
STACS 2016, Orléans

Tutorial on Cellular Automata and Tilings

Jarkko Kari

Department of Mathematics and Statistics

University of Turku

Lecture 1: Tutorial on Cellular automata

• Introduction and examples

• General definitions

• Topolgy & Curtis-Hedlund-Lyndon -theorem

• Reversible CA

• Surjective CA: balance, Garden-of-Eden -theorem

Cellular Automata (CA): Introduction

Cellular automata are among the oldest models of natural

computing, studied

• in physics as discrete models of physical systems,

• in computer science as models of massively parallel

computation under the realistic constraints of locality and

uniformity,

• in mathematics as endomorphisms of the full shift in the

context of symbolic dynamics.

Cellular automata possess several fundamental properties of

the physical world: they are

• massively parallel,

• homogeneous in time and space,

• all interactions are local,

• time reversibility and conservation laws can be obtained

by choosing the local update rule properly.

Example: the Game-of-Life by John Conway.

• Infinite checker-board whose squares (=cells) are colored

black (=alive) or white (=dead).

• At each discrete time step each cell counts the number of

living cells surrounding it, and based on this number

determines its new state.

• All cells change their state simultaneously.

The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

The local update rule asks each cell to check the present states

of the eight surrounding cells.

• If the cell is alive then it stays alive (survives) iff it has

two or three live neighbors. Otherwise it dies of loneliness

or overcrowding.

• If the cell is dead then it becomes alive iff it has exactly

three living neighbors.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

A typical snapshot of a time evolution in Game-of-Life:

Initial uniformly random configuration.

A typical snapshot of a time evolution in Game-of-Life:

The next generation after all cells applied the update rule.

A typical snapshot of a time evolution in Game-of-Life:

Generation 10

A typical snapshot of a time evolution in Game-of-Life:

Generation 100

A typical snapshot of a time evolution in Game-of-Life:

GOL is a computationally universal two-dimensional CA.

Another famous universal CA: rule 110 by S.Wolfram.

A one-dimensional CA with binary state set {0, 1}, i.e. a

two-way infinite sequence of 0’s and 1’s.

Each cell is updated based on its old state and the states of its

left and right neighbors as follows:

111 −→ 0

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 1

010 −→ 1

001 −→ 1

000 −→ 0

Another famous universal CA: rule 110 by S.Wolfram.

A one-dimensional CA with binary state set {0, 1}, i.e. a

two-way infinite sequence of 0’s and 1’s.

Each cell is updated based on its old state and the states of its

left and right neighbors as follows:

111 −→ 0

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 1

010 −→ 1

001 −→ 1

000 −→ 0

110 is the Wolfram number of this CA rule.

Space-time diagram is a pictorial representation of a time

evolution in one-dimensional CA, where space and time are

represented by the horizontal and vertical direction:

General definition of d-dimensional CA

• Finite state set S.

• Configurations are elements of SZ
d

, i.e., functions

Z
d −→ S assigning states to cells,

• Neighborhood is a finite

N ⊆ Z
d

that gives the offsets from each cell to its neighbors.

• The neighbors of a cell at location ~x ∈ Z
d are the cells at

locations

~x+ ~n, for ~n ∈ N .

Typical two-dimensional neighborhoods:

c c

Von Neumann Moore

neighborhood neighborhood

{(0, 0), (±1, 0), (0,±1)} {−1, 0, 1} × {−1, 0, 1}

The local rule

f : SN −→ S

gives the new state of a cell depending on the current pattern

in its neighborhood.

The local rule

f : SN −→ S

gives the new state of a cell depending on the current pattern

in its neighborhood.

The local update rule f determines the global dynamics

G : SZ
d

−→ SZ
d

that maps c 7→ G(c) where

∀~x ∈ Z
d G(c)~x = f(c~x+N).

The local rule

f : SN −→ S

gives the new state of a cell depending on the current pattern

in its neighborhood.

The local update rule f determines the global dynamics

G : SZ
d

−→ SZ
d

that maps c 7→ G(c) where

∀~x ∈ Z
d G(c)~x = f(c~x+N).

Function G is our main object of study and we simply call it a

CA function. In algorithmic questions we use its finite

presentation (the local rule).

Curtis-Hedlund-Lyndon -theorem

It is convenient to endow SZ
d

with a metric to measures

distances of configurations: For all c 6= e,

d(c, e) = 2−n

where

n = min{||~x|| | c(~x) 6= e(~x)}

is the distance from the origin to the closest cell where c and e

differ.

Two configurations are close to each other if one needs

to look far to see a difference in them.

In the usual metric on R
d one needs to change

into

if one want to distinguish very close points.

In the usual metric on R
d one needs to change

into

if one want to distinguish very close points.

In our metric on the configuration space SZ
d

, a better

equipment sees further away:

In the usual metric on R
d one needs to change

into

if one want to distinguish very close points.

In our metric on the configuration space SZ
d

, a better

equipment sees further away:

The metric induces a compact topology on SZ
d

.

The topology is generated by the cylinder sets.

A finite pattern is an assignment p : D −→ S of states in a

finite domain D ⊂ Z
d.

The cylinder determined by D, p is the set

{c ∈ SZ
d

| ∀~x ∈ D : c~x = p~x}

of all configurations that agree with p in domain D.

D

p

*
*

*

*

*

* *
*

* *

*

Cylinders are both open and closed: They form a clopen

basis of the topology.

Under this topology, a sequence c1, c2, . . . of configurations

converges to c ∈ SZ
d

if and only if for all cells ~x ∈ Z
d and for

all sufficiently large i holds

ci(~x) = c(~x).

Compactness of the topology means that all infinite

sequences c1, c2, . . . of configurations have converging

subsequences.

All cellular automata are continuous transformations

SZ
d

−→ SZ
d

under the topology.

All cellular automata are continuous transformations

SZ
d

−→ SZ
d

under the topology.

Indeed, locality of the update rule means that if

c1, c2, . . .

is a converging sequence of configurations then

G(c1), G(c2), . . .

converges as well, and

lim
i→∞

G(ci) = G(lim
i→∞

ci).

The translation τ determined by vector ~r ∈ Z
d is the

transformation

SZ
d

−→ SZ
d

that maps c 7→ e where

e(~x) = c(~x− ~r) for all ~x ∈ Z
d.

(It is the CA whose local rule is the identity function and

whose neighborhood consists of −~r alone.)

