Solving Analytic Differential Equations in Polynomial Time over Unbounded Domains

Olivier Bournez Daniel S. Graça Amaury Pouly

ENS Lyon

May 24, 2011

Olivier Bournez, Daniel S. Graça, Amaury PolSolving Analytic Differential Equations in Polyr

May 24, 2011 - ∞ / 17

Outline

Computing with reals

- Introduction
- GPAC
- Computable analysis
- Church Thesis

2 Solving differential equations

- Preliminary remarks
- Solving differential equations over $\ensuremath{\mathbb{C}}$
- Back to \mathbb{R}

The case of integers

Many models:

- Recursive functions
- Turing machines
- λ-calculus
- circuits
- . . .

The case of integers

Many models:

- Recursive functions
- Turing machines
- λ-calculus
- circuits
- . . .

And

Church Thesis

All reasonable discrete models of computation are equivalent.

The case of analog computations

Several models:

- BSS model (Blum Shub Smale)
- Computable analysis
- GPAC (General Purpose Analog Computer)

. . .

The case of analog computations

Several models:

- BSS model (Blum Shub Smale)
- Computable analysis
- GPAC (General Purpose Analog Computer)

• . . .

Questions:

Church Thesis for analog computers ?

The case of analog computations

Several models:

- BSS model (Blum Shub Smale)
- Computable analysis
- GPAC (General Purpose Analog Computer)

• . . .

Questions:

• Church Thesis for analog computers $? \Rightarrow No$ (GPAC $\subseteq BSS$)

The case of analog computations

Several models:

- BSS model (Blum Shub Smale)
- Computable analysis
- GPAC (General Purpose Analog Computer)

• . . .

Questions:

- Church Thesis for analog computers $? \Rightarrow No$ (GPAC $\subseteq BSS$)
- Comparison with digital models of computation ?

The case of analog computations

Several models:

- BSS model (Blum Shub Smale)
- Computable analysis
- GPAC (General Purpose Analog Computer)

• . . .

Questions:

- Church Thesis for analog computers $? \Rightarrow No$ (GPAC $\subseteq BSS$)
- Comparison with digital models of computation ? ⇒ How ?

The case of analog computations

Several models:

- BSS model (Blum Shub Smale)
- Computable analysis
- GPAC (General Purpose Analog Computer)

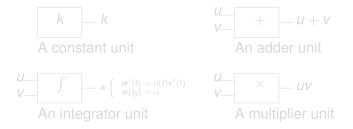
• . . .

Questions:

- Church Thesis for analog computers $? \Rightarrow No$ (GPAC $\subseteq BSS$)
- Comparison with digital models of computation $? \Rightarrow How$?
- What is a reasonable model ?

General Purpose Analog Computer

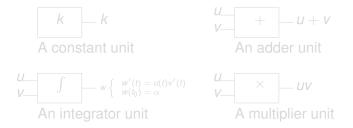
- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer
- circuit by from:



General Purpose Analog Computer

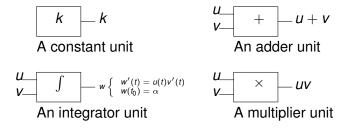
- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer

• circuit by from:



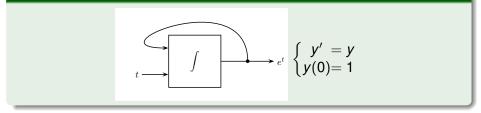
General Purpose Analog Computer

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer
- o circuit by from:



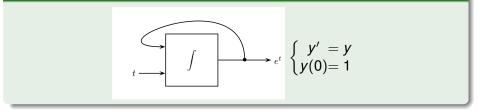
GPAC: examples

Example (Exponential)

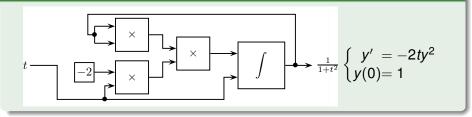


GPAC: examples

Example (Exponential)



Example (Nonlinear)



GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution $y = (y_1, \dots, y_d)$ of the ordinary differential equation (ODE):

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector or polynomials.

$$\begin{cases} \dot{y} = \frac{1}{y} \\ y(0) = 1 \end{cases}$$

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution $y = (y_1, \dots, y_d)$ of the ordinary differential equation (ODE):

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector or polynomials.

Example (Counter-example)

$$\begin{cases} \dot{y} = \frac{1}{y} \\ y(0) = 1 \end{cases}$$

Definition

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Olivier Bournez, Daniel S. Graça, Amaury PolSolving Analytic Differential Equations in Polyi

Definition

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Definition

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Example

Rationals, *π*, *e*, ...

Definition

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Example

Rationals, *π*, *e*, ...

