
A FINE-GRAINED APPROACH TO
ALGORITHMS AND COMPLEXITY

Virginia Vassilevska Williams
Stanford University

THE CENTRAL QUESTION OF
ALGORITHMS RESEARCH

``How fast can we solve fundamental
problems, in the worst case?’’

etc.

ALGORITHMIC TECHNIQUES

Divide and
Conquer

Dynamic
Programming

Greedy
approaches

Linear
programming Semidefinite

Programming

Sum of Squares

Backtracking

Specialized
data structures

Kernelization

Color-coding

Iterative
compression

Inclusion-
exclusion

…

…

HARD PROBLEMS

For many problems, the known techniques get stuck:
!
• Very important computational problems from diverse areas
• They have simple, often brute-force, classical algorithms
• No improvements in many decades!

A CANONICAL HARD PROBLEM
k-SAT
Input: variables x1, … ,xn and a formula
F = C1 ∧ C2 ∧ … ∧ Cm so that each Ci is of the form
{y1 ∨ y2 ∨ … ∨ yk} and ∀i, yi is either xt or ¬xt for some t.
!
Output: A boolean assignment to {x1,…,xn} that satisfies all the clauses, or NO if

the formula is not satisfiable
!
Brute-force algorithm: try all 2n assignments

Best known algorithm: O(2n-(cn/k)nd) time for const c,d
Goes to 2n
as k grows.

Example 1

ANOTHER HARD PROBLEM:  
LONGEST COMMON SUBSEQUENCE (LCS)

Given two strings on n letters
!
!
!
Find a subsequence of both strings of maximum length.
!
Applications both in computational biology and in spellcheckers.

Solved daily on huge strings!
(Human genome: 3 x 109 base pairs.)

ATCGGGTTCCTTAAGGG

AT T GG_TACCTTCA_GG
ATCGGGTTCCTTAAGGG

ATTGGTACCTTCAGG

Algorithms:
Classical O(n2) time
!
Best algorithm:
O(n2 / log2 n) time [MP’80]

???
Example 2

THE REAL WORLD AND NP-HARD
PROBLEMS LIKE K-SAT

I’ve got data. I want
to solve this

algorithmic problem
but I’m stuck!

I’m sorry, this problem
is NP-hard. A fast

algorithm for it would
resolve a hard

problem in CS/math.
Ok, thanks, I feel

better that none of
my attempts

worked. I’ll use
some heuristics.

THE REAL WORLD AND EASIER
PROBLEMS LIKE LCS

Great news! Your
problem is in P.
Here’s an O(n2)
time algorithm!

But my data size n is
huge! Don’t you

have a faster
algorithm? Uhm, I don’t know… This is

already theoretically fast…
For some reason I can’t
come up with a faster

algorithm for it right now…

?!? … Should I wait?
… Or should I be

satisfied with
heuristics?

I’ve got data. I want
to solve this

algorithmic problem
but I’m stuck!

IN THEORETICAL CS,  
 POLYNOMIAL TIME = EFFICIENT/EASY. 

!
This is for a variety of reasons.
E.g. composing two efficient algorithms results in an

efficient algorithm. Also, model-independence.
!
However, noone would consider an O(n100) time algorithm

efficient in practice.
If n is huge, then O(n2) can also be inefficient.

WE ARE STUCK ON MANY PROBLEMS,
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:
!
!Many string matching problems:
Edit distance, Sequence local alignment, LCS, jumbled indexing …
!
General form: given two sequences of length n, how similar are they?
All variants can be solved in O(n2) time by dynamic programming.
!
! ATCGGGTTCCTTAAGGG

ATTGGTACCTTCAGG

WE ARE STUCK ON MANY PROBLEMS,
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:
!
!Many string matching problems
!Many problems in computational geometry: e.g
Given n points in the plane, are any three colinear?

A very important primitive!
!

WE ARE STUCK ON MANY PROBLEMS,
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:
!
!Many string matching problems
!Many problems in computational geometry
!Many graph problems in sparse graphs: e.g.
!
Given an n node, O(n) edge graph, what is its diameter?

Fundamental problem. Even approximation algorithms seem hard!
!

!

WE ARE STUCK ON MANY PROBLEMS,
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:
!
!Many string matching problems
!Many problems in computational geometry
!Many graph problems in sparse graphs
!Many other problems …
!
!