Translations determined by unit coordinate vectors

(0, . . . , 0, 1, 0 . . . , 0) are called shifts

Since all cells of a CA use the same local rule, the CA

commutes with all translations:

G ◦ τ = τ ◦G.

We have seen that all CA are continuous, translation

commuting maps SZ
d

−→ SZ
d

.

The Curtis-Hedlund- Lyndon theorem from 1969 states

that also the converse is true:

Theorem: A function G : SZ
d

−→ SZ
d

is a CA function if and

only if

(i) G is continuous, and

(ii) G commutes with translations.

Some symbolic dynamics terminology:

• The set SZ
d

, together with the shift maps, is the

d-dimensional full shift.

• Topologically closed, shift invariant subsets of SZ
d

are

called subshifts.

• Cellular automata are the endomorphisms of the full shift.

Finite and periodic configurations

It is obviously not possible to simulate CA functions on

arbitrary infinite configurations, but one has to limit the

attention to some subset of SZ
d

.

We often consider the action on finite configurations or on

periodic configurations.

Finite configurations: One state q ∈ S is often identified as

the quiescent state, and it is expected to be stable:

f(q, q, . . . , q) = q.

A configuration c ∈ SZ
d

is called finite if the set

{~n ∈ Z
d | c(~n) 6= q}

is finite.

q

q

q q

q

q

qq

q

q

q
q

q

q

Due to stability of q, CA G maps finite configurations to finite

configurations.

Periodic configurations: Configuration c ∈ SZ
d

has period

~r ∈ Z
d if it is invariant under the translation τ by ~r:

τ(c) = c.

CA functions commute with translations, so we also have

τ(G(c)) = G(τ(c)) = G(c).

Period ~r of c is also a period of G(c).

Configuration c ∈ SZ
d

is (fully) periodic if it has d linearly

independent periods.

Configuration c ∈ SZ
d

is (fully) periodic if it has d linearly

independent periods.

Configuration c ∈ SZ
d

is (fully) periodic if it has d linearly

independent periods.

Cellular automata preserve periods, so periodic configurations

are mapped to periodic configurations.

Finite and periodic configurations allow simulations of cellular

automata on finitely presented configurations. The use of

periodic configurations is usually termed periodic boundary

conditions.

Finite configurations and periodic configurations are dense in

SZ
d

: each cylinder contains finite and periodic configurations.

Reversible CA

A CA is called

• injective if G is one-to-one,

• surjective if G is onto,

• bijective if G is both one-to-one and onto.

Reversible CA

A CA is called

• injective if G is one-to-one,

• surjective if G is onto,

• bijective if G is both one-to-one and onto.

A CA G is a reversible (RCA) if there is another CA

function F that is its inverse, i.e.

G ◦ F = F ◦G = identity function.

RCA G and F are called the inverse automata of each other.

Game-of-Life and Rule 110 are irreversible: Configurations

may have several pre-images.

Two-dimensional Q2R Ising model by G.Vichniac (1984) is an

example of a reversible cellular automaton.

Each cell has a spin that is directed either up or down. The

direction of a spin is swapped if and only if among the four

immediate neighbors there are exactly two cells with spin up

and two cells with spin down:

The twist that makes the Q2R rule reversible: Color the space

as a checker-board. On even time steps only update the spins

of the white cells and on odd time steps update the spins of

the black cells.

The twist that makes the Q2R rule reversible: Color the space

as a checker-board. On even time steps only update the spins

of the white cells and on odd time steps update the spins of

the black cells.

The twist that makes the Q2R rule reversible: Color the space

as a checker-board. On even time steps only update the spins

of the white cells and on odd time steps update the spins of

the black cells.

The twist that makes the Q2R rule reversible: Color the space

as a checker-board. On even time steps only update the spins

of the white cells and on odd time steps update the spins of

the black cells.

Q2R is reversible: The same rule (applied again on squares of

the same color) reconstructs the previous generation.

Q2R rule also exhibits a local conservation law: The number

of neighbors with opposite spins remains constant over time.

Evolution of Q2R from an uneven random distribution of spins:

Initial random configuration with 8% spins up.

Evolution of Q2R from an uneven random distribution of spins:

One million steps. The length of the B/W boundary is invariant.

From the Curtis-Hedlund-Lyndon -theorem we get

Corollary: A cellular automaton G is reversible if and only if

it is bijective.

Proof: If G is a reversible CA function then G is by definition

bijective.

Conversely, suppose that G is a bijective CA function. Then G

has an inverse function G−1 that clearly commutes with the

shifts. The inverse function G−1 is also continuous because the

space SZ
d

is compact. It now follows from the Curtis-Hedlund-

Lyndon theorem that G−1 is a cellular automaton.

The point of the corollary is that in bijective CA each cell can

determine its previous state by looking at the current states in

some bounded neighborhood around them.

Universality in reversible CA (RCA)

Simulating a Turing machine by an irreversible CA is trivial.

But computation universality is possible also under the

reversibility constraint:

• T. Toffoli (1977). Any d-dimensional CA can be

simulated by a (d+ 1)-dimensional RCA.

Universality in reversible CA (RCA)

Simulating a Turing machine by an irreversible CA is trivial.

But computation universality is possible also under the

reversibility constraint:

• T. Toffoli (1977). Any d-dimensional CA can be

simulated by a (d+ 1)-dimensional RCA.

• K. Morita and M. Harao (1989). Any reversible

Turing machine can be simulated by one-dimensional

RCA.

Universality in reversible CA (RCA)

Simulating a Turing machine by an irreversible CA is trivial.

But computation universality is possible also under the

reversibility constraint:

• T. Toffoli (1977). Any d-dimensional CA can be

simulated by a (d+ 1)-dimensional RCA.

• K. Morita and M. Harao (1989). Any reversible

Turing machine can be simulated by one-dimensional

RCA.

• J.-C. Dubacq (1995). Any Turing machine can be

simulated in real time by a one-dimensional RCA.

The proofs use partitioned CA, a technique to guarantee

reversibility.

The state set of a partitioned CA (PCA) is a cartesian

product of finite sets:

S = S1 × S2 × . . . Sk.

The k components are tracks. The local update rule consists

of two phases:

• a translation τi of each track i = 1, 2, . . . , k, and

• a bijection

π : S −→ S

applied in each cell independent of its neighbors.

