Universality of rule 110 towards a formal proof

Nicolas Ollinger LIF, Univ. de Provence

Gaétan Richard

ENS Lyon student

Table of Content

1. Universalities

2. Rule 110 basics
3. Cook-Wolfram proof
4. Details

Cellular Automata

- A 1 -CA \mathcal{A} is a tuple $(\mathbb{Z}, S, \mathcal{N}, \delta)$.

Cellular Automata

- A $1 D-C A \mathcal{A}$ is a tuple $(\mathbb{Z}, S, \mathcal{N}, \delta)$.

Cellular Automata

- A $1 D-C A \mathcal{A}$ is a tuple $(\mathbb{Z}, S, \mathcal{N}, \delta)$.

Cellular Automata

- A $1 D-C A \mathcal{A}$ is a tuple $(\mathbb{Z}, S, \mathcal{N}, \delta)$.

- A configuration C is a mapping from \mathbb{Z} to S.

Cellular Automata

- A $1 D-C A \mathcal{A}$ is a tuple $(\mathbb{Z}, S, \mathcal{N}, \delta)$.

$$
S=\{\square, \square\}
$$

$\mathcal{N} \subseteq \subseteq_{\text {finite }} \mathbb{Z}$

- A configuration C is a mapping from \mathbb{Z} to S.

Cellular Automata

- A $1 D-C A \mathcal{A}$ is a tuple $(\mathbb{Z}, S, \mathcal{N}, \delta)$.

- A configuration C is a mapping from \mathbb{Z} to S.

Cellular Automata

- A $1 D-C A \mathcal{A}$ is a tuple $(\mathbb{Z}, S, \mathcal{N}, \delta)$.

- A configuration C is a mapping from \mathbb{Z} to S.

Cellular Automata

- A $1 D-C A \mathcal{A}$ is a tuple $(\mathbb{Z}, S, \mathcal{N}, \delta)$.

- A configuration C is a mapping from \mathbb{Z} to S.

Computation Universality

Idea. A CA is computation universal if it can compute any partial recursive function.

Computation Universality

Idea. A CA is computation universal if it can compute any partial recursive function.

- In practice : step-by-step Turing machine simulation.

A. R. Smith III. Simple Computation-Universal Cellular Spaces. 1971

Universalities

B. Durand and Z. Róka, The game of life: universality revisited, Cellular automata (Saissac, 1996) (Kluwer Acad. Publ., Dordrecht, 1999), (pp. 51-74).

- Several different notions of universality :
- Turing (computation universality) ;
- Intrinsic (CA simulating all CA) ;
- Circuits (CA simulating boolean circuits).
- Problems in the proof of universality of GOL.
- Discusses the difficulty of formalization.

Simple Universal CA

year	author	d	$\|N\|$	states	universality
1966	von Neumann	2	5	29	intrinsic
1968	Codd	2	5	8	intrinsic
1970	Banks	$\mathbf{2}$	$\mathbf{5}$	$\mathbf{2}$	intrinsic
		1	3	18	intrinsic
1971	Smith III	2	7	7	computation
		1	3	18	computation
1987	Albert \& Culik II	1	3	14	intrinsic
1990	Lindgren \& Nordhal	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{7}$	computation
2002	NO	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	intrinsic
2002	Cook \& Wolfram	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	computation

Banks' Universal 2D-CA

$$
\begin{aligned}
& \left(\mathbb{Z}^{2},\{\mathbf{\square}, \square\}, \square, \delta\right) \\
& \text { 4. * }
\end{aligned}
$$

E. R. Banks. Universality in Cellular Automata. 1970

Idea. Emulate logical circuits by building :

- wires transporting binary signals
- logical gates AND, OR and NOT
- wires crossing

Banks' Universal 2D-CA

Banks' Universal 2D-CA

Table of Content

1. Universalities
 2. Rule 110 basics

3. Cook-Wolfram proof
4. Details

Point of View

- We want to construct huge space-time diagrams.
- We need to prove their existence.
- We cannot simply draw some basis of them because of the size of diagrams involved (squares of millions of cells on a side).