!
Why are we stuck?

Are we stuck because of the same reason?

PLAN

• Traditional hardness in complexity
!
•A fine-grained approach
!
•New Developments

COMPUTATIONAL COMPLEXITY

PSPACE

NP
P

Logspace

AC0

Contains the “1000-clique”
problem; best runtime: Ω(n790)

Even O(n2) time is inefficient

Best SAT alg: 2n

QBF with k alternations
in 2n-Ω(k) time

This traditional complexity class
approach says little about runtime!

QBF gets easier as the # of
quantifiers increases...

WHY IS K-SAT HARD?

Theorem [Cook, Karp’72]:
k-SAT is NP-complete for all k ≥ 3.
!
That is, if there is an algorithm that solves k-SAT instances on

n variables in poly(n) time, then all problems in NP have
poly(N) time solutions, and so P=NP.

!
k-SAT (and all other NP-complete problems) are considered

hard because fast algorithms for them imply fast
algorithms for many important problems.

NP-completeness addresses
runtime, but it is too coarse-

grained!

N – size
of input

It also does not apply to
problems in P! Unless

P=NP

NP
P

TIME HIERARCHY THEOREMS
For most natural computational models one can prove:
 for any constant c, there exist problems solvable in O(nc) time but not in O(nc-ε)

time for any ε > 0.
!
It is completely unclear how to show that a particular problem in O(nc) time is not

in O(nc-ε) time for any ε > 0.
Unconditional lower bounds seem hard.

!
In fact, it is not even known if SAT is in linear time!

!
We instead develop a fine-grained theory of hardness

that is conditional and mimics NP-completeness.

PLAN

• Traditional hardness in complexity
!
•A fine-grained approach
!
• Fine-grained reductions lead to new algorithms

FINE-GRAINED HARDNESS  
IDEA

1. Identify key hard problems
!
2. Reduce these to all (?) other problems believed hard

!
3. Hopefully form equivalence classes
!
Goal:
understand the landscape of algorithmic problems

Idea: Mimic
NP-completeness

CNF SAT IS CONJECTURED TO BE REALLY HARD
!
Two popular conjectures about SAT on n variables [IPZ01]:
ETH: 3-SAT requires 2δn time for some constant δ > 0.
!
SETH: for every ε > 0, there is a k such that k-SAT on n
variables, m clauses cannot be solved in 2(1-ε)n poly m time.
!
So we can use k-SAT as our hard problem and ETH or SETH

as the conjecture we base hardness on.

Orthogonal
vectors

3SUM APSP

Given a set S of n integers,
are there a, b, c 2 S with

a + b + c = 0?

All pairs shortest paths:
given an n-node weighted

graph, find the distance
between every two nodes.

Given a set S of n vectors in
{0,1}d, for d = ω(log n) are

there u, v 2 S with u ¢ v = 0?

Easy O(n2) time alg
[BDP’05]: ~n2 / log2 n time for integers
[GP’14] : ~n2 / log n time for reals

Easy O(n2 d) time alg
Best known [AWY’15]: n2 -Θ(1 / log (d/log n))

Classical algs: O(n3) time
[W’14]: n3 / exp(√ log n) time

More key
problems to

blame

Recent research [CGIMPS’16] suggests these problems are not equivalent!

Conjecture: Orthog.
Vecs. requires n2-o(1)

time.

Conjecture: 3SUM
requires n2-o(1) time.

Conjecture: APSP
requires n3-o(1) time.

[W’04]: SETH implies
this conjecture!

WORK ON APSPAuthor Runtime Year

Floyd, Warshall n3 1962

Fredman n3 1976

Takaoka n3 1992

Dobosiewicz n3 1992

Han n3 2004

Takaoka n3 2004

Zwick n3 2004

Chan n3 2005

Han n3 2006

Chan n3 2007

Han, Takaoka n3 2012

Williams n3 2014

Classical problem
Long history

FINE-GRAINED HARDNESS

1. Identify key hard problems
!
2. Reduce these to all (?) other hard problems
!
3. Hopefully form equivalence classes
!
Goal:
understand the landscape of algorithmic problems

Idea: Mimic
NP-completeness

• A is (a,b)-reducible to B if
 for every ε>0 ∃ δ>0, and an O(a(n)1-δ) time algorithm
 that adaptively transforms any A-instance of size n to B-instances

of size n1,…,nk so that Σi b(ni)1-ε < a(n)1-δ.

