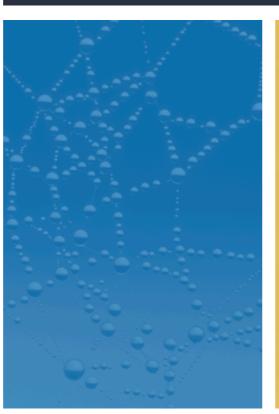
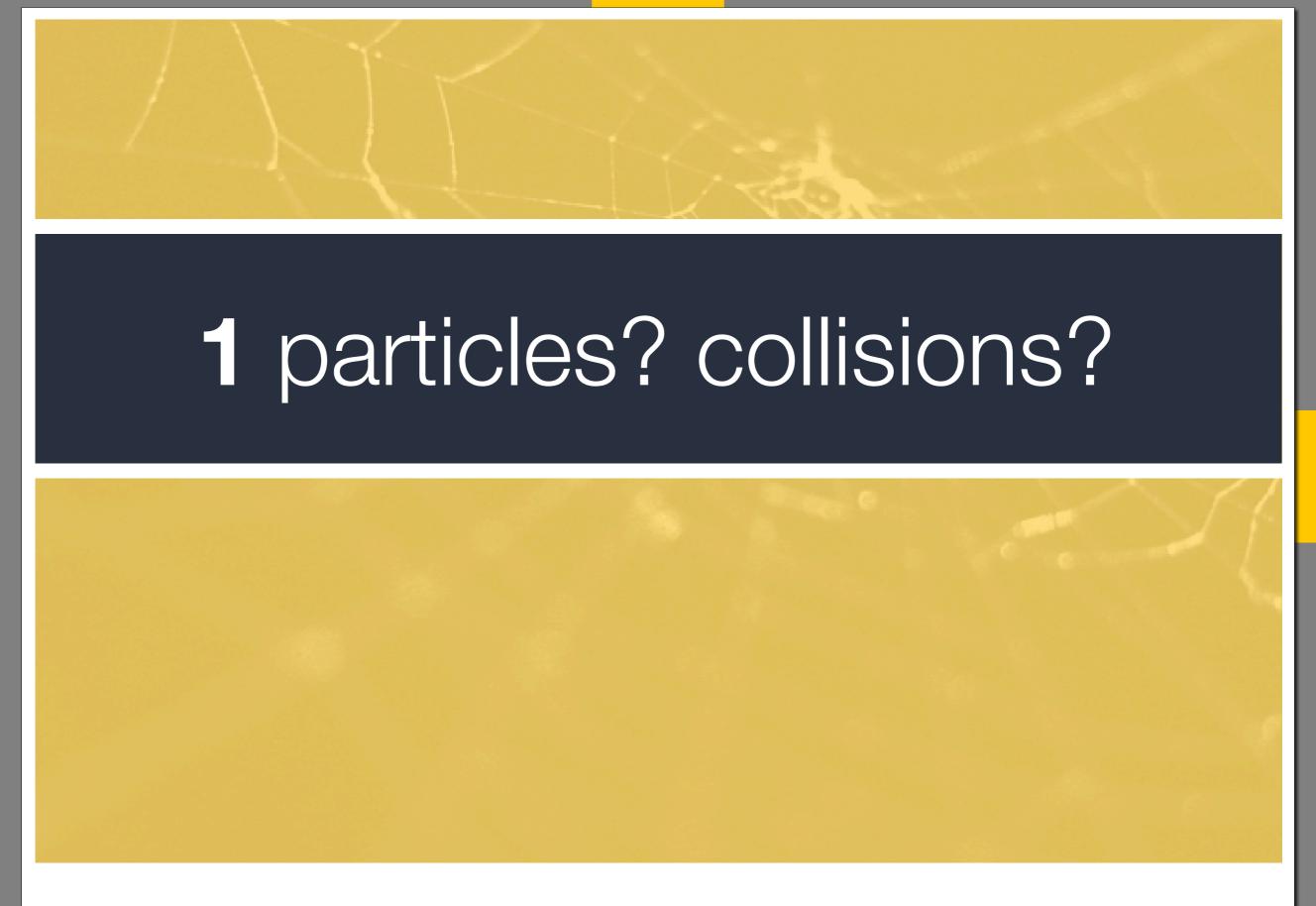


Discrete particles and collisions systems in cellular automata





Cellular automata

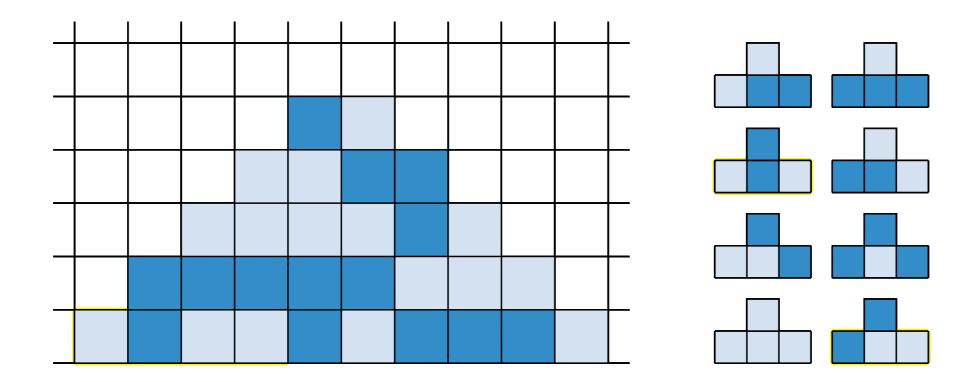
In this talk CA will be of dimension 1, first neighbors, a few states, using the following notations:

$$\mathcal{A} = (S, f)$$
 $S = \{ \blacksquare, \square, \blacksquare \}$ $f : S^3 \to S$ $C \in S^{\mathbb{Z}}$ $G(C)_i = f(C_{i-1}, C_i, C_{i+1})$

Ideally, we would like to use *fully* 2D space-time diagram, *i.e.* limit set configurations:

$$\Delta \in S^{\mathbb{Z}^2}$$
 $\Delta_{t+1} = G(\Delta)_t$ $\Omega = \bigcap_{k \in \mathbb{N}} G^k(S^{\mathbb{Z}})$

Space-time diagram



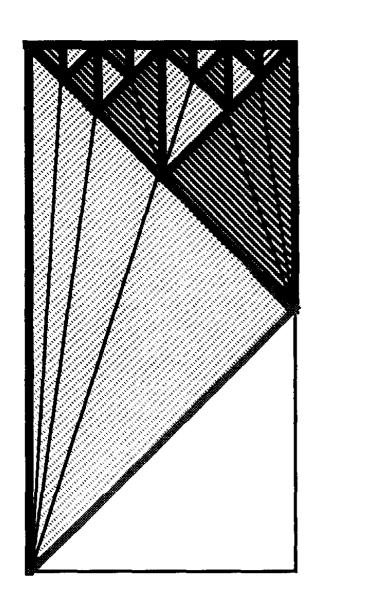
Point of view

- In this talk we take the point of view of algorithmic constructions on CA:
- We discuss efficient (read few states) directed information propagation in space-time diagrams.

