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Vector Addition Systems with States (VASS)

q0 q1

t1 : (1, 1,−1)

t2 : (−1, 0, 1)

t3 : (1, 0, 0)

t5 : (0, 0, 0)

t4 : (0,−1, 0)

Figure: A 3-dimensional VASS.

q0, 1, 0, 1
t1−→ q0, 2, 1, 0

t2−→ q0, 1, 1, 1
t3−→ q1, 2, 1, 1



Central Problems

Many problems are decidable on VASS, notably

INPUT: V a VASS, c , c ′ two configurations.

Reachability: c ∗−→ c ′ ?

Coverability: c ∗−→ c ′′ for some configuration c ′′ w c ′ ?



Well Structure Transition Systems (WSTS)

WSTS [Abdulla & Čerans & Jonsson & Tsay 2000][Finkel & Schnoebelen
2001]:

Many problems are decidable, including coverability.
Based on a well quasi-order (wqo) on configurations.
VASS are WSTS.

=⇒ The VASS coverability problem is decidable.



Coverability Set

V a VASS, c a configuration.

Cover(c) def
= {c ′ | ∃c ′′ w c ′ c

∗−→ c ′′}

Computable thanks to a coverability tree [Karp & Miller 1969]:
Forward exploration of a reachability tree.
A finite description of Cover(c) is obtained from nodes’ labels.



Complete WSTS

Ingredient for defining a coverability tree algorithm [Finkel &
Goubault-Larrecq 2009,2012]:

An acceleration procedure.
A way to represent downward-closed sets of configurations.

=⇒ wqo ideals are the right objects.



VASS Reachability Problem

Decidable:
Several attempts and partial solutions, notably by Sacerdote & Tenney
in 1977.
First proved by Mayr in 1981.
Clarified by Kosaraju in 1982 and Lambert in 1992.

We call the resulting algorithm, the KLMST:
Refinement of a finite set of structures following some conditions.
At first sight little to do with WSTS.

=⇒ wqo ideals are the right objects [Leroux & Schmitz 2015].



Overview of the Talk

Ideals provide the data structures involved:
Karp & Miller’s coverability tree algorithm which computes the ideal
decomposition of the coverability set using configuration ideals.
The KLMST algorithm, which computes the ideal decomposition of
the downward-closure of the set of runs using run ideals.

This talk:
Present wqo ideals.
Overview algorithmic applications through two algorithms.
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Well Quasi-Orders

A relation ≤ on a set X is a wqo if:

≤ is a quasi-order :
®

reflexive: x ≤ x
transitive: x ≤ y ∧ y ≤ z ⇒ x ≤ z

Infinite sequences x1, x2, . . . are good: xi ≤ xj for some i < j .

Example
(Q,=) is wqo if Q is finite.
(N,≤) is wqo.

(Z,≤) is not a wqo since 0,−1,−2, . . . is a bad sequence.
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Downward-Closed Sets

Let (X ,≤) be a quasi-ordered set.

The downward-closure of S ⊆ X :

↓S = {x ∈ X | ∃s ∈ S x ≤ s}

D ⊆ X is downward-closed if ↓D = D.

Lemma
A quasi-ordered set is wqo if, and only if, it satisfies the descending chain
property: chains D0 ) D1 ) · · · of downward-closed sets are finite.



Ideals

(X ,≤) a wqo.

A set S ⊆ X is directed if ∀x , y ∈ S ∃s ∈ S such that x , y ≤ s.

An ideal is a non-empty directed downward-closed set.

Example
(Q,=) with Q finite. Ideals are {q} with q ∈ Q.

(N,≤): Ideals are N and {0, . . . , n} with n ∈ N.
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Ideal Decomposition

Theorem ([Kabil & Pouzet : 1992],[Finkel & Goubault-Larrecq :
2009], [Goubault-Larrecq & Karandikar & Narayan Kumar &
Schnoebelen : In preparation])
Every downward-closed set is the union of a unique finite family of
incomparable for the inclusion ideals.

Application:
Effective way for representing downward-closed sets.