The two phases alternate.

Example: PCA with three binary tracks:

a

b

c

7→

a

a+ b (mod 2)

b+ c (mod 2)

PCA are reversible as both elementary steps are reversible.

Example: PCA with three binary tracks:

a

b

c

7→

a

a+ b (mod 2)

b+ c (mod 2)

PCA are reversible as both elementary steps are reversible.

Example: PCA with three binary tracks:

a

b

c

7→

a

a+ b (mod 2)

b+ c (mod 2)

PCA are reversible as both elementary steps are reversible.

Example: PCA with three binary tracks:

a

b

c

7→

a

a+ b (mod 2)

b+ c (mod 2)

PCA are reversible as both elementary steps are reversible.

Example: PCA with three binary tracks:

a

b

c

7→

a

a+ b (mod 2)

b+ c (mod 2)

PCA are reversible as both elementary steps are reversible.

Example: PCA with three binary tracks:

a

b

c

7→

a

a+ b (mod 2)

b+ c (mod 2)

PCA are reversible as both elementary steps are reversible.

Example: PCA with three binary tracks:

a

b

c

7→

a

a+ b (mod 2)

b+ c (mod 2)

PCA are reversible as both elementary steps are reversible.

To simulate a Turing machine we use a PCA with four tracks:

Track (1) the tape of the Turing machine. It is not translated.

To simulate a Turing machine we use a PCA with four tracks:

Track (1) the tape of the Turing machine. It is not translated.

Track (2) or (3) stores the Turing machine state. They are

shifted one cell left and right respectively. The state is stored

on the track which moves to the direction indicated by the TM

instruction being executed.

To simulate a Turing machine we use a PCA with four tracks:

Track (1) the tape of the Turing machine. It is not translated.

Track (2) or (3) stores the Turing machine state. They are

shifted one cell left and right respectively. The state is stored

on the track which moves to the direction indicated by the TM

instruction being executed.

Track (4) is a garbage track. It is translated by two cells so

that a new empty ”trash bin” always appears at the position

of the Turing machine.

The permutation π

• copies the contents of tracks (1),(2),(3) on the garbage

track. The copying is done only at the cell containing the

TM.

• updates the first three tracks according to the TM

instruction.

a a ab b b b
q

TM(q,b) = (s,c,)

The permutation π

• copies the contents of tracks (1),(2),(3) on the garbage

track. The copying is done only at the cell containing the

TM.

• updates the first three tracks according to the TM

instruction.

b
q

a a ac b b b

s

TM(q,b) = (s,c,)

The permutation π

• copies the contents of tracks (1),(2),(3) on the garbage

track. The copying is done only at the cell containing the

TM.

• updates the first three tracks according to the TM

instruction.

a a ac b b b

s

TM(s,a) = (r,d,)

b
q

The permutation π

• copies the contents of tracks (1),(2),(3) on the garbage

track. The copying is done only at the cell containing the

TM.

• updates the first three tracks according to the TM

instruction.

a

a ac b b b

s

TM(s,a) = (r,d,)

b
q

d
r

s

The permutation π

• copies the contents of tracks (1),(2),(3) on the garbage

track. The copying is done only at the cell containing the

TM.

• updates the first three tracks according to the TM

instruction.

a

a ac b b b

s

TM(r,c) = (q,a,)

b
q

d
r

s

The permutation π

• copies the contents of tracks (1),(2),(3) on the garbage

track. The copying is done only at the cell containing the

TM.

• updates the first three tracks according to the TM

instruction.

a

a aa b b b

s

TM(r,c) = (q,a,)

b
q

d
q

s

c
r

The permutation π

• copies the contents of tracks (1),(2),(3) on the garbage

track. The copying is done only at the cell containing the

TM.

• updates the first three tracks according to the TM

instruction.

a

a aa b b b

s

TM(q,) = (r,a,)

b
q

d
q

s

c
r

The permutation π

• copies the contents of tracks (1),(2),(3) on the garbage

track. The copying is done only at the cell containing the

TM.

• updates the first three tracks according to the TM

instruction.

a

a aa b b b

s

TM(q,) = (r,a,)

b
q

d

r

s

c
r q

a

The permutation π

• copies the contents of tracks (1),(2),(3) on the garbage

track. The copying is done only at the cell containing the

TM.

• updates the first three tracks according to the TM

instruction.

a

a aa b b b

s

TM(r, a) = (s,d,)

b
q

d

r

s

c
r q

a

The partially defined π is one-to-one.

Any partially defined one-to-one map S −→ S can be

completed into a bijection by matching the missing elements in

the domain and range arbitrarily.

Note that the missing elements correspond to situations that

never occur during valid simulations of the Turing machine (for

example, when the incoming new ”garbage bin” is not empty).

Garden-Of-Eden and orphans

Configurations that do not have a pre-image are called

Garden-Of-Eden -configurations. Only non-surjective CA

have GOE configurations.

A finite pattern consists of a finite domain D ⊆ Z
d and an

assignment

p : D −→ S

of states.

Finite pattern is called an orphan for CA G if every

configuration containing the pattern is a GOE.

From the compactness of SZ
d

we directly get:

Proposition. Every GOE configuration contains an orphan

pattern.

Non-surjectivity is hence equivalent to the existence of

orphans.

Balance in surjective CA

All surjective CA have balanced local rules: for every a ∈ S

∣

∣f−1(a)
∣

∣ = |S|n−1.

Balance in surjective CA

All surjective CA have balanced local rules: for every a ∈ S

∣

∣f−1(a)
∣

∣ = |S|n−1.

Indeed, consider a non-balanced local rule such as rule 110

where five contexts give new state 1 while only three contexts

give state 0:

111 −→ 0

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 1

010 −→ 1

001 −→ 1

000 −→ 0

Consider finite patterns where state 0 appears in every third

position. There are 22(k−1) = 4k−1 such patterns where k is

the number of 0’s.

0 0 0 0

Consider finite patterns where state 0 appears in every third

position. There are 22(k−1) = 4k−1 such patterns where k is

the number of 0’s.

0 0 0 0

A pre-image of such a pattern must consist of k segments of

length three, each of which is mapped to 0 by the local rule.

There are 3k choices.

As for large values of k we have 3k < 4k−1, there are fewer

choices for the red cells than for the blue ones. Hence some

pattern has no pre-image and it must be an orphan.