FINE-GRAINED REDUCTIONS

● If B is in O(b(n)1-ε) time,
 then A is in O(a(n)1-δ) time.
● Focus on exponents.
● We can build equivalences.

Next: an example

A

a(n)1-δ

B B B B

Intuition: a(n),b(n) are the naive
runtimes for A and B. A reducible
to B implies that beating the naive
runtime for B implies also beating
the naive runtime for A.

n1, n2, …, nk

n

AN EXAMPLE FINE-GRAINED
EQUIVALENCE

THEOREM [VW’10]: Boolean matrix multiplication (BMM) is equivalent to Triangle
detection under subcubic fine-grained reductions.

!
BMM: Given two n x n Boolean matrices X and Y, return an n x n matrix Z where

for all i and j, Z[i , j] = ORk (X[i , k] AND Y[k , j]).
!
Triangle detection: Given an n node graph G, does it contain three vertices a,

b, c, such that (a, b), (b, c), (c, a) are all edges? a

b c

We will show that
(1) an O(n3-e) time alg for BMM can give an O(n3-e) time triangle alg, and

(2) an O(n3-e) time alg for triangle can give an O(n3-e/3) time BMM alg.

BMM CAN SOLVE TRIANGLE (ITAI, RODEH’1978)

G=(V,E) - n node graph. A – n x n adjacency matrix: for all pairs of nodes u,v
!

A[u, v] = 1 if (u, v) is an edge and 0 otherwise.
!

Say Z = Boolean product of A with itself. Then for all pairs of nodes u ≠ w,

Z[u, w] =
 1 if there is a path of length 2 from u to w.
 ORv (A[u , v] AND A[v , w]) = and
 0 otherwise.

BMM: Given two n x n Boolean matrices X and Y,
return an n x n matrix Z where for all i and j,

Z[i , j] = ORk (X[i , k] AND Y[k , j]).

u w

v

So G has a triangle iff there
is some edge (u, w) in G s.t.

Z[u, w] = 1.

If one can multiply Boolean matrices
in O(nc) time, then one can find a
triangle in a graph in O(nc) time.

ALL EDGES

TRIANGLE CAN SOLVE BMM (VW’10)

• Split A into pieces A1,…,At of size n/t

• Split B into pieces B1,…,Bt of size n/t

• Split C into pieces C1,…,Ct of size n/t
• Place an edge between every i in A

and every j in C
• Z – all zeros matrix
• For all triples Ap,Bq,Cr in turn:

• While Ap [Bq [Cr has a triangle,
• Let (i, j, k) be a triangle in Ap [Bq [Cr
• Set Z[i , j] = 1
• Remove (i , j) from the graph.

…

…

…

A1
!
A2
!
!
At-1
!
At

C1
!
C2
!
!
Ct-1
!
Ct

B1
!
B2
!
!
Bt-1
!
Bt

i j

k

X[i , k]=1 Y[k , j]=1

BMM: Given two n x n Boolean matrices X and Y,
return an n x n matrix Z where for all i and j,

Z[i , j] = ORk (X[i , k] AND Y[k , j]).

Graph
representation

of BMM

a

b

X[a , b]=0
A

B

C

A: rows of X,
B: cols of X and rows of Y,
C: cols of Y

Reduction from BMM to
triangle finding: t = n2/3

BMM TO TRIANGLE
REDUCTION

Correctness: Every triple of nodes i, j, k appears in some examined Ap [Bq [Cr
!
Runtime: Every call to the Triangle finding algorithm is due to either
(1) Setting an entry Z[i, j] to 1, or
!

!
(2) Determining that some triple Ap [Bq [Cr doesn’t have any more triangles
!
!

If the runtime for detecting a triangle is T(n) = O(n3-ε), then the reduction time is

 (n2 + t3) T(n/t). Setting t=n2/3, we get: O(n3 - ε/3).