Dickson’s Lemma

The Cartesian product (X1,≤1)× (X2,≤2) of two quasi-ordered sets is the
quasi-ordered set (X ,≤) defined by:

(x1, x2) ≤ (y1, y2) ⇐⇒ x1 ≤1 y1 ∧ x2 ≤2 y2

Lemma (Dickson’s Lemma)
(X1,≤1) and (X2,≤2) wqo =⇒ (X1,≤1)× (X2,≤2) wqo.
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Ideals(X1,≤1)× (X2,≤2)

=®
I1 × I2

∣∣∣∣∣ I1 ∈ Ideals(X1,≤1)∧
I2 ∈ Ideals(X2,≤2)

´



Higman’s Lemma

Given a quasi-ordered set (X ,≤), we define (X ,≤)∗ as the set X ∗ of words
over X quasi-ordered by ≤∗ defined by:

x1 . . . xn ≤∗ y1 . . . ym

⇐⇒
∃i1 < · · · < in | x1 ≤ yi1 ∧ · · · ∧ xn ≤ yin

Lemma (Higman’s Lemma)
(X ,≤) wqo =⇒ (X ,≤)∗ wqo.
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(X ,≤) a wqo.

An atom of (X ,≤) is a language of the form:
{ε} ∪ I where I is an ideal of (X ,≤), or
(I1 ∪ . . . ∪ In)

∗ where I1, . . . , In are ideals of (X ,≤).

Theorem ([Jullien 1969], [Kabil & Pouzet : 1992], [Finkel &
Goubault-Larrecq : 2009])
Ideals of (X ,≤)∗ are the finite product of atoms of (X ,≤).
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Ordering Configurations

V a VASS with:
Q finite set of control states.
d counters.

The set of configurations is equipped with v defined by:

(Confs,v) def
= (Q,=)× (N,≤)d



Coverability Set As Downward-Closed Sets

The coverability set is downward-closed:

Cover(c) def
= {c ′ | ∃c ′′ w c ′ c

∗−→ c ′′}

=↓ {c ′′ | c ∗−→ c ′′}

=⇒ Cover(c) is a finite union of configuration ideals.



We introduce ω 6∈ N and Nω
def
= N ∪ {ω} ordered by:

0 ≤ 1 ≤ 2 ≤ · · · ≤ ω

Ideals of (N,≤) are:
{n ∈ N | n ≤ x}

Where x ∈ Nω.



Representing Configuration Ideals

(Confs,v) def
= (Q,=)× (N,≤)d

Ideals of (Confs,v) are the sets:

Jq, xKConfs
def
= {q} × {v ∈ Nd | v ≤ x}

where (q, x) is an extended configuration in Q × Nd
ω.



Extending the Step Relation

q0 q1

t1 : (1, 1,−1)

t2 : (−1, 0, 1)

t3 : (1, 0, 0)

t5 : (0, 0, 0)

t4 : (0,−1, 0)

Figure: A 3-dimensional VASS.

q0, 1, 0, ω
t1−→ q0, 2, 1, ω

t2−→ q0, 1, 1, ω
t3−→ q1, 2, 1, ω



The Coverability Tree Construction

q0, 1, 0, 1

q0, 2, 1, 0

q0, 1, 1, 1

q0, 1, ω, 1

...
...

...

q1, 3, 1, 0

q1, 3, 0, 0 q0, 3, 1, 0

...

q0, 0, 0, 2

q0, 1, 1, 1

q0, 1, ω, 1

...
...

...

q1, 2, 0, 1

q0, 2, 0, 1

q0, ω, 0, 1

...
...

...

t1

t2

ω

t1 t2 t3

t3

t4 t5

ω

t2

t1

ω

t1 t2 t3

t3

t5

ω

t1 t2 t3

A prefix of the tree computed by the Karp and Miller algorithm.

Cover(q0, 1, 0, 1) = Jq0, ω, ω, ωKConfs ∪ Jq1, ω, ω, ωKConfs



Applications

Once the decomposition of the coverability set into ideals is computed:
The coverability problem reduces to find an ideal that contains a
configuration.
The place boundedness problem reduces to check that every ideal
satisfies the place boundedness condition.



Complexity View Point

The size of the coverability set def
= size of the decomposition into maximal

ideals (numbers encoded in binary).
There exists a family of initialized VASS with finite but
Ackermannian-sized reachability sets [Cardoza & Lipton & Meyer
1976].
Lower-bound tight since the Karp and Miller algorithm is terminating
in at most an Ackermannian number of steps [Figueira & Figueira &
Schmitz & Schnoebelen 2011].

=⇒ The Karp and Miller algorithm is optimal.
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Ordering Runs

V is a VASS with a set T of transitions.