One can also verify directly that pattern

01010

is an orphan of rule 110. It is the shortest orphan.

Balance of the local rule is not sufficient for surjectivity. For

example, the majority CA (Wolfram number 232) is a

counter example. The local rule

f(a, b, c) = 1 if and only if a+ b+ c ≥ 2

is clearly balanced, but 01001 is an orphan.

The balance property of surjective CA generalizes to finite

patterns of arbitrary shape:

Theorem: Let G be surjective. Let M,D ⊆ Z
d be finite

domains such that D contains the neighborhood of M . Then

every finite pattern with domain M has the same number

n|D|−|M |

of pre-images in domain D, where n is the number of states.

D M

The balance property of surjective CA generalizes to finite

patterns of arbitrary shape:

Theorem: Let G be surjective. Let M,D ⊆ Z
d be finite

domains such that D contains the neighborhood of M . Then

every finite pattern with domain M has the same number

n|D|−|M |

of pre-images in domain D, where n is the number of states.

The balance property means that the uniform probability

measure is invariant for surjective CA. (Uniform randomness

is preserved by surjective CA.)

Garden-Of-Eden -theorem

Let us call configurations c1 and c2 asymptotic if the set

diff (c1, c2) = {~n ∈ Z
d | c1(~n) 6= c2(~n) }

of positions where c1 and c2 differ is finite.

A CA is called pre-injective if any asymptotic c1 6= c2 satisfy

G(c1) 6= G(c2).

The Garden-Of-Eden -theorem by Moore (1962) and

Myhill (1963) connects surjectivity with pre-injectivity.

Theorem: CA G is surjective if and only if it is pre-injective.

The Garden-Of-Eden -theorem by Moore (1962) and

Myhill (1963) connects surjectivity with pre-injectivity.

Theorem: CA G is surjective if and only if it is pre-injective.

The proof idea can be easily explained using rule 110 as a

running example.

1) G not surjective =⇒ G not pre-injective:

Since rule 110 is not surjective it has an orphan 01010 of

length five. Consider a segment of length 5k − 2, for some k,

and configurations c that are in state 0 outside this segment.

There are 25k−2 = 32k/4 such configurations.

0 0 0 00 0

5k-2

1) G not surjective =⇒ G not pre-injective:

The non-0 part of G(c) is within a segment of length 5k.

Partition this segment into k parts of length 5. Pattern 01010

cannot appear in any part, so only 25 − 1 = 31 different

patterns show up in the subsegments. There are at most 31k

possible configurations G(c).

0 0 0 00 0

00 0 0

5k-2

5k

1) G not surjective =⇒ G not pre-injective:

The non-0 part of G(c) is within a segment of length 5k.

Partition this segment into k parts of length 5. Pattern 01010

cannot appear in any part, so only 25 − 1 = 31 different

patterns show up in the subsegments. There are at most 31k

possible configurations G(c).

0 0 0 00 0

00 0 0

5k-2

5k

As 32k/4 > 31k for large k, there are more choices for red than

blue segments. So there must exist two different red

configurations with the same image.

2) G not pre-injective =⇒ G not surjective:

In rule 110

0 10 1 0 1 0 0 0 10 0 1 1 0 0

11 1 1 1 0 11 1 1 1 0

p q

so patterns p and q of length 8 can be exchanged to each other

in any configuration without affecting its image. There exist

just

28 − 1 = 255

essentially different blocks of length 8.

2) G not pre-injective =⇒ G not surjective:

Consider a segment of 8k cells, consisting of k parts of length

8. Patterns p and q are exchangeable, so the segment has at

most 255k different images.

8k

8k-2

2) G not pre-injective =⇒ G not surjective:

Consider a segment of 8k cells, consisting of k parts of length

8. Patterns p and q are exchangeable, so the segment has at

most 255k different images.

8k

8k-2

There are, however, 28k−2 = 256k/4 different patterns of size

8k − 2. Because 255k < 256k/4 for large k, there are blue

patterns without any pre-image.

Garden-Of-Eden -theorem: CA G is surjective if and only

if it is pre-injective.

Garden-Of-Eden -theorem: CA G is surjective if and only

if it is pre-injective.

Corollary: Every injective CA is also surjective. Injectivity,

bijectivity and reversibility are equivalent concepts.

Proof: If G is injective then it is pre-injective. The claim

follows from the Garden-Of-Eden -theorem.

G injective G bijective G reversible

G surjective G pre-injective

Examples:

The majority rule is not surjective: finite configurations

. . . 0000000 . . . and . . . 0001000 . . .

have the same image, so G is not pre-injective. Pattern

01001

is an orphan.

Examples:

In Game-Of-Life a lonely living cell dies immediately, so G is

not pre-injective. GOL is hence not surjective.

Interestingly, no small orphans are known for Game-Of-Life.

Currently, the smallest known orphan consists of 92 cells (56

life, 36 dead):

M. Heule, C. Hartman, K. Kwekkeboom, A. Noels (2011)

Examples:

The Traffic CA is the elementary CA number 226.

111 −→ 1
110 −→ 1
101 −→ 1
100 −→ 0
011 −→ 0
010 −→ 0
001 −→ 1
000 −→ 0

The local rule replaces pattern 01 by pattern 10.

111 −→ 1

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 0

010 −→ 0

001 −→ 1

000 −→ 0

111 −→ 1

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 0

010 −→ 0

001 −→ 1

000 −→ 0

111 −→ 1

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 0

010 −→ 0

001 −→ 1

000 −→ 0

111 −→ 1

110 −→ 1

101 −→ 1

100 −→ 0

011 −→ 0

010 −→ 0

001 −→ 1

000 −→ 0

The local rule is balanced. However, there are two finite

configurations with the same successor:

and hence traffic CA is not surjective.

There is an orphan of size four:

G injective G bijective G reversible

G surjective G pre-injective

The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

0 0000 0 0 0 01 1 1 1 1 1 1

The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

In the xor-CA every configuration has exactly two pre-images,

so G is surjective but not injective:

0 0000 0 0 0 01 1 1 1 1 1 1

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

In the xor-CA every configuration has exactly two pre-images,

so G is surjective but not injective:

0 0000 0 0 0 01 1 1 1 1 1 1

0

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

In the xor-CA every configuration has exactly two pre-images,

so G is surjective but not injective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

In the xor-CA every configuration has exactly two pre-images,

so G is surjective but not injective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01 00 0 0 0 1

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

In the xor-CA every configuration has exactly two pre-images,

so G is surjective but not injective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01 00 0 0 0 10

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

The xor-CA is the binary state CA with neighborhood (0, 1)

and local rule

f(a, b) = a+ b (mod 2).