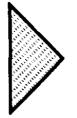
Undecidability everywhere

- In practice, almost all properties of CA are undecidable in the general case:
- From being nilpotent to the membership of a word to the limit set of a given CA.
- More theorems than algorithms!

FSSP constructions



Generals

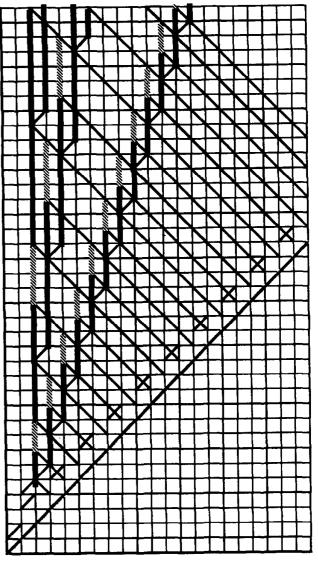


Part of the synchronization process set up by the left-end automaton

Part of the synchronization process set up by the right-end automaton

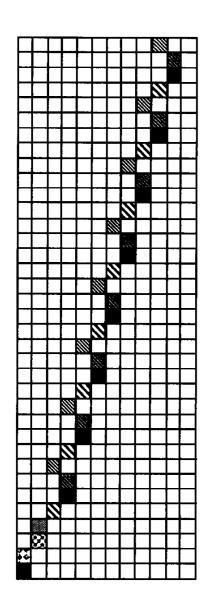
Break signals

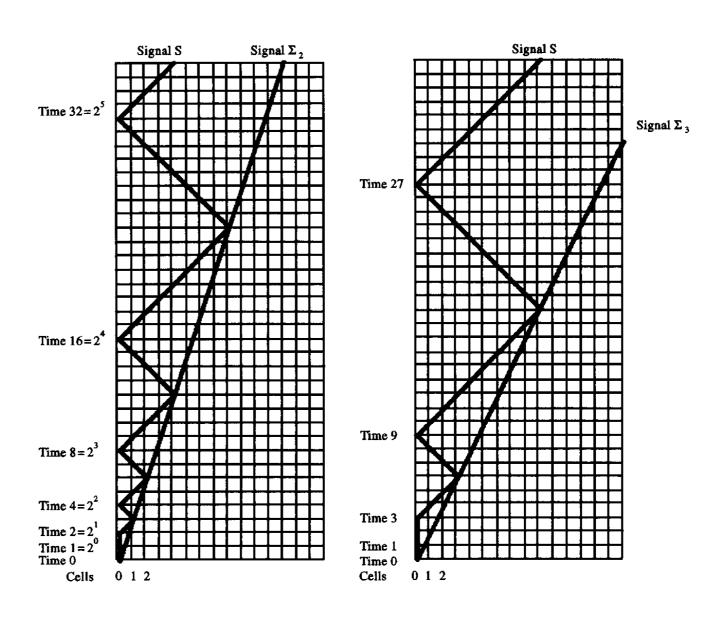
Signals at maximal speed



Pictures from Mazoyer 1996

Signals à la Fischer





Pictures from Mazoyer & Terrier 1999

Universalities

- B. Durand and Z. Róka, The game of life: universality revisited, Cellular automata (Saissac, 1996) (Kluwer Acad. Publ., Dordrecht, 1999), (pp. 5174).
- Different notions of universality:
 - T-universality = simulate Turing machines
 - I-universality = simulate any other CA

Order on CA

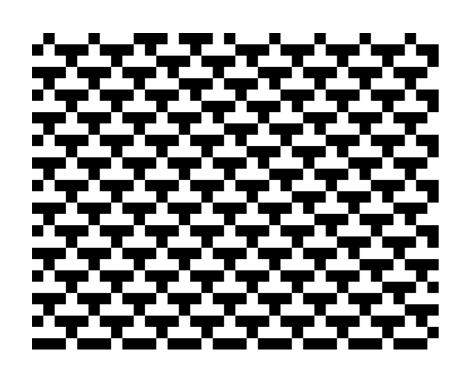
Idea. A CA \mathcal{A} is **less complex** than a CA \mathcal{B} if, up to some renaming of states and some rescaling, every space-time diagram of \mathcal{A} is a space-time diagram of \mathcal{B} .

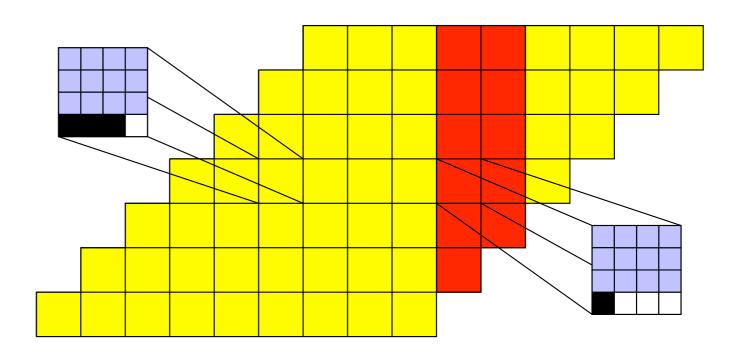
 $\mathcal{A} \subseteq \mathcal{B}$ if there exists an injective mapping φ from $S_{\mathcal{A}}$ into $S_{\mathcal{B}}$ such that this diagram commutes:

$$\begin{array}{ccc}
C & \xrightarrow{\varphi} & \overline{\varphi}(C) \\
G_{\mathcal{A}} \downarrow & & \downarrow G_{\mathcal{B}} \\
G_{\mathcal{A}}(C) & \xrightarrow{\varphi} & \overline{\varphi}(G_{\mathcal{A}}(C))
\end{array}$$

Rescaling

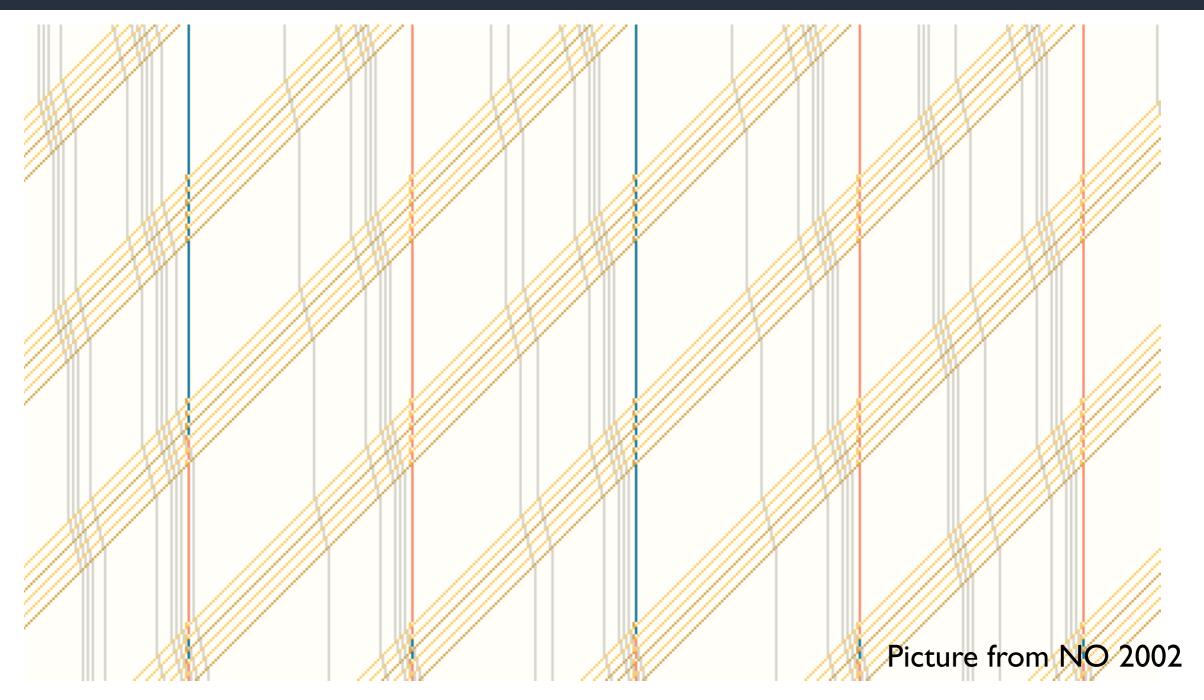
$$G_{\mathcal{A}}^{\langle m,n,k\rangle} = \sigma^k \circ o^m \circ G_{\mathcal{A}}^n \circ o^{-m}$$