Tiling the plane

Space-time diagrams as tiling of the plane by triangles

Changing the point of view from 1D to 2D

Particles

Particles repeats themselves in a uniform background

$$
\begin{aligned}
& \mathrm{A}=\left\langle\binom{ 0}{7},\right. \\
& \mathrm{B}=\left\langle\binom{ 0}{7},\right. \\
& \mathrm{C}=\left\langle\binom{ 2}{3},\right. \text {, }
\end{aligned}
$$

Collisions

Particles collide when meeting
$\Gamma: \quad\binom{0}{0} \mathrm{C}+\binom{0}{-4} \mathrm{~A} \vdash\binom{0}{5} \mathrm{~B}$

+ some pertubation pattern F

We are given a set of valid elementary particles and elementary collisions

Bindings

- To combine collisions we use one operation : binding.

$$
\Gamma^{\prime}=\left(\binom{\alpha_{1}}{\beta_{1}} \Gamma_{1}+\binom{\alpha_{2}}{\beta_{2}} \Gamma_{2}+\cdots+\binom{\alpha_{n}}{\beta_{n}} \Gamma_{n}\right)_{\text {bind }}
$$

Principle Merge incoming and outgoing particles when possible. Some bindings are not valid!

- Binding is easy to construct and validate.

Table of Content

1. Universalities
 2. Rule 110 basics

3. Cook-Wolfram proof

4. Details

Sketch of the proof

- We prove that rule 110 is Turing-universal.

1. Reduce Turing Machines to Post Tag Systems.
2. Reduce Tag Systems to Cyclic Tag Systems.
3. Encode Cyclic Tag Systems with collisions.

Post Tag Systems

M. Minsky, Computation : Finite and Infinite Machines (Prentice Hall, Englewoods Cliffs, 1967).

- A classical model used to prove universality of small Turing Machines.
- Configurations are words on Σ, a system is given by $\left(k, v_{1}, \ldots, v_{|\Sigma|}\right)$. A transition from u is done as follows:

$$
u_{1} \ldots u_{k} u_{k+1} \ldots u_{m} \vdash u_{k+1} \ldots u_{m} \cdot v_{u_{1}}
$$

- When the rule cannot be applied, the system accepts.

Cyclic Tag systems

- A cyclic tag system acts only on the binary alphabet.
- A configuration is given by a word u and a set of finite words $\left(v_{1}, \ldots, v_{n}\right)$.
- A transition is done as follows :

1. if the first letter of u is 1 then catenate v_{1} to u;
2. erase the first letter of u;
3. rotate the list of words as $\left(v_{2}, \ldots, v_{n}, v_{1}\right)$.

- Such systems can simulate any Post Tag System.

A Local Dynamical System

Idea Replace the finite set of words by a periodic one.
Idea Make the first letter cross the word letter by letter.

- A transition is done as follows :

1. the first letter of u crosses the word to the right;
2. when it meets a boundary, it destroys it ;
3. it begins either to erase of unfreeze letters;
4. when it meets the second boundary, it stops.

A Sample CA

- 16 states, a large neighborhood ($-1,0,1,2$).
- Locally it can simulate the cyclic Tag system.

A Sample CA

- 16 states, a large neighborhood ($-1,0,1,2$).
- Locally it can simulate the cyclic Tag system.

Claim This CA may not work! Why?

A Sample CA

- 16 states, a large neighborhood ($-1,0,1,2$).
- Locally it can simulate the cyclic Tag system.

Claim This CA may not work! Why?

- Synchronization problems may appear. Be careful.

Table of Content

1. Universalities
2. Rule 110 basics
3. Cook-Wolfram proof
4. Details

Roadmap

- Now we need to exhibit the gadgets for rule 110.
- This is very technical and requires an Oracle.
- M. Cook and S. Wolfram "tour de force".
S. Wolfram, A New Kind of Science, 2002

information active

information passive

info passive (x2) (x3)

synchronisation

觜

(E) synchronisation

(E) pré-bits N B

(E) bits passifs N B

,

N

(E) bits actifs N B

croisement1

croisement2

(E) croisement NN NB

(E) croisement BN BB

(E) poubelle N B

(E) poubelle sync

redressement

(E) redressement N B

$41 \triangleleft \triangleleft<\circ \vee \triangleright \triangleright x$

passage1

passage2a

passage2b

(E) passage N B

blocage1

$46 \triangleleft \triangleleft \triangleleft \circ-\triangleright \triangleright x$

blocage2a

blocage2b

(E) blocage N B

délimiteur 1

délimiteur 2

délimiteur 3

délimiteur 4

Chen

(E) pré-bits N B fin

(E) analyse N B

(E) passage final N B

(E) blocage final N B

Combining the gadgets

Claim Only synchronization invariants are missing.

Idea 1 Combine groups of particles.

Idea 2 Express synchronization as a big system of linear equalities and solve it.

Test Page (+ pdiTEX \& Acrobat issue)

abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ 012345789
abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ 012345789
abcdefghijkImnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ 012345789
abcdefghijkImnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ 012345789

