The Quest for Small Universal Cellular Automata Nicolas Ollinger
 LIP, ENS Lyon, France

8 july 2002 / ICALP'2002 / Málaga, Spain

Cellular Automata

Definition. A d-CA \mathcal{A} is a 4-uple $\left(\mathbb{Z}^{\mathrm{d}}, \mathrm{S}, \mathrm{N}, \delta\right)$ where:

- S is the finite state set of \mathcal{A};
- $N \subset \mathbb{Z}^{\mathrm{d}}$, finite, is the neighborhood of \mathcal{A};

- $\delta: \mathrm{S}^{|\mathrm{N}|} \rightarrow \mathrm{S}$ is the local rule of \mathcal{A}.

Cellular Automata

Definition. A d-CA \mathcal{A} is a 4-uple $\left(\mathbb{Z}^{\mathrm{d}}, \mathrm{S}, \mathrm{N}, \delta\right)$ where:

- S is the finite state set of \mathcal{A};
- $\mathrm{N} \subset \mathbb{Z}^{\mathrm{d}}$, finite, is the neighborhood of \mathcal{A};

- $\delta: S^{|N|} \rightarrow S$ is the local rule of \mathcal{A}.

A configuration C is a mapping from \mathbb{Z}^{d} to S .

Cellular Automata

Definition. A d-CA \mathcal{A} is a 4 -uple $\left(\mathbb{Z}^{\mathrm{d}}, \mathrm{S}, \mathrm{N}, \delta\right)$ where:

- S is the finite state set of \mathcal{A};
- $N \subset \mathbb{Z}^{d}$, finite, is the neighborhood of \mathcal{A};

- $\delta: \mathrm{S}^{|\mathrm{N}|} \rightarrow \mathrm{S}$ is the local rule of \mathcal{A}.

A configuration C is a mapping from \mathbb{Z}^{d} to S.
The global rule applies δ uniformly according to N :

$$
\forall p \in \mathbb{Z}^{\mathrm{d}}, \quad G(C)_{p}=\delta\left(C_{p+N_{1}}, \ldots, C_{p+N_{v}}\right)
$$

$$
2 \triangleleft \triangleleft \triangleleft \circ \vee \triangleright \triangleright x
$$

Space-Time Diagram

Computation Universality

Idea. A CA is computation universal if it can compute any partial recursive function.

Computation Universality

Idea. A CA is computation universal if it can compute any partial recursive function.

- This notion is rather difficult to formalize...

Computation Universality

Idea. A CA is computation universal if it can compute any partial recursive function.

- This notion is rather difficult to formalize...
- In practice: step-by-step Turing machine simulation.

A. R. Smith III. Simple Computation-Universal Cellular Spaces. 1971

Inducing an Order on CA (1)

Idea. $\mathrm{A} \subset \mathrm{A} \mathcal{A}$ is less complex than a $C A \mathcal{B}$ if, up to some renaming of states and some rescaling, every space-time diagram of \mathcal{A} is a space-time diagram of \mathcal{B}.

Inducing an Order on CA (1)

Idea. $\mathrm{A} C \mathrm{~A} \mathcal{A}$ is less complex than a $\mathrm{CA} \mathcal{B}$ if, up to some renaming of states and some rescaling, every space-time diagram of \mathcal{A} is a space-time diagram of \mathcal{B}.

Definition. $\mathcal{A} \subseteq \mathcal{B}$ if there exists an injective mapping φ from $S_{\mathcal{A}}$ into $S_{\mathcal{B}}$ such that this diagram commutes:

$$
\begin{gathered}
\mathrm{C} \xrightarrow{\varphi} \bar{\varphi}(\mathrm{C}) \\
\mathrm{G}_{\mathcal{A}} \downarrow \\
\mathrm{G}_{\mathcal{A}}(\mathrm{C}) \xrightarrow[\varphi]{\longrightarrow} \bar{\varphi}\left(\mathrm{G}_{\mathcal{A}}(\mathrm{C})\right)
\end{gathered}
$$

Inducing an Order on CA (2)

Definition. The $\langle m, n, k\rangle$ rescaling of \mathcal{A} is defined by:

$$
\mathrm{G}_{\mathcal{A}}^{\langle\mathrm{m}, \mathrm{n}, \mathrm{k}\rangle}=\sigma^{\mathrm{k}} \circ \mathrm{o}^{\mathrm{m}} \circ \mathrm{G}_{\mathcal{A}}^{n} \circ \mathrm{o}^{-\mathrm{m}}
$$

\mathcal{A}

Inducing an Order on CA (2)