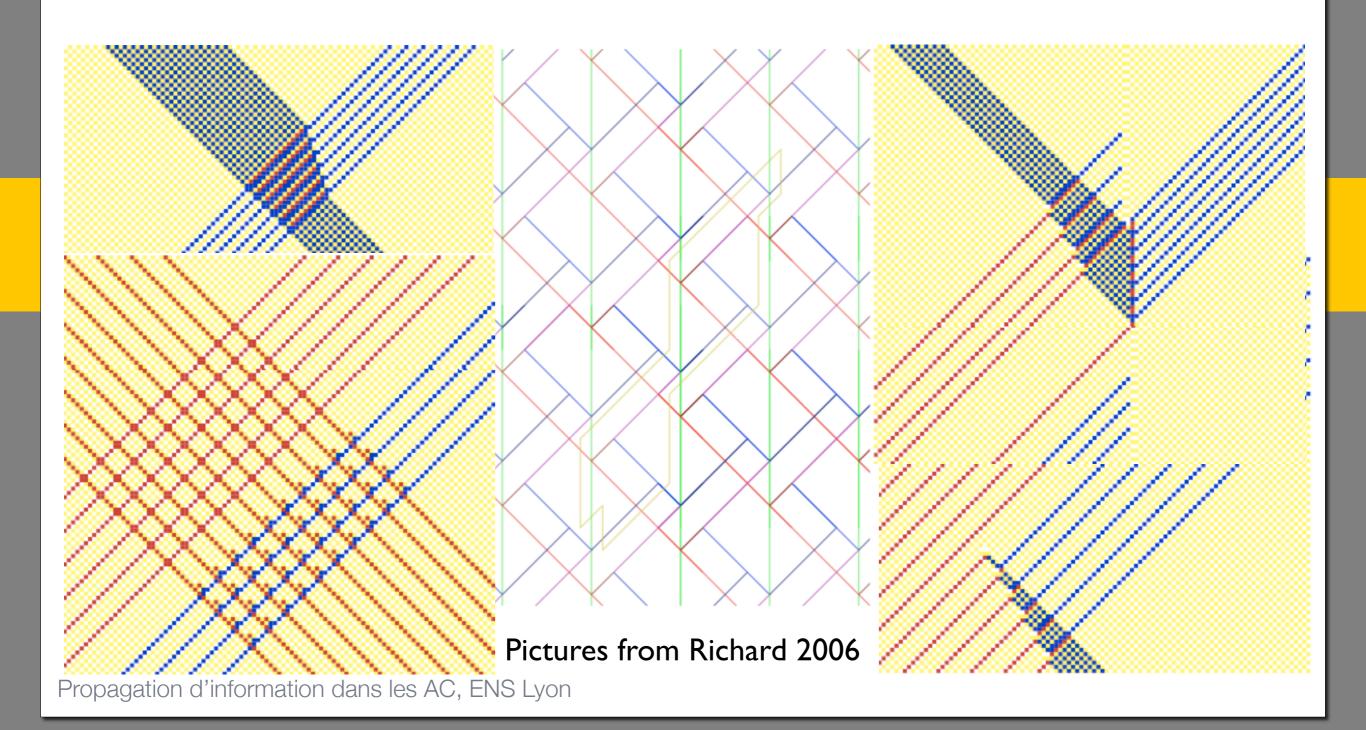
 $\mathcal{A} \leqslant \mathcal{B}$ if there exist $\langle m, n, k \rangle$ and $\langle m', n', k' \rangle$ such that $\mathcal{A}^{\langle m, n, k \rangle} \subset \mathcal{B}^{\langle m', n', k' \rangle}$.

Signals and universality: 6st

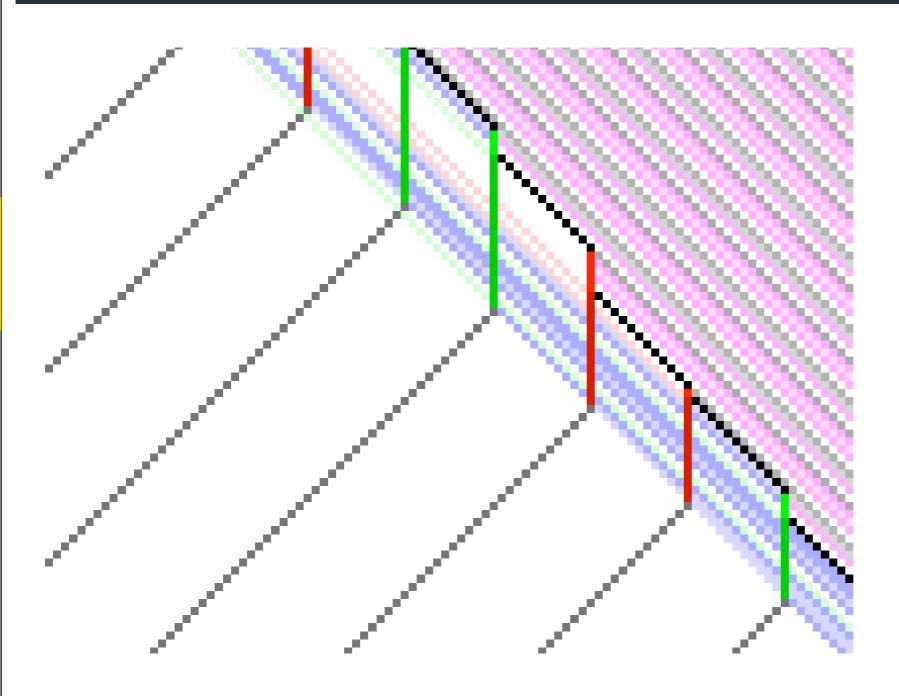


Propagation d'information dans les AC, ENS Lyon

Signals and universality: 4st



Signals and universality: 110



a 16 state universal CA simulating Post cyclic Tag Systems.

Cook. 110 is T-universal Simulation of Post cyclic TS.

Woods. 110 is P-complet

I-universality is still open!

