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Definition. A d-CAA is a 4-uple
(
Z
d, S,N, δ

)
where:

• S is the finite state set ofA;

• N ⊂ Zd, finite, is the neighborhood ofA;

• δ : S|N| → S is the local rule ofA.

A configurationC is a mapping from Z
d to S.

The global rule applies δ uniformly according toN:

∀p ∈ Zd, G(C)p = δ (Cp+N1 , . . . , Cp+Nν)
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Idea. A CA is computation universal if it can compute any
partial recursive function.

• This notion is rather difficult to formalize...

• In practice: step-by-step Turing machine simulation.

A. R. Smith III. Simple Computation-Universal Cellular Spaces. 1971
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Idea. A CAA is less complex than a CA B if, up to some
renaming of states and some rescaling, every space-time
diagram ofA is a space-time diagram of B.

Definition. A ⊆ B if there exists an injective mappingϕ
from SA into SB such that this diagram commutes:

C
ϕ

−−−−→ ϕ(C)

GA

y yGB
GA(C) −−−−→

ϕ
ϕ(GA(C))

Inducing an Order on CA (1)
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Definition. The 〈m,n, k〉 rescaling ofA is defined by:

G
〈m,n,k〉
A = σk ◦ om ◦GnA ◦ o−m .

A A〈4,4,1〉

Definition. A 6 B if there exist 〈m,n, k〉 and 〈m ′, n ′, k ′〉
such that A〈m,n,k〉 ⊆ B〈m ′,n ′,k ′〉 .

Inducing an Order on CA (2)
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Proposition. The relation6 is a quasi-order on CA.

• The induced order admits a maximal equivalence class.

Definition. A CAA is intrinsically universal if:

∀B,∃ 〈m,n, k〉 , B ⊆ A〈m,n,k〉 .

Proposition. Every intrinsically universal CA is computa-
tion universal. The converse is false.

Inducing an Order on CA (3)
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year author d |N| states universality
1966 von Neumann 2 5 29 intrinsic
1968 Codd 2 5 8 intrinsic
1970 Banks 2 5 2 intrinsic

1 3 18 intrinsic
1971 Smith III 2 7 7 computation

1 3 18 computation
1987 Albert & Culik II 1 3 14 intrinsic
1990 Lindgren & Nordhal 1 3 7 computation
2002 NO 1 3 6 intrinsic
2002 Cook & Wolfram 1 3 2 computation

Simple Universal CA
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(
Z
2,
{
��,��
}
, , δ

)

E. R. Banks. Universality in Cellular Automata. 1970

Idea. Emulate logical circuits by building:
• wires transporting binary signals

• logical gates AND, OR and NOT

• wires crossing

Banks’ Universal 2D-CA
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•We decompose a CA local rule into k boolean functions
where k = dlog2 |S|e:

δi : {0, 1}
|N|k → {0, 1} .

δ1δ δ2

CA and Boolean Circuits (1)
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• To a boolean function we associate a leveled circuit:

δ2(x, y, z, t) = y | y

y z t

δ1(x, y, z, t)
L2

L1

L0
x y z t

L2

L1

L0

δ2(x, y, z, t)

δ1(x, y, z, t) = x | t

variable

NAND

copy

x

CA and Boolean Circuits (2)
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A BC Simulator is a 1D dynamical system that simulate a
CA via its boolean circuits. Each cell contains:

• a boolean value;

• an operator (identity or NAND);

• the relative positions of the operands.

boolean value

operator

operand 1

operand 2

· · ·
δ1︷︸︸︷

?
|
1
9

x
C
1

δ2︷ ︸︸ ︷
?
C
8

?
C
9

y
|
1
2︸ ︷︷ ︸
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?
|
1
9

z
C
1

δ2︷ ︸︸ ︷
?
C
8

?
C
9

t
|
1
2︸ ︷︷ ︸

s1

δ1︷︸︸︷
?
|
1
9

u
C
1

δ2︷ ︸︸ ︷
?
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v
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2︸ ︷︷ ︸

s2

· · ·

Boolean Circuit Simulator
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We build a 3-state 1D-CA to move information.

Op Val Sig

• Sig cells transport boolean values between cells;

• Val cells encode current meta-cell value;

• Op vells encode the operation to execute.

Microscopic Description

13 CCJ◦IBB ×



Direct encoding:

• Sig: 0 or 1 boolean value;

• Val: 0 or 1 boolean value;

• Op: Border, Copy, Follow or NAND operation.

Copy and NAND

Border

8 States
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New encoding:

• Sig: 0 or 1 boolean value;

• Val: 0 or 1 boolean value;

• Op: Border, Follow or NAND operation.

The Copy operation is emulated. We encode a signal x by
three consecutive signals 1, x, 0.

old Op new 3 Ops
Border Follow, Border, Follow
Follow Follow, Follow, Follow
NAND Follow, NAND, Follow
Copy NAND, NAND, NAND

7 States
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More tricky!

New encoding with Op a boolean value which meaning
becomes position dependant...

left Op

right Op

6 States
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•We get 6 states as a product 3× 2. What about 2× 2?

• Cook and Wolfram have proven a 2 states rule compu-
tation universal. Is it also intrinsically universal ?

• Good formal definition of computation universality ?

Going further
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