In the xor-CA every configuration has exactly two pre-images,

so G is surjective but not injective:

0 0000 0 0 0 01 1 1 1 1 1 1

0 01 00 0 0 0 10111001

One can freely choose one value in the pre-image, after which

all remaining states are uniquely determined by the

left-permutativity and the right-permutativity of xor.

Surjectivity and injectivity of GP

Let GP denote the restriction of cellular automaton G on

(fully) periodic configurations.

Implications

G injective =⇒ GP injective

GP surjective =⇒ G surjective

are easy. (Second one uses denseness of periodic configurations

in SZ
d

.)

We also have

GP injective =⇒ GP surjective

We also have

GP injective =⇒ GP surjective

Indeed, fix any d linearly independent periods, and let

A ⊆ SZ
d

be the set of configurations with these periods. Then

• A is finite,

• G is injective on A,

• G(A) ⊆ A.

We conclude that G(A) = A, and every periodic configuration

has a periodic pre-image.

Here we get the first dimension sensitive property. The

following equivalences are only known to hold among

one-dimensional CA:

G injective ⇐⇒ GP injective

G surjective ⇐⇒ GP surjective

Here we get the first dimension sensitive property. The

following equivalences are only known to hold among

one-dimensional CA:

G injective ⇐⇒ GP injective

G surjective ⇐⇒ GP surjective

• The first equivalence is not true among two-dimensional

CA: counter example Snake-XOR will be seen later.

• It is not known whether the second equivalence is true in

2D.

Only in 1D

In 2D

We have two proofs that injective CA are surjective:

G injective =⇒ G pre-injective =⇒ G surjective

G injective =⇒ GP injective =⇒ GP surjective =⇒ G surjective

We have two proofs that injective CA are surjective:

G injective =⇒ G pre-injective =⇒ G surjective

G injective =⇒ GP injective =⇒ GP surjective =⇒ G surjective

It is good to have both implication chains available, if one

wants to generalize results to cellular automata whose

underlying grid is not Zd but some other group.

• The first chain generalizes to all amenable groups.

• The second chain generalizes to residually finite groups.

A group is called surjunctive if every injective CA on the

group is also surjective. It is not known if all groups are

surjunctive.

End of the first lecture

Lecture 2: Tilings, CA and Undecidability

• Wang tiles and the undecidability of the tiling problem

• Reductions to cellular automata

• NW-determinism & one-dimensional CA

• Snakes and reversibility

Wang tiles and decidability questions

Given a cellular automaton, how to tell if it is reversible or

surjective ? Is there an algorithm to decide this ? Or can we

determine if the dynamics of a given CA is trivial ? Or

periodic ?

Many such algorithmic problems are undecidable. In some

cases there is an algorithm for one-dimensional CA while the

two-dimensional case is undecidable.

A useful tool: Wang tiles and the undecidable tiling

problem.

A Wang tile is a unit square tile with colored edges. A tile

set T is a finite collection of such tiles. A valid tiling is an

assignment

Z
2 −→ T

of tiles on infinite square lattice so that the abutting edges of

adjacent tiles have the same color.

A B C D

With copies of the given four tiles we can properly tile a 5× 5

square. . .

A

B

C

D

C

A

C

B

D

C

B

D

A

C

C

B

D

C

A

C

B

A

C

D

C

. . . and since the colors on the borders match this square can

be repeated to form a valid periodic tiling of the plane.

The tiling problem (or the Domino problem) of Wang

tiles is the decision problem to determine if a given finite set of

Wang tiles admits a valid tiling of the plane.

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

Follows from compactness.

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

Follows from (1): Just try tiling larger and larger squares until

(if ever) a square is found that can not be tiled.

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(3) There is a semi-algorithm to recursively enumerate tile

sets that admit a valid periodic tiling.

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(3) There is a semi-algorithm to recursively enumerate tile

sets that admit a valid periodic tiling.

Reason: Just try tiling rectangles until (if ever) a valid tiling is

found where colors on the top and the bottom match, and left

and the right sides match as well.

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(3) There is a semi-algorithm to recursively enumerate tile

sets that admit a valid periodic tiling.

Execute semi-algorithms (2) and (3) in parallel:

• If T does not tile the plane, (2) will eventually halt.

• If T admits a periodic tiling, (3) will eventually halt.

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(3) There is a semi-algorithm to recursively enumerate tile

sets that admit a valid periodic tiling.

Execute semi-algorithms (2) and (3) in parallel:

• If T does not tile the plane, (2) will eventually halt.

• If T admits a periodic tiling, (3) will eventually halt.

Is this an algorithm that solves the tiling problem ?

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(3) There is a semi-algorithm to recursively enumerate tile

sets that admit a valid periodic tiling.

Execute semi-algorithms (2) and (3) in parallel:

• If T does not tile the plane, (2) will eventually halt.

• If T admits a periodic tiling, (3) will eventually halt.

Is this an algorithm that solves the tiling problem ?

No! There are tile sets that fall between cases (2) and (3).

They admit valid tilings but do not admit any periodic tilings.

A tile set is aperiodic if

• it admits valid tilings of the plane, but

• it does not admit any periodic tiling

A tile set is aperiodic if

• it admits valid tilings of the plane, but

• it does not admit any periodic tiling

In 1966, R. Berger proved that aperiodic tile sets exist. His

tile set contains 20426 tiles.

A tile set is aperiodic if

• it admits valid tilings of the plane, but

• it does not admit any periodic tiling

In 1966, R. Berger proved that aperiodic tile sets exist. His

tile set contains 20426 tiles. Smaller aperiodic sets:

• R. Robinson (1971) 56 tiles

• R. Amman (1977) 16 tiles

• J. Kari, K. Culik (1996) 14 and 13 tiles

• E. Jeandel, M. Rao (2015) 11 tiles.

A tile set is aperiodic if

• it admits valid tilings of the plane, but

• it does not admit any periodic tiling

In 1966, R. Berger proved that aperiodic tile sets exist. His

tile set contains 20426 tiles. Smaller aperiodic sets:

• R. Robinson (1971) 56 tiles

• R. Amman (1977) 16 tiles

• J. Kari, K. Culik (1996) 14 and 13 tiles

• E. Jeandel, M. Rao (2015) 11 tiles.