Z – all zeros matrix
For all triples Ap,Bq,Cr in turn:

While Ap [Bq [Cr has a triangle,
Let (i, j, k) be a triangle in Ap [Bq [Cr
Set Z[i , j] = 1
Remove (i , j) from the graph.

this happens at most once per pair i, j

this happens at most once per triple Ap [Bq [Cr

FINE-GRAINED HARDNESS

1. Identify key hard problems
!
2. Reduce these to all (?) other hard problems
!
3. Hopefully form equivalence classes
!
Goal:
understand the landscape of algorithmic problems

Idea: Mimic
NP-completeness

SOME STRUCTURE WITHIN P

Orthog.
vectors

3SUM APSP

Sparse graph diameter [RV’13], approximate
graph eccentricities [AVW’16] , local alignment,
longest common substring* [AVW’14], Frechet

distance [Br’14], Edit distance [BI’15], LCS,
Dynamic time warping [ABV’15, BrK’15], subtree

isomorphism [ABHVZ’15], …

N2- ε

N2- ε’

In dense graphs: radius,
median, betweenness

centrality [AGV’15],
negative triangle, second

shortest path,
replacement paths,

shortest cycle … [VW’10],
…N1.5-ε

n3- ε

N1.5- ε’

n3- ε

Huge literature in comp.
geom. [GO’95, BHP98, …]:
Geombase, 3PointsLine,
3LinesPoint, Polygonal

Containment …
!

String problems: Sequence
local alignment [AVW’14],

jumbled indexing [ACLL’14]

N2- ε

N2- ε’

equivalent

Many dynamic
problems

[P’10],[AV’14],
[HKNS‘15],

[RZ’04]
N2- ε’

k-SAT 8 k2(1 - δ)n

Using other hardness
assumptions, one
can unravel even

more structure

N – input size
n – number of
variables or
vertices

[W’04]

PLAN

• Traditional hardness in complexity
!
•A fine-grained approach
!
•New developments
• The quest for more believable conjectures

THE QUEST FOR MORE PLAUSIBLE CONJECTURES

!
• Two problems harder than CNF-SAT,3SUM, and APSP
!
• Longest common subsequence, Formula SAT and

Branching Programs

3SUM k-SAT for all k APSPn2- ε’ n3- ε’

(2n)1- ε’

Matching
Triangles

Triangle
Collection

n3- ε n3- ε

Given an n-node graph G,
a color for every vertex in

G, and an integer D, is there
a triple of colors q1,q2,q3

such that there are at least
D triangles in G with node
colors exactly q1,q2,q3?

Given an n-node graph G
and a color for every vertex

in G, is there a triple of
colors q1,q2,q3 such that
there are no triangles in G
with node colors exactly

q1,q2,q3?

1. Graphs don’t
have weights,
just node colors
!

2. Any reduction
from these
problems would
imply hardness
under all three
conjectures!

[Abboud-VW-Yu STOC’15]: Two hard problems for node-colored graphs

≥ D NO

SOME STRUCTURE WITHIN P

Orthog.
vectors

3SUM APSP

Sparse graph diameter [RV’13], local alignment,
longest common substring* [AVW’14], Frechet

distance [Br’14], Edit distance [BI’15], LCS,
Dynamic Time Warping [ABV’15, BrK’15]…

N2- ε

N2- ε’

N1.5-ε

n3- ε

Huge literature in comp.
geom. [GO’95, BH-P98, …]:

Geombase, 3PointsLine,
3LinesPoint, Polygonal

Containment …
!

String problems: Sequence
local alignment [AVW’14],

jumbled indexing [ACLL’14]

N2- ε

N2- ε’

k-SAT 8 k
2(1 - δ)n

Dynamic
problems

[P’10],[AV’14],
[HKNS‘15],

[RZ’04]

Triangle
collection* n3- ε S-T max flow, dynamic max flow,

… [AVY’15]

equivalent

In dense graphs: radius,
median, betweenness

centrality [AGV’15],
negative triangle, second

shortest path,
replacement paths,

shortest cycle … [VW’10],
…

N1.5- ε’

n3- ε

THE QUEST FOR MORE PLAUSIBLE CONJECTURES

!
• Two problems harder than CNF-SAT,3SUM, and APSP
!
• Longest common subsequence, Formula SAT and

Branching Programs

CIRCUIT-STRONG-ETH

• The most successful hypothesis has been SETH
• It is ultimately about SAT of linear size CNF-formulas
• There are more difficult satisfiability problems:
• CIRCUIT-SAT
• NC-SAT
• NC1-SAT …
!

