Denys Duchier, Jérôme Durand-Lose, Maxime Senot



Laboratoire d'Informatique Fondamentale d'Orléans, University of Orléans, Orléans, FRANCE

2<sup>nd</sup> international workshop NWC '11 LIFO, Orléans — 24 May 2011



#### 2 Solving Q-SAT with a Generic Signal Machine

#### 3 Complexities





- From cellular automata to signal machines
- Definitions and examples

#### 2 Solving Q-SAT with a Generic Signal Machine

- Problem Q-SAT
- Implementing Q-SAT algorithm on signal machines
- Computing in the tree

### 3 Complexities

### 4 Conclusion

#### Signal Machines

• From cellular automata to signal machines

• Definitions and examples

### 2 Solving Q-SAT with a Generic Signal Machine

- Problem Q-SAT
- Implementing Q-SAT algorithm on signal machines
- Computing in the tree

### 3 Complexities

### 4 Conclusion

From cellular automata to signal machines

### Analyzing CA with signals



Signal Machines

From cellular automata to signal machines

### Designing CA with signals





Goto's solution to the Firing Squad Synchronization Problem [Goto66]

Signal Machines

From cellular automata to signal machines

### Designing CA with signals



From cellular automata to signal machines

#### From cellular automata to signal machines



From cellular automata to signal machines

#### From cellular automata to signal machines



 $\Rightarrow$  From a discrete to a continuous space-time



- From cellular automata to signal machines
- Definitions and examples

#### 2 Solving Q-SAT with a Generic Signal Machine

- Problem Q-SAT
- Implementing Q-SAT algorithm on signal machines
- Computing in the tree

#### 3 Complexities

#### 4 Conclusion

Definitions and examples

#### Computing the middle

Μ



Definitions and examples

div

Μ

### Computing the middle



Definitions and examples

#### Computing the middle



Signal Machines

Definitions and examples

### Computing the middle



$$\left\{\begin{array}{l} \mathsf{div},\mathsf{M}\end{array}\right\} \ \rightarrow \ \left\{\begin{array}{l} \mathsf{M},\mathsf{hi},\mathsf{lo}\end{array}\right\} \\ \left\{\begin{array}{l} \mathsf{lo},\mathsf{M}\end{array}\right\} \ \rightarrow \ \left\{\begin{array}{l} \mathsf{back},\mathsf{M}\right\}\end{array}$$

Signal Machines

Definitions and examples

### Computing the middle



#### Collision rules

$$\left\{ \begin{array}{l} \mathsf{div},\mathsf{M} \end{array} \right\} \ \rightarrow \ \left\{ \begin{array}{l} \mathsf{M},\mathsf{hi},\mathsf{lo} \end{array} \right\} \\ \left\{ \begin{array}{l} \mathsf{lo},\mathsf{M} \end{array} \right\} \ \rightarrow \ \left\{ \begin{array}{l} \mathsf{back},\mathsf{M} \end{array} \right\} \\ \left\{ \begin{array}{l} \mathsf{hi},\mathsf{back} \end{array} \right\} \ \rightarrow \ \left\{ \begin{array}{l} \mathsf{M} \end{array} \right\} \end{array}$$

Signal Machines

Definitions and examples

### Computing the middle



9/45

Definitions and examples

### Church-Turing computing



Definitions and examples

### Scaling down and bounding the duration



Definitions and examples

#### Other examples



Definitions and examples



Computing with signals: a generic and modular signal machine for satisfiability problems Signal Machines Definitions and examples

#### Examples of Accumulations and Zeno's paradox



#### Signal Machines

- From cellular automata to signal machines
- Definitions and examples

### 2 Solving Q-SAT with a Generic Signal Machine

- Problem Q-SAT
- Implementing Q-SAT algorithm on signal machines
- Computing in the tree

#### 3 Complexities

### 4 Conclusion

#### Signal Machines

- From cellular automata to signal machines
- Definitions and examples

# Solving Q-SAT with a Generic Signal Machine Problem Q-SAT

- Implementing Q-SAT algorithm on signal machines
- Computing in the tree

#### 3 Complexities

#### 4 Conclusion

Input : a quantified boolean formula  $\phi$ . Question : Is  $\phi$  true or false?

Input : a quantified boolean formula  $\phi$ . Question : Is  $\phi$  true or false?

Example: the formula  $\phi = \exists x_1 \forall x_2 \forall x_3 \ (x_1 \land \neg x_2) \lor x_3$  is *false*.

Input : a quantified boolean formula  $\phi$ . Question : Is  $\phi$  true or false?

Example: the formula  $\phi = \exists x_1 \forall x_2 \forall x_3 \ (x_1 \land \neg x_2) \lor x_3$  is *false*.

#### Theorem [Stockmeyer, 1973]

Q-SAT is PSPACE-complete.

Input : a quantified boolean formula  $\phi$ . Question : Is  $\phi$  true or false?

Example: the formula  $\phi = \exists x_1 \forall x_2 \forall x_3 \ (x_1 \land \neg x_2) \lor x_3$  is *false*.

Theorem [Stockmeyer, 1973]

Q-SAT is PSPACE-complete.

On our classical model of computation at usual cost.