Counter-Example

$$r=\sum_{n=0}^{\infty}d_n2^{-n}$$

where

 $d_n = 1 \Leftrightarrow$ the n^{th} Turing Machine halts on input n

Olivier Bournez, Daniel S. Graça, Amaury PolSolving Analytic Differential Equations in Polyi

Computable function

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Simplified)

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if *f* is continuous and for a any rational *r* one can compute f(r).

Computable function

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Simplified)

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if f is continuous and for a any rational r one can compute f(r).

Example

Polynomials, trigonometric functions, e^{\cdot} , $\sqrt{\cdot}$, ...

Computable function

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if there exist a Turing Machine M s.t. for any $x \in \mathbb{R}$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Simplified)

A function $f : \mathbb{R} \to \mathbb{R}$ is computable if f is continuous and for a any rational r one can compute f(r).

Example

Polynomials, trigonometric functions, e^{\cdot} , $\sqrt{\cdot}$, ...

Counter-Example

$$f(x) = \lceil x \rceil$$

Olivier Bournez, Daniel S. Graça, Amaury PolSolving Analytic Differential Equations in Polyi

We have:

- TM: $\mathbb{N} \to \mathbb{N}$
- GPAC: $\mathbb{R} \to \mathbb{R}$, analytic ($\Rightarrow C^{\infty}$)
- CA: $\mathbb{R} \to \mathbb{R}$, continuous

We have:

- TM: $\mathbb{N} \to \mathbb{N}$
- GPAC: $\mathbb{R} \to \mathbb{R}$, analytic ($\Rightarrow C^{\infty}$)
- CA: $\mathbb{R} \to \mathbb{R}$, continuous

Church Thesis ?

• TM = CA: definition

We have:

- TM: $\mathbb{N} \to \mathbb{N}$
- GPAC: $\mathbb{R} \to \mathbb{R}$, analytic ($\Rightarrow C^{\infty}$)
- CA: $\mathbb{R} \to \mathbb{R}$, continuous

- TM = CA: definition
- TM \subseteq GPAC: simulating a TM with an ODE

We have:

- TM: $\mathbb{N} \to \mathbb{N}$
- GPAC: $\mathbb{R} \to \mathbb{R}$, analytic ($\Rightarrow C^{\infty}$)
- CA: $\mathbb{R} \to \mathbb{R}$, continuous

- TM = CA: definition
- TM \subseteq GPAC: simulating a TM with an ODE
- GPAC \subseteq CA: computing the solution of an ODE

We have:

- TM: $\mathbb{N} \to \mathbb{N}$
- GPAC: $\mathbb{R} \to \mathbb{R}$, analytic ($\Rightarrow C^{\infty}$)
- CA: $\mathbb{R} \to \mathbb{R}$, continuous

- TM = CA: definition
- TM \subseteq GPAC: simulating a TM with an ODE
- GPAC \subseteq CA: computing the solution of an ODE
- CA \subseteq GPAC: approximating a computable function with a ODE

We have:

- TM: $\mathbb{N} \to \mathbb{N}$
- GPAC: $\mathbb{R} \to \mathbb{R}$, analytic ($\Rightarrow C^{\infty}$)
- CA: $\mathbb{R} \to \mathbb{R}$, continuous

Church Thesis ?

- TM = CA: definition
- TM \subseteq GPAC: simulating a TM with an ODE
- GPAC \subseteq CA: computing the solution of an ODE
- CA \subseteq GPAC: approximating a computable function with a ODE

Church Thesis

Turing Machines, GPAC and Computable analysis are equivalent models of computations.

ightarrow GPAC \subseteq CA: computing the solution of an ODE: "Of course, the resulting algorithms are highly inefficient in practice"

ightarrow GPAC \subseteq CA: computing the solution of an ODE: "Of course, the resulting algorithms are highly inefficient in practice"

Effective Church Thesis ?

Are all (sufficiently powerful) "reasonable" models of computations with "reasonable" measure of time polynomially equivalent ?

Computational complexity

• TM: well known and understood

• CA:

- A few technical differences
- Relatively clear

GPAC: unclear

Computational complexity

- TM: well known and understood
- CA:
 - A few technical differences
 - Relatively clear
- GPAC: unclear

Computational complexity

- TM: well known and understood
- CA:
 - A few technical differences
 - Relatively clear
- GPAC: unclear

Computational complexity

- TM: well known and understood
- CA:
 - A few technical differences
 - Relatively clear
- GPAC: unclear

Computing with reals Church Thesis

Current situation: TM vs GPAC

$\mathsf{TM}\subseteq\mathsf{GPAC}$

• Simulating a TM with an ODE

• Preserves time: state at step $n \Leftrightarrow$ function value at time n

Satisfying

Computing with reals Church Thesis

Current situation: TM vs GPAC

$\mathsf{TM}\subseteq\mathsf{GPAC}$

- Simulating a TM with an ODE
- Preserves time: state at step $n \Leftrightarrow$ function value at time n