Definition. The $\langle m, n, k\rangle$ rescaling of \mathcal{A} is defined by:

$$
\mathrm{G}_{\mathcal{A}}^{\langle\mathrm{m}, \mathrm{n}, \mathrm{k}\rangle}=\sigma^{\mathrm{k}} \circ \mathrm{o}^{\mathrm{m}} \circ \mathrm{G}_{\mathcal{A}}^{n} \circ \mathrm{o}^{-\mathrm{m}} .
$$

$$
\mathcal{A}
$$

Definition. $\mathcal{A} \leqslant \mathcal{B}$ if there exist $\langle m, n, k\rangle$ and $\left\langle m^{\prime}, n^{\prime}, k^{\prime}\right\rangle$ such that $\mathcal{A}^{\langle\mathrm{m}, \mathrm{n}, \mathrm{k}\rangle} \subseteq \mathcal{B}^{\left\langle\mathrm{m}^{\prime}, n^{\prime}, \mathrm{k}^{\prime}\right\rangle}$.

Inducing an Order on CA (3)

Proposition. The relation \leqslant is a quasi-order on CA.

- The induced order admits a maximal equivalence class.

Definition. A CA \mathcal{A} is intrinsically universal if:

$$
\forall \mathcal{B}, \exists\langle\mathrm{m}, \mathrm{n}, \mathrm{k}\rangle, \quad \mathcal{B} \subseteq \mathcal{A}^{\langle\mathrm{m}, \mathrm{n}, \mathrm{k}\rangle}
$$

Inducing an Order on CA (3)

Proposition. The relation \leqslant is a quasi-order on CA.

- The induced order admits a maximal equivalence class.

Definition. A CA \mathcal{A} is intrinsically universal if:

$$
\forall \mathcal{B}, \exists\langle\mathrm{m}, \mathrm{n}, \mathrm{k}\rangle, \quad \mathcal{B} \subseteq \mathcal{A}^{\langle\mathrm{m}, \mathrm{n}, \mathrm{k}\rangle}
$$

Proposition. Every intrinsically universal CA is computation universal. The converse is false.

Simple Universal CA

year	author	d	$\mid \mathrm{N}$	states	universality
1966	von Neumann	2	5	29	intrinsic
1968	Codd	2	5	8	intrinsic
1970	Banks	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{2}$	intrinsic
		1	3	18	intrinsic
1971	Smith III	2	7	7	computation
		1	3	18	computation
1987	Albert \& Culik II	1	3	14	intrinsic
1990	Lindgren \& Nordhal	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{7}$	computation
2002	NO	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	intrinsic
2002	Cook \& Wolfram	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	computation

Banks' Universal 2D-CA

$$
\begin{aligned}
& \left(\mathbb{Z}^{2},\{\boldsymbol{\square}, \square\}, \square, \delta\right)
\end{aligned}
$$

E. R. Banks. Universality in Cellular Automata. 1970

Idea. Emulate logical circuits by building:

- wires transporting binary signals
- logical gates AND, OR and NOT
- wires crossing

CA and Boolean Circuits (1)

- We decompose a CA local rule into k boolean functions where $k=\left\lceil\log _{2}|S|\right\rceil$:

$$
\delta_{i}:\{0,1\}^{|\mathrm{N}| \mathrm{k}} \rightarrow\{0,1\}
$$

CA and Boolean Circuits (2)

- To a boolean function we associate a leveled circuit:

Boolean Circuit Simulator

A BC Simulator is a 1D dynamical system that simulate a CA via its boolean circuits. Each cell contains:

- a boolean value;
- an operator (identity or NAND);
- the relative positions of the operands.

Microscopic Description

We build a 3-state 1D-CA to move information.

- Sig cells transport boolean values between cells;
- Val cells encode current meta-cell value;
- Op vells encode the operation to execute.

8 States

Direct encoding:

- Sig: 0 or 1 boolean value;
- Val: 0 or 1 boolean value;
- Op: Border, Copy, Follow or NAND operation.

7 States

New encoding:

- Sig: 0 or 1 boolean value;
- Val: 0 or 1 boolean value;
- Op: Border, Follow or NAND operation.

The Copy operation is emulated. We encode a signal x by three consecutive signals $1, x, 0$.

old Op	new 3 Ops
Border	Follow, Border, Follow
Follow	Follow, Follow, Follow
NAND	Follow, NAND, Follow
Copy	NAND, NAND, NAND

6 States

More tricky!

New encoding with Op a boolean value which meaning becomes position dependant...

Going further

- We get 6 states as a product 3×2. What about 2×2 ?
- Cook and Wolfram have proven a 2 states rule computation universal. Is it also intrinsically universal ?
- Good formal definition of computation universality?