#### Brute-force solution to $\mathsf{Q}\text{-}\mathsf{SAT}$

Let *qsat* be the recursive algorithm defined by:

• 
$$qsat(\exists x \ \psi) = qsat(\psi[x \leftarrow false]) \lor qsat(\psi[x \leftarrow true])$$

#### Brute-force solution to Q-SAT

Let *qsat* be the recursive algorithm defined by:

•  $qsat(\exists x \ \psi) = qsat(\psi[x \leftarrow false]) \lor qsat(\psi[x \leftarrow true])$ 

• 
$$qsat(\forall x \ \psi) = qsat(\psi[x \leftarrow false]) \land qsat(\psi[x \leftarrow true])$$

#### Brute-force solution to Q-SAT

Let *qsat* be the recursive algorithm defined by:

•  $qsat(\exists x \ \psi) = qsat(\psi[x \leftarrow false]) \lor qsat(\psi[x \leftarrow true])$ 

• 
$$qsat(\forall x \ \psi) = qsat(\psi[x \leftarrow false]) \land qsat(\psi[x \leftarrow true])$$

•  $qsat(\beta) = eval(\beta)$  if  $\beta$  is a ground boolean formula.

#### Brute-force solution to Q-SAT

Let *qsat* be the recursive algorithm defined by:

• 
$$qsat(\exists x \ \psi) = qsat(\psi[x \leftarrow false]) \lor qsat(\psi[x \leftarrow true])$$

• 
$$qsat(\forall x \ \psi) = qsat(\psi[x \leftarrow false]) \land qsat(\psi[x \leftarrow true])$$

• 
$$qsat(\beta) = eval(\beta)$$
 if  $\beta$  is a ground boolean formula.

Then *qsat* solves the problem Q-SAT with exponential time and polynomial space.

#### Signal Machines

- From cellular automata to signal machines
- Definitions and examples

### Solving Q-SAT with a Generic Signal Machine

• Problem Q-SAT

#### • Implementing Q-SAT algorithm on signal machines

Computing in the tree

#### 3 Complexities

#### 4 Conclusion

Implementing Q-SAT algorithm on signal machines





21/45





Solving Q-SAT with a Generic Signal Machine

Implementing Q-SAT algorithm on signal machines



Solving Q-SAT with a Generic Signal Machine

Implementing Q-SAT algorithm on signal machines



#### Collecting the results with signals



30/45

Solving Q-SAT with a Generic Signal Machine

Implementing Q-SAT algorithm on signal machines

#### Trying all possible cases



#### Signal Machines

- From cellular automata to signal machines
- Definitions and examples

#### 2 Solving Q-SAT with a Generic Signal Machine

- Problem Q-SAT
- Implementing Q-SAT algorithm on signal machines
- Computing in the tree

#### 3 Complexities

### 4 Conclusion

## Building the tree / combinatorial comb



33/45

#### Propagation lanes without scaling



#### The lens device



#### Initial configuration by *modules*

#### 

### $[\operatorname{red}(Q_i x_i)]$ $[\operatorname{map}(\psi)]$

### [decide(n)] [until(n)][start]

#### Propagating the beam



#### Formula evaluation

$$\phi = \exists x_1 \forall x_2 \forall x_3 \ (x_1 \land \neg x_2) \lor x_3$$

#### Case here

 $\mathsf{true} \land (\neg \mathsf{true} \lor \mathsf{true})$ 



### The whole diagram



#### Signal Machines

- From cellular automata to signal machines
- Definitions and examples

### 2 Solving Q-SAT with a Generic Signal Machine

- Problem Q-SAT
- Implementing Q-SAT algorithm on signal machines
- Computing in the tree

### 3 Complexities

#### 4 Conclusion



Length of the maximal chain.



Length of the maximal chain. We speak of *collision depth*.



Length of the maximal chain. We speak of *collision depth*.

#### Space complexity

Maximal number of signals existing simultaneously.



Length of the maximal chain. We speak of *collision depth*.

#### Space complexity

Maximal number of signals existing simultaneously.



#### Signal Machines

- From cellular automata to signal machines
- Definitions and examples

### 2 Solving Q-SAT with a Generic Signal Machine

- Problem Q-SAT
- Implementing Q-SAT algorithm on signal machines
- Computing in the tree

#### 3 Complexities

#### 4 Conclusion

### Conclusion

#### Results

#### Q-SAT can be solved in cubic depth by a single signal machine.

#### Results

Q-SAT can be solved in cubic depth by a single signal machine. With the modular approach, we can also provide in cubic collision depth (and bounded space and time) signal machines for:

- SAT (special instance of Q-SAT)
- #SAT
- MAX-SAT
- ENUM-SAT (enumerating all solutions of SAT)

#### Future work

#### Future work and Perspectives

 Looking for other complexity classes (EXPTIME,...) or other hard problems?

#### Future work

#### Future work and Perspectives

- Looking for other complexity classes (EXPTIME,...) or other hard problems?
- Generating and using automatically other fractal structures? e.g. what computations can be inserted in Cantor's triadic?

### Future work

#### Future work and Perspectives

- Looking for other complexity classes (**EXPTIME**,...) or other hard problems?
- Generating and using automatically other fractal structures? e.g. what computations can be inserted in Cantor's triadic?
- Defining formally the notion of *geometrical programmation by modules*?

### Future work

#### Future work and Perspectives

- Looking for other complexity classes (**EXPTIME**,...) or other hard problems?
- Generating and using automatically other fractal structures? e.g. what computations can be inserted in Cantor's triadic?
- Defining formally the notion of *geometrical programmation by modules*?
- Defining complexity classes for signal machines?

## Thanks for listening