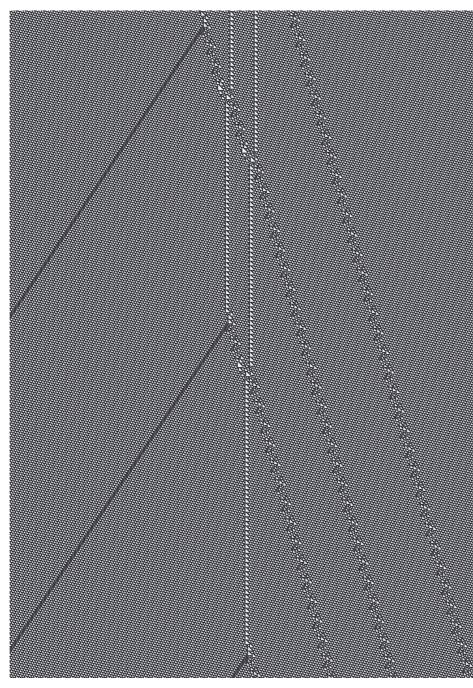
discrete signals encoded using rule 110

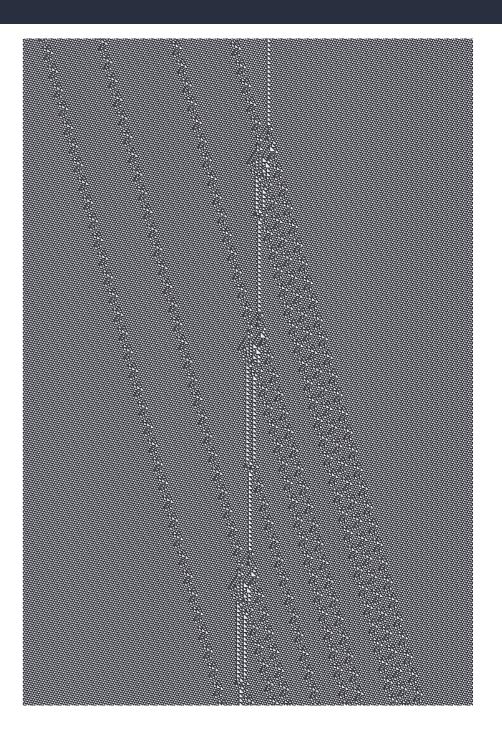
synchronization of signals meeting points

Encoding into rule 110



Signals encoding in rule 110





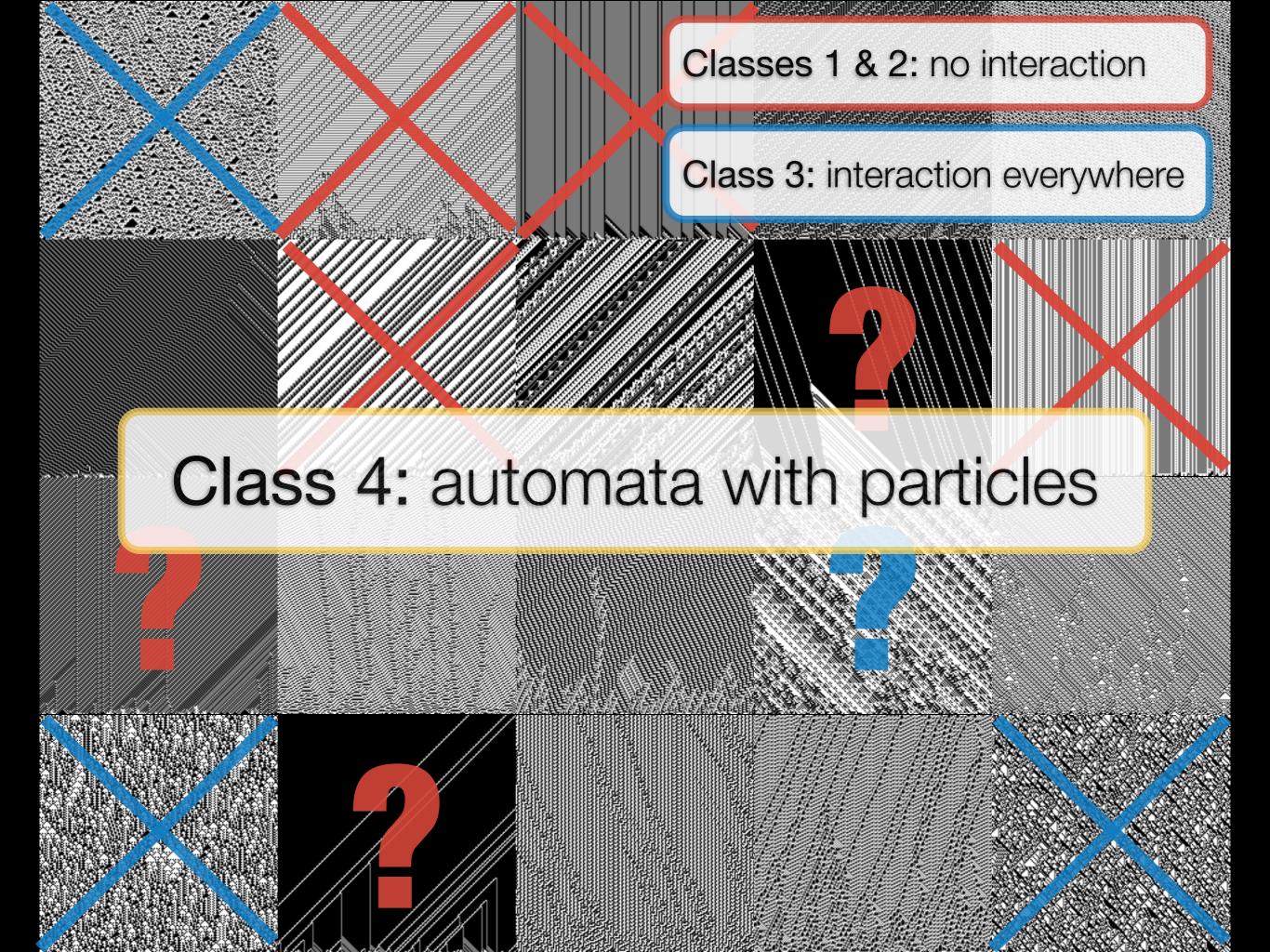
Propagation d'information dans les AC, ENS Lyon

How common are signals?

- Below 4 states, it is difficult to construct rules.
- The rule space is huge:

$$n^{n^3}$$
 (1, 256, 7625 597 484 987, ...)