Satisfying

Computing with reals Church Thesis

Current situation: TM vs GPAC

$\mathsf{TM}\subseteq\mathsf{GPAC}$

- Simulating a TM with an ODE
- Preserves time: state at step $n \Leftrightarrow$ function value at time n
- Satisfying

 $\mathsf{TM}\subseteq\mathsf{GPAC}$

- Simulating a TM with an ODE
- Preserves time: state at step $n \Leftrightarrow$ function value at time n
- Satisfying

 $\mathsf{GPAC} \subseteq \mathsf{CA}$

Computing the solution of an ODE quickly

- Lots of algorithms...
- Few theoretical results
- Not satisfying

 $\mathsf{TM}\subseteq\mathsf{GPAC}$

- Simulating a TM with an ODE
- Preserves time: state at step $n \Leftrightarrow$ function value at time n
- Satisfying

 $\mathsf{GPAC} \subseteq \mathsf{CA}$

- Computing the solution of an ODE quickly
- Lots of algorithms...
- Few theoretical results
- Not satisfying

 $\mathsf{TM}\subseteq\mathsf{GPAC}$

- Simulating a TM with an ODE
- Preserves time: state at step n ⇔ function value at time n
- Satisfying

 $\mathsf{GPAC} \subseteq \mathsf{CA}$

- Computing the solution of an ODE quickly
- Lots of algorithms...
- Few theoretical results
- Not satisfying

 $\mathsf{TM}\subseteq\mathsf{GPAC}$

- Simulating a TM with an ODE
- Preserves time: state at step $n \Leftrightarrow$ function value at time n
- Satisfying

 $\mathsf{GPAC} \subseteq \mathsf{CA}$

- Computing the solution of an ODE quickly
- Lots of algorithms...
- Few theoretical results
- Not satisfying

We want to solve:

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

Solve ?

 \triangleright Compute $y_i(t)$ with arbitrary precision

Properties & hypothesis:

- Assume y defined over \mathbb{R} : no loss of generality
- y is analytical over \mathbb{R} :

$$y(t+\varepsilon)=\sum_{n=0}^{\infty}a_n\varepsilon^n$$

- Problem: local Taylor series, difficult to use
- Idea: stronger assumption: y analytical over C
 Consequence: Taylor series valid over C

We want to solve:

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

Solve ? Compute $y_i(t)$ with arbitrary precision

Properties & hypothesis:

• Assume y defined over \mathbb{R} : no loss of generality

• y is analytical over \mathbb{R} :

$$y(t+\varepsilon)=\sum_{n=0}^{\infty}a_n\varepsilon^n$$

- Problem: local Taylor series, difficult to use
- Idea: stronger assumption: y analytical over C
 Consequence: Taylor series valid over C

We want to solve:

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

Solve ?

Compute $y_i(t)$ with arbitrary precision

Properties & hypothesis:

• Assume y defined over \mathbb{R} : no loss of generality

• y is analytical over \mathbb{R} :

$$y(t+\varepsilon)=\sum_{n=0}^{\infty}a_n\varepsilon^n$$

- Problem: local Taylor series, difficult to use
- Idea: stronger assumption: y analytical over C
 Consequence: Taylor series valid over C

We want to solve:

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

Solve ?

Compute $y_i(t)$ with arbitrary precision

Properties & hypothesis:

- Assume y defined over ℝ: no loss of generality
- y is analytical over \mathbb{R} :

$$y(t+\varepsilon)=\sum_{n=0}^{\infty}a_n\varepsilon^n$$

- Problem: local Taylor series, difficult to use
- Idea: stronger assumption: y analytical over C
 Consequence: Taylor series valid over C

We want to solve:

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

Solve ?

Compute $y_i(t)$ with arbitrary precision

Properties & hypothesis:

- Assume y defined over ℝ: no loss of generality
- y is analytical over \mathbb{R} :

$$y(t+\varepsilon)=\sum_{n=0}^{\infty}a_n\varepsilon^n$$

Problem: local Taylor series, difficult to use

Idea: stronger assumption: y analytical over C
 Consequence: Taylor series valid over C

We want to solve:

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

Solve ?

Compute $y_i(t)$ with arbitrary precision

Properties & hypothesis:

- Assume y defined over ℝ: no loss of generality
- y is analytical over \mathbb{R} :

$$y(t+\varepsilon)=\sum_{n=0}^{\infty}a_n\varepsilon^n$$

- Problem: local Taylor series, difficult to use
- Idea: stronger assumption: y analytical over C

We want to solve:

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

Solve ?

