The Quest for Small Universal Cellular Automata Nicolas Ollinger

8 july 2002 / ICALP'2002 / Málaga, Spain

Cellular Automata

Definition. A d-CA \mathcal{A} is a 4-uple $(\mathbb{Z}^d, S, N, \delta)$ where:

- S is the finite state set of \mathcal{A} ;
 - $\mathsf{N}\subset \mathbb{Z}^{\mathsf{d}}$, finite, is the neighborhood of \mathcal{A} ;

• $\delta: S^{|N|} \to S$ is the local rule of \mathcal{A} .

Cellular Automata

Definition. A d-CA \mathcal{A} is a 4-uple $(\mathbb{Z}^d, S, N, \delta)$ where:

- S is the finite state set of \mathcal{A} ;
 - $\mathsf{N}\subset \mathbb{Z}^{\mathrm{d}}$, finite, is the neighborhood of \mathcal{A} ;

• $\delta: S^{|N|} \to S$ is the local rule of \mathcal{A} .

A configuration C is a mapping from \mathbb{Z}^d to S.

Cellular Automata

Definition. A d-CA \mathcal{A} is a 4-uple $(\mathbb{Z}^d, S, N, \delta)$ where:

- S is the finite state set of \mathcal{A} ;
 - $\mathsf{N}\subset \mathbb{Z}^d$, finite, is the neighborhood of \mathcal{A} ;

• $\delta: S^{|N|} \to S$ is the local rule of \mathcal{A} .

A configuration C is a mapping from \mathbb{Z}^d to S. The global rule applies δ uniformly according to N: $\forall p \in \mathbb{Z}^d$, $G(C)_p = \delta(C_{p+N_1}, \dots, C_{p+N_{\nu}})$

Computation Universality

Idea. A CA is *computation universal* if it can **compute** any partial recursive function.

Computation Universality

Idea. A CA is *computation universal* if it can **compute** any partial recursive function.

This notion is rather difficult to formalize...

Computation Universality

Idea. A CA is *computation universal* if it can **compute** any partial recursive function.

- This notion is rather difficult to formalize...
- In practice: step-by-step Turing machine simulation.

A. R. Smith III. Simple Computation-Universal Cellular Spaces. 1971

Inducing an Order on CA (1)

Idea. A CA \mathcal{A} is **less complex** than a CA \mathcal{B} if, up to some renaming of states and some rescaling, every space-time diagram of \mathcal{A} is a space-time diagram of \mathcal{B} .

Inducing an Order on CA (1)

Idea. A CA \mathcal{A} is **less complex** than a CA \mathcal{B} if, up to some renaming of states and some rescaling, every space-time diagram of \mathcal{A} is a space-time diagram of \mathcal{B} .

Definition. $\mathcal{A} \subseteq \mathcal{B}$ if there exists an injective mapping φ from $S_{\mathcal{A}}$ into $S_{\mathcal{B}}$ such that this diagram commutes:

Inducing an Order on CA (2)

Definition. The $\langle m, n, k \rangle$ rescaling of \mathcal{A} is defined by: $\begin{aligned} G_{\mathcal{A}}^{\langle m, n, k \rangle} &= \sigma^k \circ o^m \circ G_{\mathcal{A}}^n \circ o^{-m} \end{aligned}$

Inducing an Order on CA (2)

Definition. The $\langle m, n, k \rangle$ rescaling of \mathcal{A} is defined by:
$$\begin{split} G_{\mathcal{A}}^{\langle m, n, k \rangle} &= \sigma^k \circ o^m \circ G_{\mathcal{A}}^n \circ o^{-m} \end{split}.$$

Definition. $\mathcal{A} \leq \mathcal{B}$ if there exist $\langle m, n, k \rangle$ and $\langle m', n', k' \rangle$ such that $\mathcal{A}^{\langle m, n, k \rangle} \subseteq \mathcal{B}^{\langle m', n', k' \rangle}$.

Inducing an Order on CA (3)

Proposition. The relation \leq is a quasi-order on CA.

The induced order admits a maximal equivalence class.

Definition. A CA \mathcal{A} is intrinsically universal if: $\forall \mathcal{B}, \exists \langle m, n, k \rangle, \quad \mathcal{B} \subseteq \mathcal{A}^{\langle m, n, k \rangle}$

Inducing an Order on CA (3)

Proposition. The relation \leq is a quasi-order on CA.

The induced order admits a maximal equivalence class.

Definition. A CA \mathcal{A} is intrinsically universal if:

 $\forall \mathcal{B}, \exists \langle m, n, k \rangle, \quad \mathcal{B} \subseteq \mathcal{A}^{\langle m, n, k \rangle}$

Proposition. Every intrinsically universal CA is computation universal. **The converse is false**.

Simple Universal CA

year	author		d	N]	states	universality 🦯
1966	von Neu	mann 📝	2	5	29	intrinsic ////
1968	Codd		2	5	8	intrinsic //////
1970	Banks		2	5	2	intrinsic ////
			1	3	18	intrinsic
1971	Smith III		2	7	7	computation
			1	3	18 🦯	computation
1987	Albert &	Culik II	1	3	14	intrinsic
1990	Lindgrer	n & Nordhal	1	3	/7//	computation
2002	NO		1	3,	<u>//6//</u>	intrinsic
2002	Cook & V	Volfram	1	3	//2/	computation

Banks' Universal 2D-CA

E. R. Banks. Universality in Cellular Automata. 1970

 $9 \triangleleft \triangleleft \triangleleft \circ \triangleright \triangleright \triangleright$

Idea. Emulate logical circuits by building:

- wires transporting binary signals
 - logical gates AND, OR and NOT
- wires crossing

CA and Boolean Circuits (1)

• We decompose a CA local rule into k boolean functions where $k = \lceil \log_2 |S| \rceil$:

$$\delta_i: \{0,1\}^{|N|k} \to \{0,1\}$$
.

CA and Boolean Circuits (2)

To a boolean function we associate a leveled circuit:

Boolean Circuit Simulator

A BC Simulator is a 1D dynamical system that simulate a CA via its boolean circuits. Each cell contains:

- a boolean value;
- an operator (identity or NAND);
- the relative positions of the operands.

Microscopic Description

We build a 3-state 1D-CA to move information.

Sig cells transport boolean values between cells; Val cells encode current meta-cell value; Op vells encode the operation to execute.

8 States

Direct encoding:

- Sig: 0 or 1 boolean value;
- Val: 0 or 1 boolean value;
- Op: Border, Copy, Follow or NAND operation.

 $14 \triangleleft \triangleleft \blacktriangleleft \circ \triangleright \triangleright \triangleright$

X

7 States

New encoding:

- Sig: 0 or 1 boolean value;
- Val: 0 or 1 boolean value;
- Op: Border, Follow or NAND operation.

The Copy operation is emulated. We encode a signal x by three consecutive signals 1, x, 0.

old Op	new 3 Ops
Border	Follow, Border, Follow
Follow	Follow, Follow, Follow
NAND	Follow, NAND, Follow
Сору	NAND, NAND, NAND

6 States

More tricky!

New encoding with Op a boolean value which meaning becomes position dependent...

Going further

We get 6 states as a product 3×2 . What about 2×2 ?

• Cook and Wolfram have proven a 2 states rule computation universal. Is it also intrinsically universal ?

Good formal definition of computation universality ?