Packing, Cutting,
 Shifting, and Twisting

space-time diagrams
of Cellular Automata

Cellular Automata

\uparrow A d-CA \mathcal{A} is a 4 -uple $\left(\mathbb{Z}^{d}, S, N, \delta\right)$.

Cellular Automata

$\checkmark \mathrm{A} d$-CA \mathcal{A} is a 4 -uple $\left(\mathbb{Z}^{d}, S, N, \delta\right)$.
\checkmark A configuration C is a mapping from \mathbb{Z}^{d} to S.

Cellular Automata

\checkmark A d-CA \mathcal{A} is a 4 -uple $\left(\mathbb{Z}^{d}, S, N, \delta\right)$.
\checkmark A configuration C is a mapping from \mathbb{Z}^{d} to S.

- The global rule applies δ uniformly:

$$
G_{\mathcal{A}}(C)_{i}=\delta\left(C_{i+v_{1}}, \ldots, C_{i+v_{\nu}}\right)
$$

where $N=\left\{v_{1}, \ldots, v_{\nu}\right\}$.

Topological Characterization

\checkmark Endow S with the trivial topology.

- Endow $S^{\mathbb{Z}^{d}}$ with the induced product topology.

Topological Characterization

\checkmark Endow S with the trivial topology.

- Endow $S^{\mathbb{Z}^{d}}$ with the induced product topology.
\bullet The shift $\sigma_{p}: S^{\mathbb{Z}^{d}} \rightarrow S^{\mathbb{Z}^{d}}$ is defined as

$$
\sigma_{p}(C)_{i}=C_{i+p}
$$

Topological Characterization

- Endow S with the trivial topology.
- Endow $S^{\mathbb{Z}^{d}}$ with the induced product topology.
\bullet The shift $\sigma_{p}: S^{\mathbb{Z}^{d}} \rightarrow S^{\mathbb{Z}^{d}}$ is defined as

$$
\sigma_{p}(C)_{i}=C_{i+p}
$$

Theorem[Hedlund 69]. A map $G: S^{\mathbb{Z}^{d}} \rightarrow S^{\mathbb{Z}^{d}}$ is the global rule of a d-CA if and only if it is continue and commute with the shifts.

(naive) way to use CA

\checkmark Select an appropriate rule (e.g. some LGCA).

- Choose a set of initial configurations.
- Construct their space-time diagrams.
\checkmark Investigate the diagrams for properties.

A (naive) way to use CA

\uparrow Select an appropriate rule (e.g. some LGCA).

- Choose a set of initial configurations.
- Construct their space-time diagrams.
- Investigate the diagrams for properties.

Some properties depend on the granularity of the model!

Classical Simulations

\checkmark Any CA can be simulated by an OCA (Cole 69, Ibarra 85)

Classical Simulations

- Any CA can be simulated by an OCA (Cole 69, Ibarra 85)

\checkmark Any Nil CA can be simulated by the trivial one

Simulation and Transformations

Idea. $A \subset A \mathcal{A}$ simulates another $C A \mathcal{B}$ if, up to geometrical transformations, any space-time diagram from \mathcal{B} is a space-time diagram from \mathcal{A}.

Good transformations

packing

$o^{m} \circ G_{\mathcal{A}} \circ o^{-m}$
spatial organization
cutting

$G_{\mathcal{A}}^{n}$

Good transformations (2)

shifting
twisting

$G_{\mathcal{A}} \circ \sigma_{k}$
information mixing

$\prod_{i} G_{\mathcal{A}_{i}}$
independent

Generalizing Transformations

$\varphi: \mathbb{N} \times \mathbb{Z} \rightarrow 2^{\{1, \ldots, k\} \times \mathbb{N} \times \mathbb{Z}}$
\uparrow The new CA must be completely defined.

Geometrical Characterization

Theorem. There exist no transformation but compositions of the 4 good previous ones.

transformations

Definition. The $\prod\left\langle m_{i}, n_{i}, k_{i}\right\rangle$ regular PCST transformation of a $C A \mathcal{A}$ is the $C A \mathcal{A} \Pi\left\langle m_{i}, n_{i}, k_{i}\right\rangle$ where

$$
\mathcal{A}^{\Pi\left\langle m_{i}, n_{i}, k_{i}\right\rangle}=\prod_{i} o^{m_{i}} \circ \mathcal{A}^{m_{i} n_{i}} \circ o^{-m_{i}} \circ \sigma^{k_{i}} .
$$

transformations

Definition. The $\prod\left\langle m_{i}, n_{i}, k_{i}\right\rangle$ regular PCST transformation of a $C A \mathcal{A}$ is the $C A \mathcal{A} \Pi\left\langle m_{i}, n_{i}, k_{i}\right\rangle$ where

$$
\mathcal{A}^{\Pi\left\langle m_{i}, n_{i}, k_{i}\right\rangle}=\prod_{i} o^{m_{i}} \circ \mathcal{A}^{m_{i} n_{i}} \circ o^{-m_{i}} \circ \sigma^{k_{i}} .
$$

Theorem. The PCST relation of simulation is a quasi-order with a maximal equivalence class.

Rapid tour

- The lowest and highest classes are simple to describe.

Rapid tour

- The lowest and highest classes are simple to describe.
- Undecidability comes from the Nil CA.

Rapid tour

- The lowest and highest classes are simple to describe.
- Undecidability comes from the Nil CA.
- Infinite chains of CA.

Rapid tour

- The lowest and highest classes are simple to describe.
- Undecidability comes from the Nil CA.
- Infinite chains of CA.
- Allows a better understanding of universality: construction of a 6 states universal CA.

Rapid tour

- The lowest and highest classes are simple to describe.
- Undecidability comes from the Nil CA.
- Infinite chains of CA.
- Allows a better understanding of universality: construction of a 6 states universal CA.
\uparrow Definition of CA rules from elementary rules by an algebraic closure.

semi-lattice

Theorem. PCST induces a sup semi-lattice with the natural operation $\mathcal{A} \times \mathcal{B}$ as a sup operation.

semi-lattice

Theorem. PCST induces a sup semi-lattice with the natural operation $\mathcal{A} \times \mathcal{B}$ as a sup operation.

- Ideals capture interesting notions:
- reversibility (principal),
- ultimately periodic,
- simple signal,
- naive non-chaoticity.