Jeandel and Rao showed by computer that 11 is the smallest

one.

Berger in fact proved more:

Theorem (R.Berger 1966): The tiling problem of Wang

tiles is undecidable.

Berger in fact proved more:

Theorem (R.Berger 1966): The tiling problem of Wang

tiles is undecidable.

The tiling problem can be reduced to various decision

problems concerning (two-dimensional) cellular automata

=⇒ undecidability of these problems

This is not so surprising since Wang tilings are ”static”

versions of ”dynamic” cellular automata.

Example: It is undecidable whether a given two-dimensional

CA G has any fixed point configurations, that is,

configurations c such that G(c) = c.

Example: It is undecidable whether a given two-dimensional

CA G has any fixed point configurations, that is,

configurations c such that G(c) = c.

Proof: Reduction from the tiling problem. For any given

Wang tile set T (with at least two tiles) we can effectively

construct a two-dimensional CA with

• state set T ,

• the von Neumann -neighborhood,

• the local update rule that keeps a tile unchanged if and

only if its colors match with the neighboring tiles.

Trivially, G(c) = c if and only if c is a valid tiling.

Example: It is undecidable whether a given two-dimensional

CA G has any fixed point configurations, that is,

configurations c such that G(c) = c.

Proof: Reduction from the tiling problem. For any given

Wang tile set T (with at least two tiles) we can effectively

construct a two-dimensional CA with

• state set T ,

• the von Neumann -neighborhood,

• the local update rule that keeps a tile unchanged if and

only if its colors match with the neighboring tiles.

Trivially, G(c) = c if and only if c is a valid tiling.

Note: For one-dimensional CA it is easily decidable whether

fixed points exist.

More interesting reduction: A CA is called nilpotent if all

configurations eventually evolve into the quiescent (=all states

in state q) configuration.

Theorem (Culik, Pachl, Yu, 1989): It is undecidable

whether a given two-dimensional CA is nilpotent.

More interesting reduction: A CA is called nilpotent if all

configurations eventually evolve into the quiescent (=all states

in state q) configuration.

Theorem (Culik, Pachl, Yu, 1989): It is undecidable

whether a given two-dimensional CA is nilpotent.

Proof: For any given set T of Wang tiles we construct a

two-dimensional CA that is nilpotent if and only if T does not

admit a tiling.

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

B A

C

C

D A

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

B A

C

C

D A

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

B A

C

C

D A

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

B A

C

C

D A

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

B A

C

D q

D

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

B A D q

C

q

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

=⇒ If T admits a tiling c then c is a non-quiescent fixed point

of the CA. So the CA is not nilpotent.

For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

=⇒ If T admits a tiling c then c is a non-quiescent fixed point

of the CA. So the CA is not nilpotent.

⇐= If T does not admit a valid tiling then every n× n square

contains a tiling error, for some n. State q propagates, so in at

most 2n steps all cells are in state q. The CA is nilpotent.

If we do the previous construction for an aperiodic tile set T

we obtain a two-dimensional CA in which

• every periodic configuration becomes eventually quiescent,

but

• there are some non-periodic fixed points.

NW-deterministic tiles

Tilings relate naturally to two-dimensional CA.

What about one-dimensional CA ?

NW-deterministic tiles

Tilings relate naturally to two-dimensional CA.

What about one-dimensional CA ?

We can strengthen Berger’s result so that the nilpotency can

be proved undecidable for one-dimensional CA as well.

The basic idea is to view space-time diagrams of

one-dimensional CA as tilings.

Tile set T is NW-deterministic if no two tiles have identical

colors on their top edges and on their left edges. In a valid

tiling the left and the top neighbor of a tile uniquely determine

the tile.

For example, our sample tile set

A B C D

is NW-deterministic.

In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:

C

A

C

D

B

C

A

C

D

B

In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:

C

A

C

D

B

C

A

C

D

B

D

D

B

B

C

C

C

C

A

A

A

In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:

C

A

C

D

B

C

A

C

D

B

D

D

B

B

C

C

C

C

A

A

A D

D

B

C

A

C

B

C

A

C

In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:

C

A

C

D

B

C

A

C

D

B

D

D

B

B

C

C

C

C

A

A

A D

D

B

C

A

C

B

C

A

C

B

C

A

C

D

B

C

A

C

D

B

C

A

C

D

B

C

A

C

D

B

D

D

B

B

C

C

C

C

A

A

A D

D

B

C

A

C

B

C

A

C

B

C

A

C

D

B

C

A

C

D

B

If diagonals are interpreted as configurations of a

one-dimensional CA, valid tilings represent space-time

diagrams.

But are there complex NW-deterministic tile sets? Are they

interesting?

But are there complex NW-deterministic tile sets? Are they

interesting?

YES!

1. There are aperiodic NW-deterministic tiles sets:

4

2

1

1

2

3 4

3

4

4

4 6

6

5

5

3

3

2

5

2

4 5

1 2

3

3

1 1

6 4

1

6

2

3

4

3

6

4

3

6

3

4

5

4

3

5

4

3

4

4

2

5

2

3

2

5

1

1

6

1

3

2

6

1

Amman’s 16 tile aperiodic tile set

But are there complex NW-deterministic tile sets? Are they

interesting?

YES!

1. There are aperiodic NW-deterministic tiles sets:

4

2

1

1

2

3 4

3

4

4

4 6

6

5

5

3

3

2

5

2

4 5

1 2

3

3

1 1

6 4

1

6

2

3

4

3

6

4

3

6

3

4

5

4

3

5

4

3

4

4

2

5

2

3

2

5

1

1

6

1

3

2

6

1

Amman’s 16 tile aperiodic tile set

2. With a bit of effort (proof omitted):

Theorem: The tiling problem is undecidable among

NW-deterministic tile sets.