Compute $y_i(t)$ with arbitrary precision

Properties & hypothesis:

- Assume y defined over ℝ: no loss of generality
- y is analytical over \mathbb{R} :

$$y(t+\varepsilon)=\sum_{n=0}^{\infty}a_n\varepsilon^n$$

- Problem: local Taylor series, difficult to use
- Idea: stronger assumption: y analytical over C
- Consequence: Taylor series valid over $\mathbb C$

New problems

Two problems:

- Compute Taylor series from function and vice-versa
- Compute Taylor series of the solution to an ODE

Poly-boundedness

Definition

 $f: \mathbb{R} \to \mathbb{R}$ poly-bounded if $|f(t)| \leq e^{p(\log t)}$.

Theorem

 $f:\mathbb{R} o \mathbb{R}$ computable in polynomial time \Rightarrow f poly-bounded

Theorem

If $f : \mathbb{C} \to \mathbb{C}$ analytical over \mathbb{C} : $f(t) = \sum_{n=0}^{\infty} a_n t^n$ and poly-bounded then:

f polynomial time computable

[*a_n*] polynomial time computable

Olivier Bournez, Daniel S. Graça, Amaury PolSolving Analytic Differential Equations in Polyi

May 24, 2011 14 / 17

Poly-boundedness

Definition

 $f: \mathbb{R} \to \mathbb{R}$ poly-bounded if $|f(t)| \leq e^{p(\log t)}$.

Theorem

 $f: \mathbb{R} \to \mathbb{R}$ computable in polynomial time $\Rightarrow f$ poly-bounded

Theorem

If $f : \mathbb{C} \to \mathbb{C}$ analytical over \mathbb{C} : $f(t) = \sum_{n=0}^{\infty} a_n t^n$ and poly-bounded then:

f polynomial time computable

{*a_n*} polynomial time computable

Olivier Bournez, Daniel S. Graça, Amaury PolSolving Analytic Differential Equations in Polyi

May 24, 2011 14 / 17

Poly-boundedness

Definition

 $f: \mathbb{R} \to \mathbb{R}$ poly-bounded if $|f(t)| \leq e^{p(\log t)}$.

Theorem

 $f: \mathbb{R} \to \mathbb{R}$ computable in polynomial time $\Rightarrow f$ poly-bounded

Theorem

If $f : \mathbb{C} \to \mathbb{C}$ analytical over \mathbb{C} : $f(t) = \sum_{n=0}^{\infty} a_n t^n$ and poly-bounded then:

f polynomial time computable

$\{a_n\}$ polynomial time computable

Olivier Bournez, Daniel S. Graça, Amaury PolSolving Analytic Differential Equations in Polyi

May 24, 2011 14 / 17

Result

Theorem

If y is poly-bounded, analytical over \mathbb{C} and satisfies

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

Then y is polynomial time computable.

Poly-bounded: optimal, easy to check

Analytical over C: too strong, hard to check

Result

Theorem

If y is poly-bounded, analytical over \mathbb{C} and satisfies

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

Then *y* is polynomial time computable.

• Poly-bounded: optimal, easy to check

Analytical over C: too strong, hard to check

Result

Theorem

If y is poly-bounded, analytical over \mathbb{C} and satisfies

$$\begin{cases} \dot{y} = p(y) \\ y(t_0) = y_0 \end{cases}$$

Then *y* is polynomial time computable.

- Poly-bounded: optimal, easy to check
- Analytical over C: too strong, hard to check

Back to ℝ

Limitations and workaround

Consider:

$$\begin{cases} \dot{y} = -2ty^2 \\ y(0) = 1 \end{cases} \Rightarrow \qquad y(t) = \frac{1}{1+t^2}$$

- two poles over \mathbb{C} : *i* and -i

Back to ℝ

Limitations and workaround

Consider:

$$\begin{cases} \dot{y} = -2ty^2 \\ y(0) = 1 \end{cases} \Rightarrow \qquad y(t) = \frac{1}{1+t^2}$$

Problem:

- two poles over \mathbb{C} : *i* and -i

Back to ℝ

Limitations and workaround

Consider:

$$\begin{cases} \dot{y} = -2ty^2 \\ y(0) = 1 \end{cases} \Rightarrow \qquad y(t) = \frac{1}{1+t^2}$$

Problem:

- two poles over \mathbb{C} : *i* and -i
- Workaround possible !

Back to R

Limitations and workaround

Consider:

$$\begin{cases} \dot{y} = -2ty^2 \\ y(0) = 1 \end{cases} \Rightarrow \qquad y(t) = \frac{1}{1+t^2}$$

Problem:

- two poles over \mathbb{C} : *i* and -i
- Workaround possible !
- But there is a real limitation here

Future work

- Develop method specific to $\ensuremath{\mathbb{R}}$
- Understand what complexity means for the GPAC

• Do you have any questions ?