(PreSteps,�) def
= (Confs,v)× (T ,=)× (Confs,v)

(PreRuns,�)
def
= (Confs,v)× (PreSteps,�)∗ × (Confs,v)

A run is a prerun of the following form:

(c , (c1, t1, c
′
1) . . . (ck , tk , c

′
k), c

′)

with:
c = c1

t1−→ c ′1 = c2 · · · ck
t1−→ c ′k = c ′

Runs(c , c ′) is the set of runs from c to c ′.



Reachability Problem

Reduces to the emptyness of: yRuns(c , c ′)
This set can be uniquely decomposed as maximal prerun ideals.



Prestep Ideals

Ideals of (PreSteps,�) have the following form, where e = (c , t, c ′) is an
extended prestep, i.e. c , c ′ are extended configurations, and t ∈ T :

JeKPreSteps = JcKConfs × {t} × Jc ′KConfs .



Prerun Ideals

Ideals of (PreRuns,�) have the following form, where p is a regular
expression denoting a product over extended steps and c , c ′ are extended
configurations:

Jc , p, c ′KPreRuns = JcKConfs × JpKPreSteps∗ × Jc ′KConfs .

with:

p ::= a1 · · · an , a ::= e + ε | E ∗

where e ranges over extended presteps and E over finite sets of extended
presteps, with semantics:

Ja1 · · · anKPreStep∗
def
= Ja1KPreStep∗ · · · JanKPreStep∗

Je + εKPreStep∗
def
= JeKPreSteps ∪ {ε}

JE ∗KPreStep∗
def
=
Ä ⋃
e∈E

JeKPreSteps
ä∗



Example

q0 q1c = (q0, 1, 0, 1) c ′ = (q1, 2, 2, 1)

t1 : (1, 1,−1)

t2 : (−1, 0, 1)

t3 : (1, 0, 0)

t5 : (0, 0, 0)

t4 : (0,−1, 0)

Any sequence of transitions in

{t1t2, t2t1}n+2t3t
n
4

for n ≥ 0 provides runs in Runs(c , c ′).

q0, 1, ω, 1

q0, 2, ω, 0

q0, 0, ω, 2

c q0, 1, ω, 1 q1, 2, ω, 1 q1, 2, ω, 1 c ′

t1t2

t2 t1

t3

t4

↓Runs(c , c ′) = Jc ,E ∗0 · (e1 + ε) · E ∗1 , c ′KPreRuns
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The KLMST Algorithm

Theorem (Leroux & Schmitz 2015)
The KLMST algorithm computes an ideal decomposition of ↓Runs(c, c ′).

=⇒ the decomposition of ↓Runs(c , c ′) into maximal ideals is effectively
computable.



Applications

Once the decomposition of ↓Runs(c, c ′) into ideals is computed:
The reachability problem reduces to the emptyness of the
decomposition.
Provide a way to compute the downward-closure of the set of words of
transitions from c to c ′, first proved in [Habermehl & Meyer &
Wimmel 2012][Zetzsche 2015].



Complexity

The ideal decomposition of ↓Runs(c , c ′) is at least Ackermannian. We
exhibit in [Leroux & Schmitz 2015] a cubic-Ackermannian
upper-bound.
The reachability problem may have a better complexity. The best
lower bound in exponential space [Cardoza & Lipton & Meyer 1976].
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Overview

Coverability tree algorithm The KLMST algorithm
Karp and Miller Mayr, Kosaraju, and Lambert

configuration ideals run ideals

↓ reachability set ↓ runs



VASS Extensions

The ideal framework provides abstract fundations for generalizing classical
algorithms to VASS extensions. The coverability tree construction has been
recently extended to:

Unordered data Petri nets [Hofman & Lasota & Lazić & Leroux &
Schmitz & Totzke 2016]
Branching VASS [Verma & Goubault-Larrecq 2005],[Jacobé de
Naurois 2014].
Pushdown VASS [Leroux & Praveen & Sutre 2014].



Other Applications

Other recent applications of wqo ideals:
Lazić and Schmitz in 2015 revisited the backward coverability
algorithm for VASS.
Use of ideal decompositions for computing the downward-closure of
formal languages by Zetzsche in 2015.
Decidability of separation by piecewise testable languages by
Czerwiński, Martens, van Rooijen, Zeitoun, and Zetzsche in 2015.
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