1D nilpotency is undecidable: For any given

NW-deterministic tile set T we construct a one-dimensional

CA whose

A
B
C

1D nilpotency is undecidable: For any given

NW-deterministic tile set T we construct a one-dimensional

CA whose

• state set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

A
B
C

1D nilpotency is undecidable: For any given

NW-deterministic tile set T we construct a one-dimensional

CA whose

• state set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• neighborhood is (0, 1),

A
B
C

1D nilpotency is undecidable: For any given

NW-deterministic tile set T we construct a one-dimensional

CA whose

• state set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• neighborhood is (0, 1),

• local rule f : S2 −→ S is defined as follows:

– f(A,B) = C if the colors match in
A

B
C

– f(A,B) = q if A = q or B = q or no matching tile C

exists.

Claim: The CA is nilpotent if and only if T does not admit a

tiling.

Claim: The CA is nilpotent if and only if T does not admit a

tiling.

Proof:

=⇒ If T admits a tiling c then diagonals of c are

configurations that never evolve into the quiescent

configuration. So the CA is not nilpotent.

Claim: The CA is nilpotent if and only if T does not admit a

tiling.

Proof:

=⇒ If T admits a tiling c then diagonals of c are

configurations that never evolve into the quiescent

configuration. So the CA is not nilpotent.

⇐= If T does not admit a tiling then every n× n square

contains a tiling error, for some n. Hence state q is created

inside every segment of length n.

Since q spreads, the whole configuration becomes eventually

quiescent. The CA is nilpotent.

The tiling problem is undecidable for NW-deterministic tile

sets, so

Theorem: It is undecidable whether a given one-dimensional

CA is nilpotent.

The tiling problem is undecidable for NW-deterministic tile

sets, so

Theorem: It is undecidable whether a given one-dimensional

CA is nilpotent.

If we do the previous construction using an aperiodic set then

we have an interesting one-dimensional CA:

• all periodic configurations eventually die, but

• there are non-periodic configurations that never create a

quiescent state in any cell.

Snakes

Snakes is a tile set with some interesting (and useful)

properties.

Snakes are Wang tiles with an arrow printed on them. It

points to one of the four neighbors of the tile:

Such tiles with arrows are called directed tiles.

Given a configuration (valid tiling or not!) and a starting

position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:

Given a configuration (valid tiling or not!) and a starting

position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:

The path may enter a loop. . .

Given a configuration (valid tiling or not!) and a starting

position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:

. . . or the path may be infinite and never return to a tile

visited before.

The directed tile set Snakes has the following property: On

any configuration (valid tiling or not) and on any path that

follows the arrows one of the following two things happens:

(1) Either there is a tiling error at some tile along the path,

TILING ERROR

The directed tile set Snakes has the following property: On

any configuration (valid tiling or not) and on any path that

follows the arrows one of the following two things happens:

(1) Either there is a tiling error at some tile along the path,

(2) or the path is a plane-filling path: for every positive

integer n there exists an n× n square all of whose positions are

visited by the path.

The directed tile set Snakes has the following property: On

any configuration (valid tiling or not) and on any path that

follows the arrows one of the following two things happens:

(1) Either there is a tiling error at some tile along the path,

(2) or the path is a plane-filling path: for every positive

integer n there exists an n× n square all of whose positions are

visited by the path.

Note that the tiling may be invalid outside path P , yet the

path is forced to snake through larger and larger squares.

Snakes also has the property that it admits a valid tiling.

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve

Applications of Snakes

First application of Snakes: An example of a two-dimensional

CA that is injective on periodic configurations but is not

injective on all configurations.

The Snake XOR CA confirms that in 2D

G injective 6⇐= GP injective.

The state set of the CA is

S = Snakes× {0, 1}.

(Each snake tile is attached a red bit.)

1

The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.

0

0

0
1

1

The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.

• If the tiling is valid, the cell is active: the bit of the

neighbor next on the path is XOR’ed to the bit of the cell.

0

0

0
1

1

The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.

• If the tiling is valid, the cell is active: the bit of the

neighbor next on the path is XOR’ed to the bit of the cell.

0

0

0
0

1

Snake XOR is not injective:

The following two configurations have the same successor: The

Snakes tilings of the configurations form the same valid tiling

of the plane. In one of the configurations all bits are set to 0,

and in the other configuration all bits are 1.

1 1
1 1
11

1

1

1

1 1
1
11

0 0
0 0
00

0

0

0

0 0
0
00

All cells are active because the tilings are correct. This means

that all bits in both configurations become 0. So the two

configurations become identical. The CA is not injective.

Snake XOR is not injective:

The following two configurations have the same successor: The

Snakes tilings of the configurations form the same valid tiling

of the plane. In one of the configurations all bits are set to 0,

and in the other configuration all bits are 1.

0 0
0 0
00

0

0

0

0 0
0
00

0 0
0 0
00

0

0

0

0 0
0
00

All cells are active because the tilings are correct. This means

that all bits in both configurations become 0. So the two

configurations become identical. The CA is not injective.

0 1

Snake XOR is injective on periodic configurations:

Suppose there are different periodic configurations c and d

with the same successor. Since only bits may change, c and d

must have identical Snakes tiles everywhere. So they must

have different bits 0 and 1 in some position ~p1 ∈ Z
2.

0 1

0

1

Because c and d have identical successors:

• The cell in position ~p1 must be active, that is, the Snakes

tiling is valid in position ~p1.

• The bits stored in the next position ~p2 (indicated by the

direction) are different in c and d.

0 1

0

1 1 0

We repeat the reasoning in position ~p2:

• The Snakes tiling is valid in position ~p2.

• The bits stored in the next position ~p3 are different in c

and d.

0 1

0

1 1 0

0

1

The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path.

0 1

0

1 1 0

0

1

The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path.

0 1

0

1 1 0

0

1

The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path.

But this contradicts the fact that the plane filling property of

Snakes guarantees that on periodic configuration every path

encounters a tiling error.

In 2D

Second application of Snakes: It is undecidable to determine

if a given two-dimensional CA is reversible.

Snakes

T

0/1

Second application of Snakes: It is undecidable to determine

if a given two-dimensional CA is reversible.

The proof is a reduction from the tiling problem, using the tile

set Snakes.

For any given tile set T we construct a CA with the state set

S = T × Snakes× {0, 1}.

Snakes

T

0/1

The local rule is analogous to Snake XOR with the difference

that the correctness of the tiling is checked in both tile layers:

• If there is a tiling error then the cell is inactive.

0

0

0
1

1

The local rule is analogous to Snake XOR with the difference

that the correctness of the tiling is checked in both tile layers:

• If there is a tiling error then the cell is inactive.