• [Williams’10,’11]: a 2n/n10 time SAT algorithm implies
circuit lower bounds for C (for ENP and others); the
bigger the class the stronger the lower bound

C-SETH: satisfiability of circuits from
circuit class C on n variables and
size s requires 2n-o(n) poly(s) time.

A VERY RECENT DEVELOPMENT
Theorem [Abboud-Hansen-VW-Williams’16]: There is an

efficient reduction from Satisfiability for non-deterministic
branching programs (BPs) of size T and width W and n
input variables to the following string problems on strings
of length N = 2n/2 TO(log W):

 Longest Common Subsequence, Edit Distance, Dynamic
Time Warping, etc.

THEOREM [ABBOUD-HANSEN-VW-WILLIAMS’15]: THERE IS AN EFFICIENT REDUCTION FROM
SATISFIABILITY FOR NON-DETERMINISTIC BRANCHING PROGRAMS (BPS) OF SIZE T AND WIDTH W AND N

INPUT VARIABLES TO THE FOLLOWING STRING PROBLEMS ON STRINGS OF LENGTH N = 2N/2 TO(LOG W):
LONGEST COMMON SUBSEQUENCE, EDIT DISTANCE, DYNAMIC TIME WARPING, ETC.

BP: edge-labelled, directed, layered graph. Start node s, accept node t.
Width: W nodes per layer. Size: T layers.
Each layer labeled with a variable. A variable can label many layers.
Each edge labeled with 0 or 1.
An input 001 is accepted if it generates an s-t path.

s t

W

0 0

0 0

0
0

0

0 0
1

1

1

1
1

1

1

1 1

T

x1 x3 x2 x1
A type of

reachability
question.

Proof encodes a
Savitch-like

construction into
the LCS/Edit

distance instance.

A VERY RECENT DEVELOPMENT
Theorem [Abboud-Hansen-VW-Williams’16]: There is an

efficient reduction from Satisfiability for non-deterministic
branching programs (BPs) of size T and width W and n
input variables to the following string problems on strings
of length N = 2n/2 TO(log W):

 Longest Common Subsequence, Edit Distance, Dynamic
Time Warping, etc.

!
[Barrington’85]: BPs with T=2 polylog n and W=5 capture NC.
The above problems require N2-o(1) time under NC-SETH.

MORE CONSEQUENCES OF  
“BP-SAT FOR N,T,W → EDIT DISTANCE ETC. ON 2N/2 TO(LOG W)”

BPs with T=2o(sqrt n) and W=2o(sqrt n) can represent any non-
deterministic Turing machine using o(sqrt n) space

!
• Edit Distance (or LCS etc) in O(n2-ε) time implies a

nontrivial improvement over exhaustive search for
checking SAT of complex objects that can easily
implement e.g. cryptographic primitives
!
• Much more surprising than refuting SETH!

Impressive
SAT algs

MORE CONSEQUENCES OF  
“BP-SAT FOR N,T,W → EDIT DISTANCE ETC. ON 2N/2 TO(LOG W)”

If Edit Distance (or LCS etc) has O(n2-ε) time algorithms for
any ε > 0, then ENP does not have:

• Non-uniform 2o(n)-size Boolean Formulas
 we don’t even know if the enormous Σ2EXP has 2o(n)-size

depth-3 circuits
• Non-uniform o(n)-depth circuits of bouded fan-in
• Non-uniform 2o(sqrt(n))-size non-deterministic branching

programs

Circuit
Lower

Bounds

“A POLYLOG SHAVED IS A LOWER BOUND MADE”

[Williams’14, Abboud-Williams-Yu’15]: APSP can be solved in
n3 / logω(1) n time, OV can be solved in n2/log ω(1) n time

!
Does Edit Distance (or LCS etc) have such an algorithm?
(The current best algorithms run in ~ n2/log2 n time.)
!
PARTIAL ANSWER: An n2 / logω(1) n algorithm for Edit Distance

(or LCS etc) implies that ENP is not in NC1.
Also meaningful for particular polylogs. E.g. if Edit Distance

(or LCS etc) has an n2/log100 n time algorithm, then ENP
does not have non-uniform Boolean formulas of size n5.

n2/log2.1 n?

Thank you!

