

Proof.

A(G,I,O).A(F,O,I) = I

⇐⇒ (A(G,I,O).A(F,O,I))
T = I

⇐⇒ AT
(F,O,I).A

T
(G,I,O) = I

⇐⇒ A(F,I,O).A(G,O,I) = I

⇐⇒ A(G,O,I).A(F,I,O) = I



Sketch of the proof

Lemma
If |I| = |O|, (G, I, O) has a gflow iff (G, O, I) has a gflow.

Lemma
If (G, I, O) is uniformly equi-probability then (G, O, I) has a gflow.

Idea of the proof:

• A(G,O,I) is the matrix of themap L : 2Oc→ 2Ic

= W 7→ Odd(W )∩ Ic.
L is a linear map: L(X∆Y ) = L(X)∆L(Y ).

• If L(W ) = ∅ then Odd(W ) ⊆ I so Odd(W ) ⊆ W ∪ I thus W = ∅.
Hence L is injective so surjective since |I| = |O|.

• A−1
(G,O,I) is the adjacency matrix of a directed graph H . Let S be

the smallest cycle in H . One can show that OddG(W ) ⊆ W ∩ IC

and S ⊆ W , where W := OddH(S) ∩ OC , thus W = ∅ and S = ∅.



Finding I and O

Equiprobability:

∀W ⊆ Oc, Odd(W ) ⊆ W ∪ I =⇒ W = ∅

Lemma
If (G, I, O) guarantees equi-probability then (G, I ′, O′) guarantees
equi-probability if I ′ ⊆ I and O ⊆ O′.

Minimization of O and maximization of I.



Finding I and O

Equiprobability:

∀W ⊆ Oc, Odd(W ) ⊆ W ∪ I =⇒ W = ∅

Definition
Given a graph G, let EX = {S 6= ∅ | Odd(S) ⊆ S ∪ X}. Let
T (EX) = {Y, ∀S ∈ EX , S ∩ Y 6= ∅} be the transversal of EX

Lemma
If (G, I, O) guarantees equi-probability iff O ∈ T (EI).



Finding I and O when |I| = |O|

Lemma
For a given graph G, let I = minS∈T (E∅) |S| and O = minS∈T (EI) |S|. If
|I| = |O| then (G, I, O) guarantees equiprobability.

Proof: Based on the fact that (G, I, O) guarantees equiprobability iff
(G, O, I) guarantees equiprobability when |I| = |O|.



Conclusion

• Relaxing determinism condition: information preserving maps

• Information-preserving = constant probability.

• Graphical characterisation of equi- and constant probability

• Equi-probability and Stong Determinism are equivalent when
|I| = |O|.

• Stepwise condition is not necessary for GFlow when |I| = |O|.
• Finding I and O for a given graph.



Determinism (every branch implements the same isometry)

Equi-Prob. (every branch occurs with the same prob.)

Constant-Prob. (= information preserving)

Strong Determinism (= Det. ∩ Equi-Prob.)

Stepwise Strong Determinism

(any partial computation is strongly det.)