• If both tilings are valid, the bit of the neighbor next on the

path is XOR’ed to the bit of the cell.

0

0

0
1

1

The local rule is analogous to Snake XOR with the difference

that the correctness of the tiling is checked in both tile layers:

• If there is a tiling error then the cell is inactive.

• If both tilings are valid, the bit of the neighbor next on the

path is XOR’ed to the bit of the cell.

0

0

0
0

1

We can reason exactly as with Snake XOR, and show that

the CA is reversible if and only if the tile set T does not admit

a plane tiling.

(T tiles =⇒ CA not reversible) If a valid tiling of the plane

exists then we can construct two different configurations of the

CA that have the same image under G. The Snakes and the

T layers of the configurations form the same valid tilings of the

plane. In one of the configurations all bits are 0, and in the

other configuration all bits are 1.

1 1
1 1
11

1

1

1

1 1
1
11

0 0
0 0
00

0

0

0

0 0
0
00

All cells are active because the tilings are correct. This means

that all bits in both configurations become 0. So the two

configurations become identical. The CA is not injective.

(T tiles =⇒ CA not reversible) If a valid tiling of the plane

exists then we can construct two different configurations of the

CA that have the same image under G. The Snakes and the

T layers of the configurations form the same valid tilings of the

plane. In one of the configurations all bits are 0, and in the

other configuration all bits are 1.

0 0
0 0
00

0

0

0

0 0
0
00

0 0
0 0
00

0

0

0

0 0
0
00

All cells are active because the tilings are correct. This means

that all bits in both configurations become 0. So the two

configurations become identical. The CA is not injective.

0 1

(T tiles ⇐= CA not reversible) Conversely, assume that

the CA is not injective. Let c and d be two different

configurations with the same successor. Since only bits may

change, c and d must have identical Snakes and T layers. So

they must have different bits 0 and 1 in some position ~p1 ∈ Z
2.

0

1

1

0

Because c and d have identical successors:

• The cell in position ~p1 must be active, that is, the Snakes

and T tilings are both valid in position ~p1.

• The bits stored in the next position ~p2 (indicated by the

direction) are different in c and d.

0

0

1 1

1

0

We repeat the reasoning in position ~p2:

• The Snakes and T tilings are valid in position ~p2.

• The bits stored in the next position ~p3 are different in c

and d.

0

0

0

1

1

1

1

0

The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path so the

special property of Snakes forces the path to cover arbitrarily

large squares.

0

0

0

1

1

1

1

0

The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path so the

special property of Snakes forces the path to cover arbitrarily

large squares.

0

0

0

1

1

1

1

0

The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path so the

special property of Snakes forces the path to cover arbitrarily

large squares.

0

0

0

1

1

1

1

0

Hence T admits tilings of arbitrarily large squares, and

consequently a tiling of the infinite plane.

Theorem: It is undecidable whether a given two-dimensional

CA is injective.

Theorem: It is undecidable whether a given two-dimensional

CA is injective.

An analogous (but simpler!) construction can be made for the

surjectivity problem, based on the fact surjectivity is

equivalent to pre-injectivity:

Theorem: It is undecidable whether a given two-dimensional

CA is surjective.

Both problems are semi-decidable in one direction:

Injectivity is semi-decidable: Enumerate all CA G one-by

one and check if G is the inverse of the given CA. Halt once (if

ever) the inverse is found.

Non-surjectivity is semi-decidable: Enumerate all finite

patterns one-by-one and halt once (if ever) an orphan is found.

Undecidability of injectivity implies the following:

There are some reversible CA that use von Neumann

neighborhood but whose inverse automata use a very large

neighborhood: There can be no computable upper bound on

the extend of this inverse neighborhood.

Undecidability of injectivity implies the following:

There are some reversible CA that use von Neumann

neighborhood but whose inverse automata use a very large

neighborhood: There can be no computable upper bound on

the extend of this inverse neighborhood.

Topological arguments =⇒ A finite neighborhood is

enough to determine the previous state of a cell.

Computation theory =⇒ This neighborhood may be

extremely large.

Undecidability of surjectivity implies the following:

There are non-surjective CA whose smallest orphan is very

large: There can be no computable upper bound on the extend

of the smallest orphan.

Undecidability of surjectivity implies the following:

There are non-surjective CA whose smallest orphan is very

large: There can be no computable upper bound on the extend

of the smallest orphan.

So while the smallest known orphan for Game-Of-Life is pretty

big (92 cells), this pales in comparison with some other CA.

The undecidability proofs for reversibility and surjectivity can

be merged into

Theorem: The classes of

• Reversible 2D CA

• Non-surjective 2D CA

are recursively inseparable

Non-
surjective
2D CA Reversible

2D CA

Some challenging open problems

We have not (yet) managed to prove everything about CA.

Some challenging open problems

We have not (yet) managed to prove everything about CA.

• Universality of elementary rule 54.

Some challenging open problems

We have not (yet) managed to prove everything about CA.

• Universality of elementary rule 54.

• “G surjective
?

=⇒ GP surjective” among 2D CA

Some challenging open problems

We have not (yet) managed to prove everything about CA.

• Universality of elementary rule 54.

• “G surjective
?

=⇒ GP surjective” among 2D CA

• Are temporally periodic configurations dense on surjective

CA ? (=does every finite pattern occur in some temporally

periodic configuration?)

Some challenging open problems

We have not (yet) managed to prove everything about CA.

• Universality of elementary rule 54.

• “G surjective
?

=⇒ GP surjective” among 2D CA

• Are temporally periodic configurations dense on surjective

CA ? (=does every finite pattern occur in some temporally

periodic configuration?)

• Is it decidable if a given CA is positively expansive ?

(CA is positively expansive if the view through some finite

observation window on orbit c,G(c), . . . uniquely identifies

the initial configuration c.)

Some challenging open problems

We have not (yet) managed to prove everything about CA.

• Universality of elementary rule 54.

• “G surjective
?

=⇒ GP surjective” among 2D CA

• Are temporally periodic configurations dense on surjective

CA ? (=does every finite pattern occur in some temporally

periodic configuration?)

• Is it decidable if a given CA is positively expansive ?

(CA is positively expansive if the view through some finite

observation window on orbit c,G(c), . . . uniquely identifies

the initial configuration c.)

Any solutions are welcome at STACS’17

Big thanks to everyone for listening. . .

. . . now let’s go to the welcome reception.