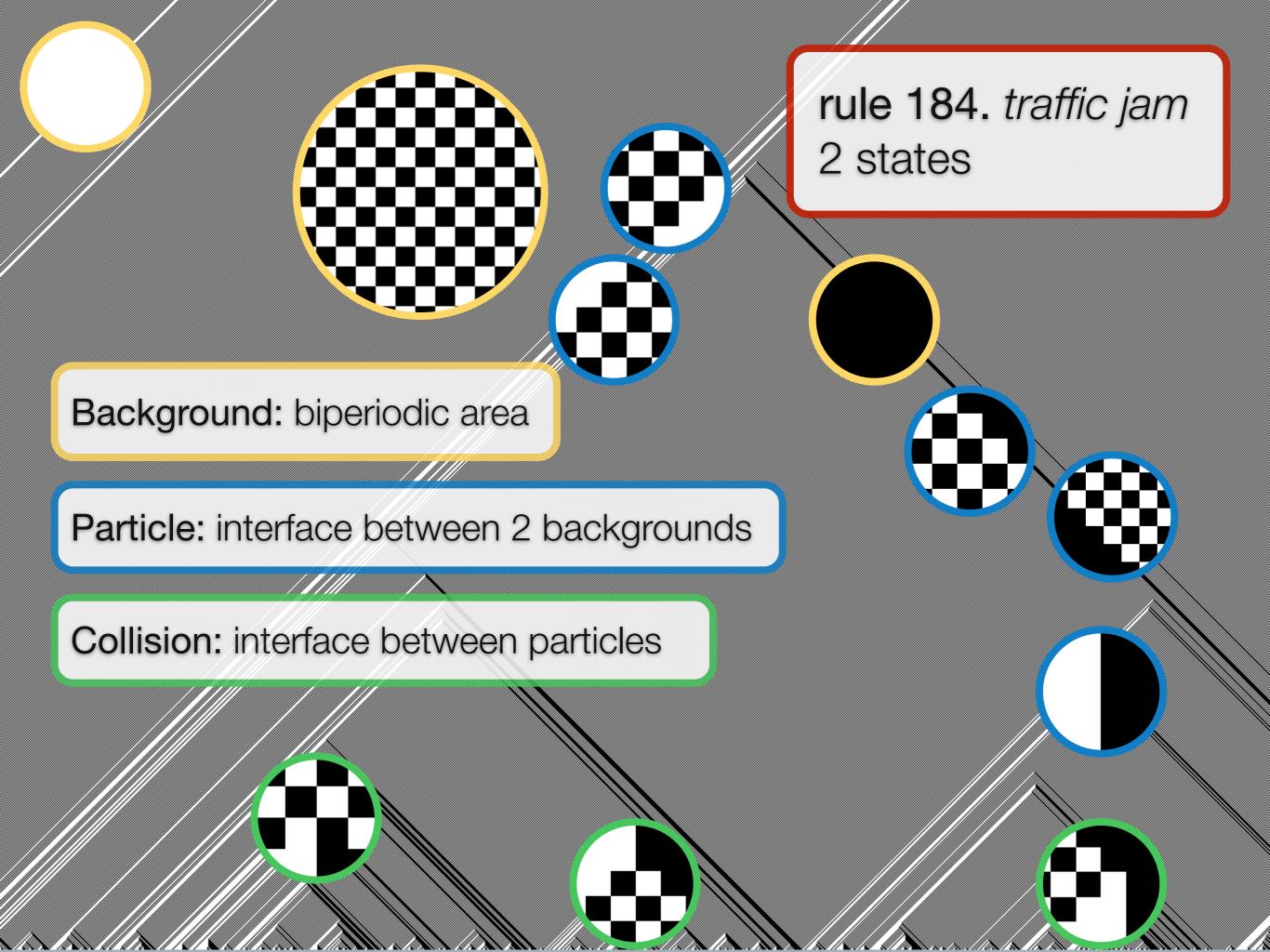
How to find a rule with nice signals?



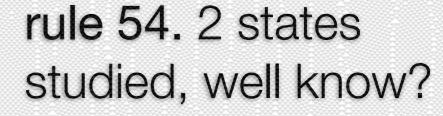
Automata with particles

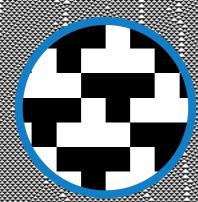
« And finally [...] class 4 involves a mixture of order and randomness: localized structures are produced which on their own are fairly simple, but these structures move around and interact with each other in very complicated ways. [...] »

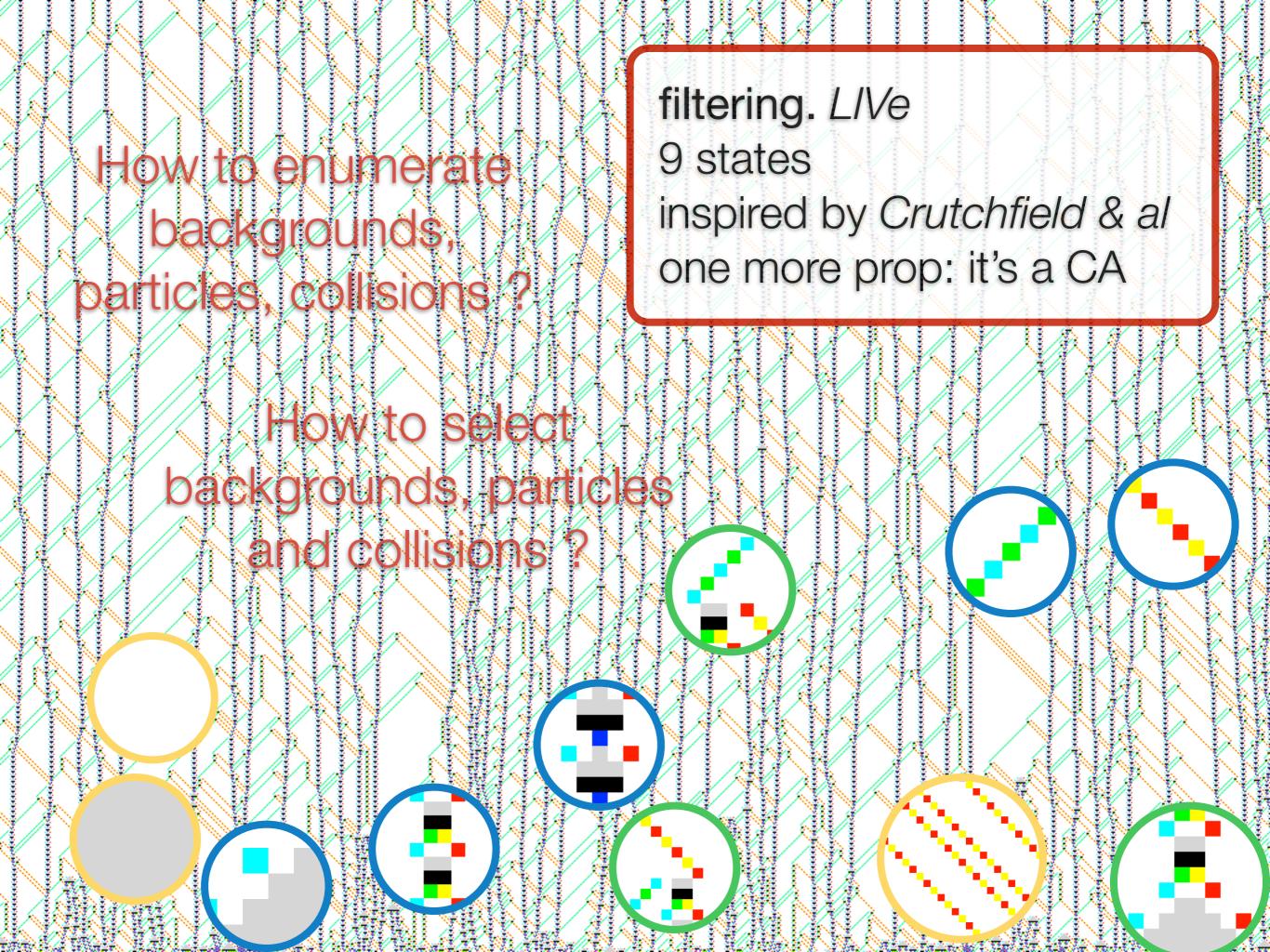
S. Wolfram, ANKOS

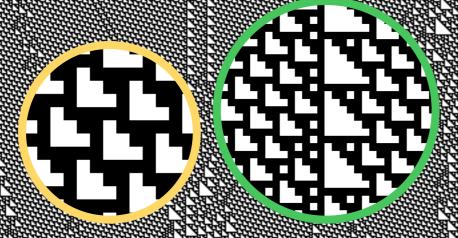




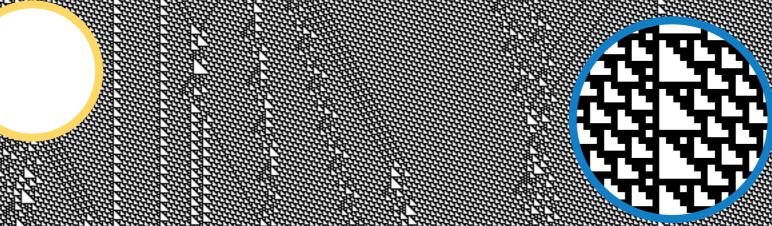


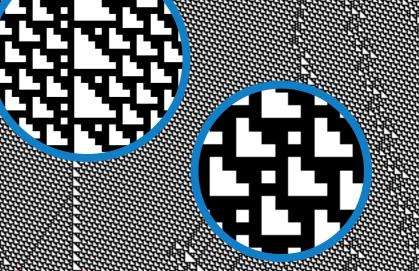


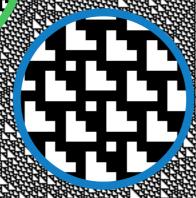




rule 110. universal 2 states, piles big background (14)

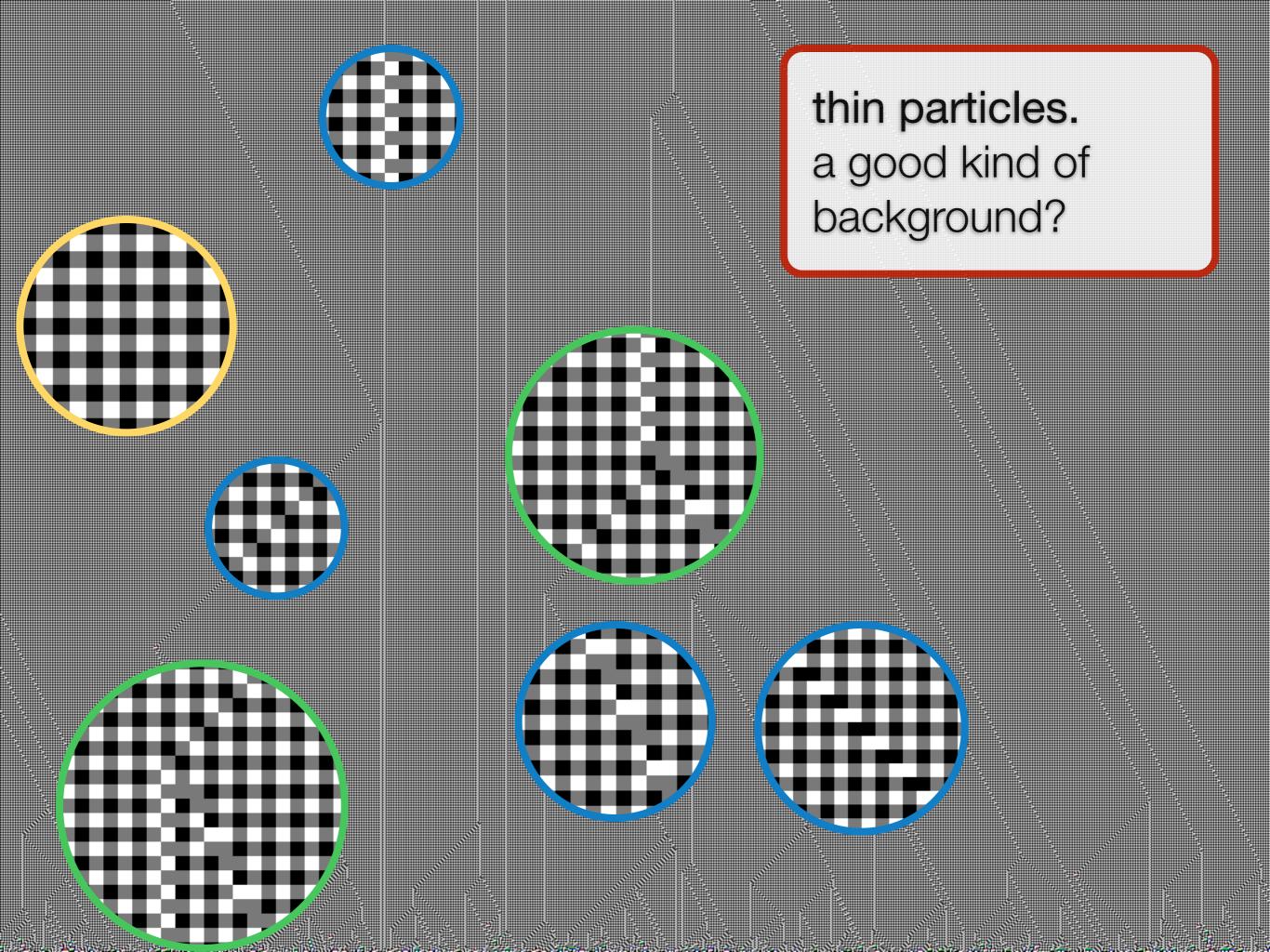


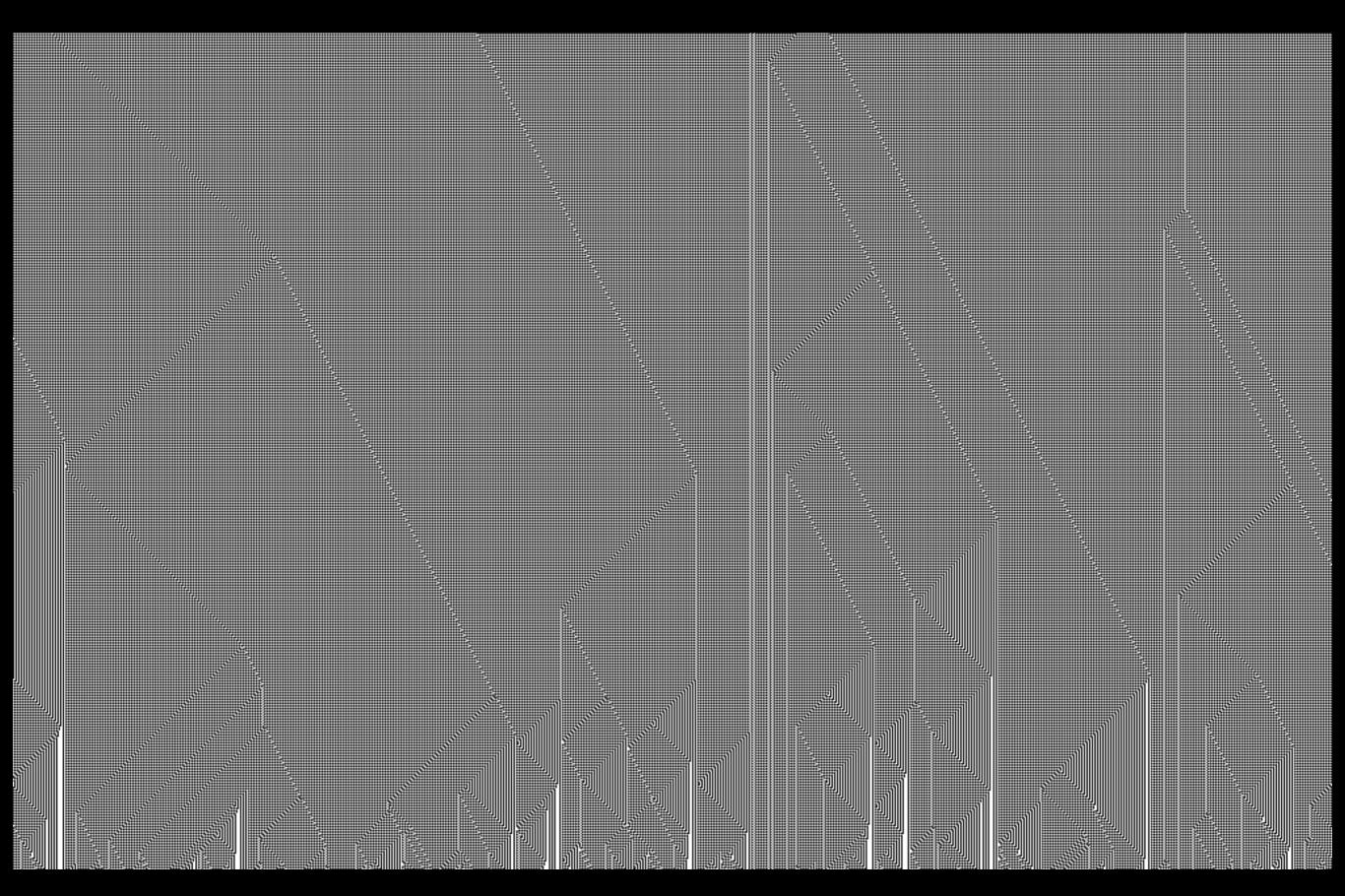


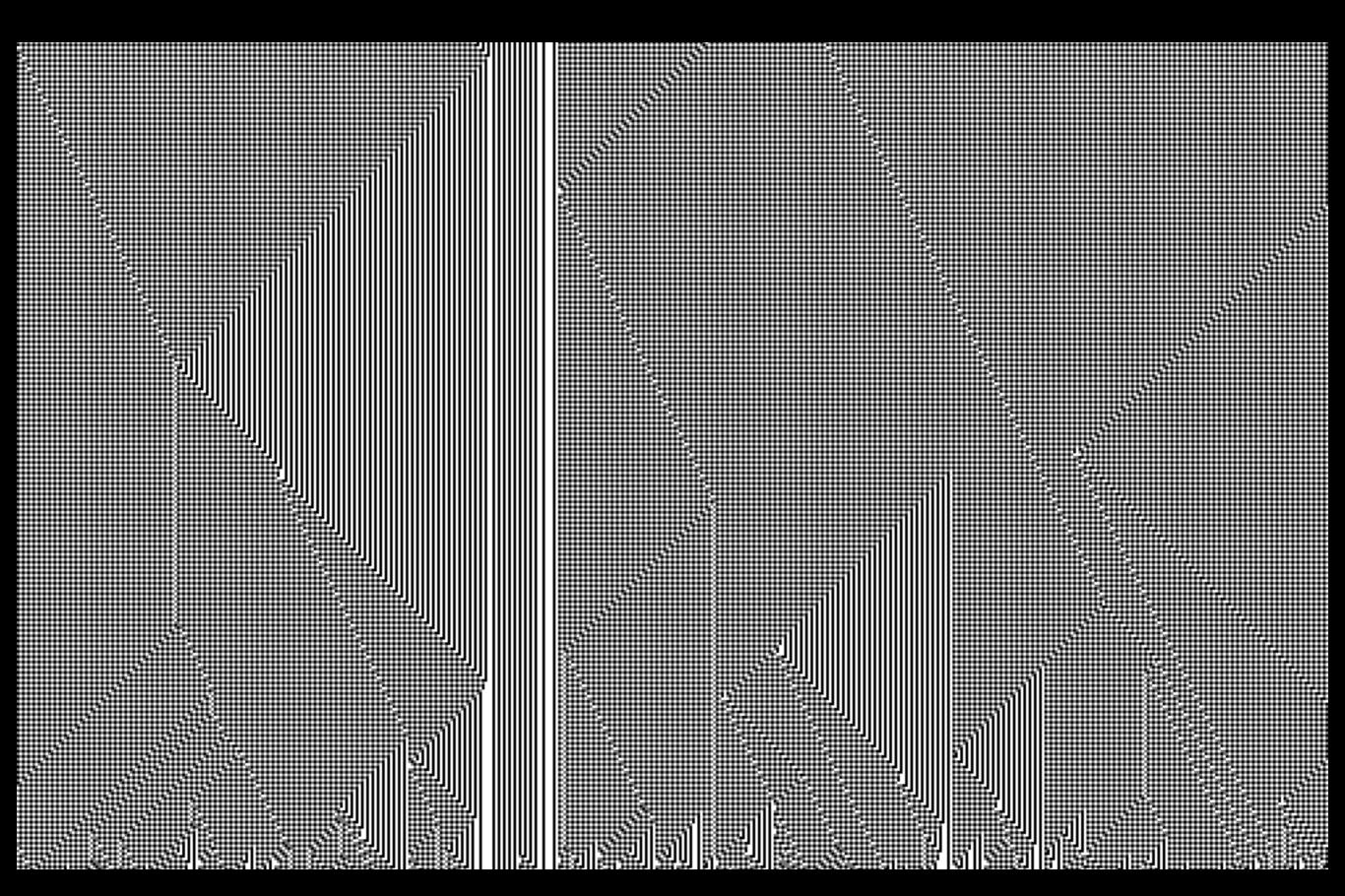


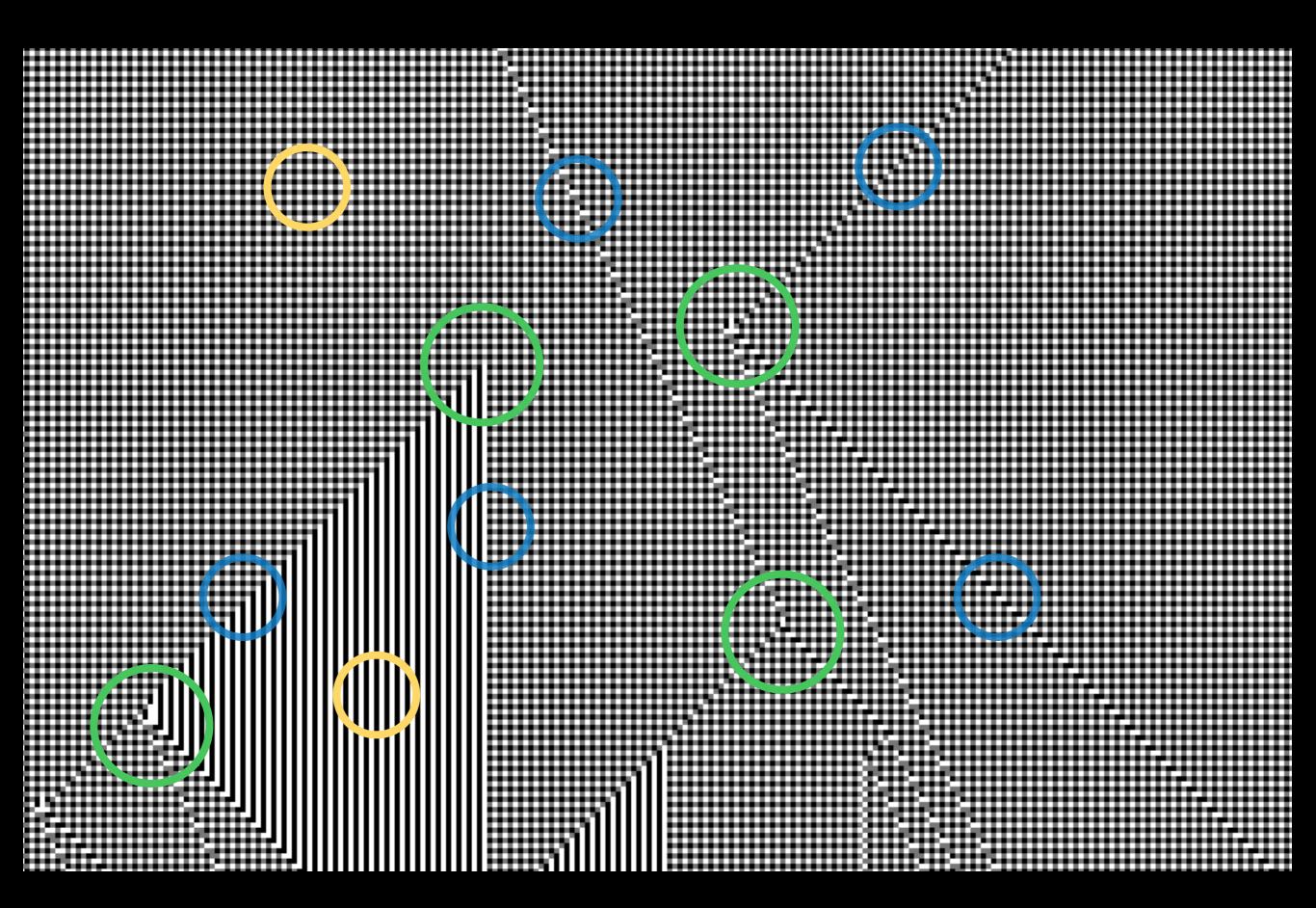
How to construct particle CA

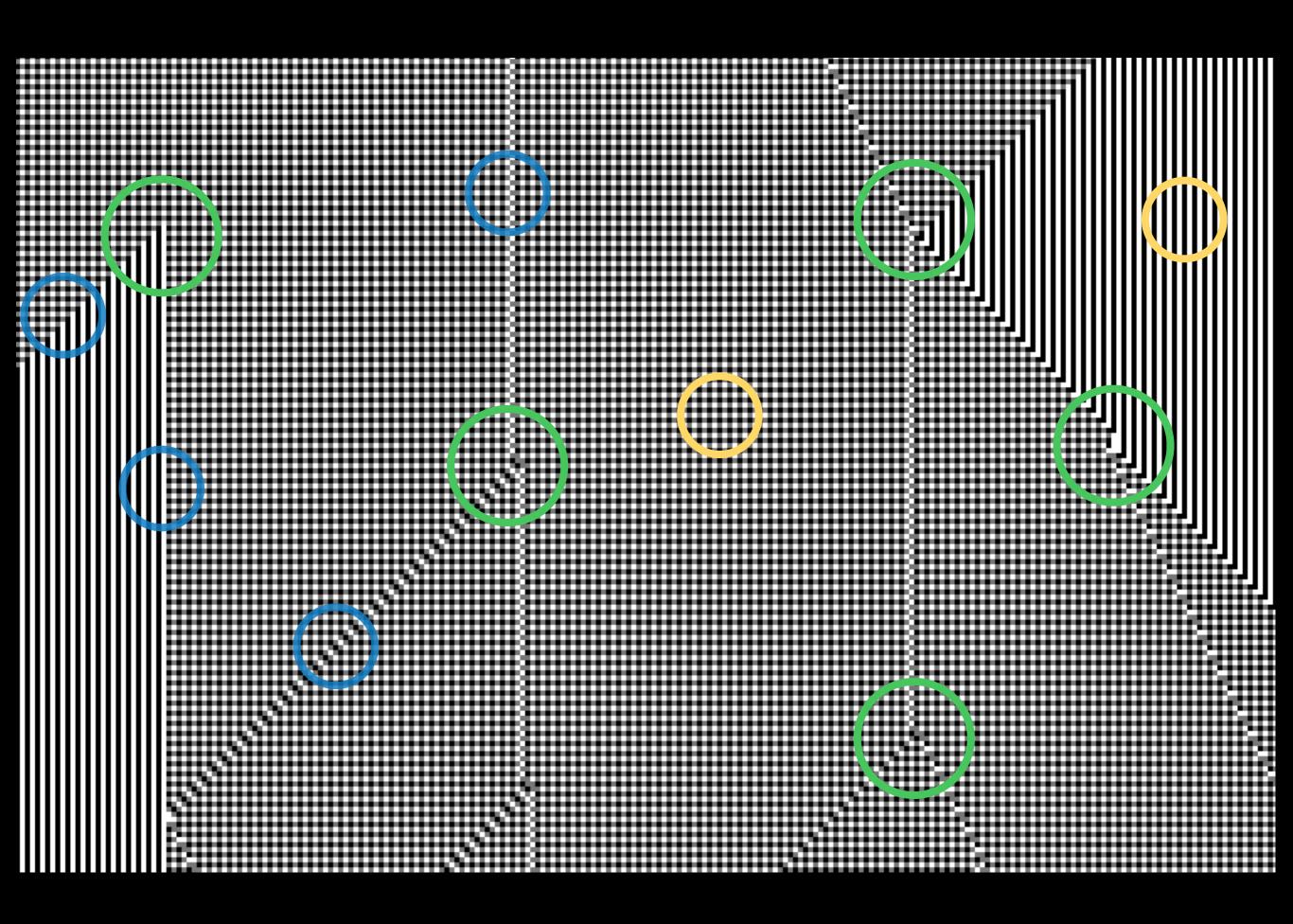
- it is easy to construct particle CA
- random rules regularily exhibit such behavior
- as an example for 3 states and first neighbors
- such particle CA are quite common

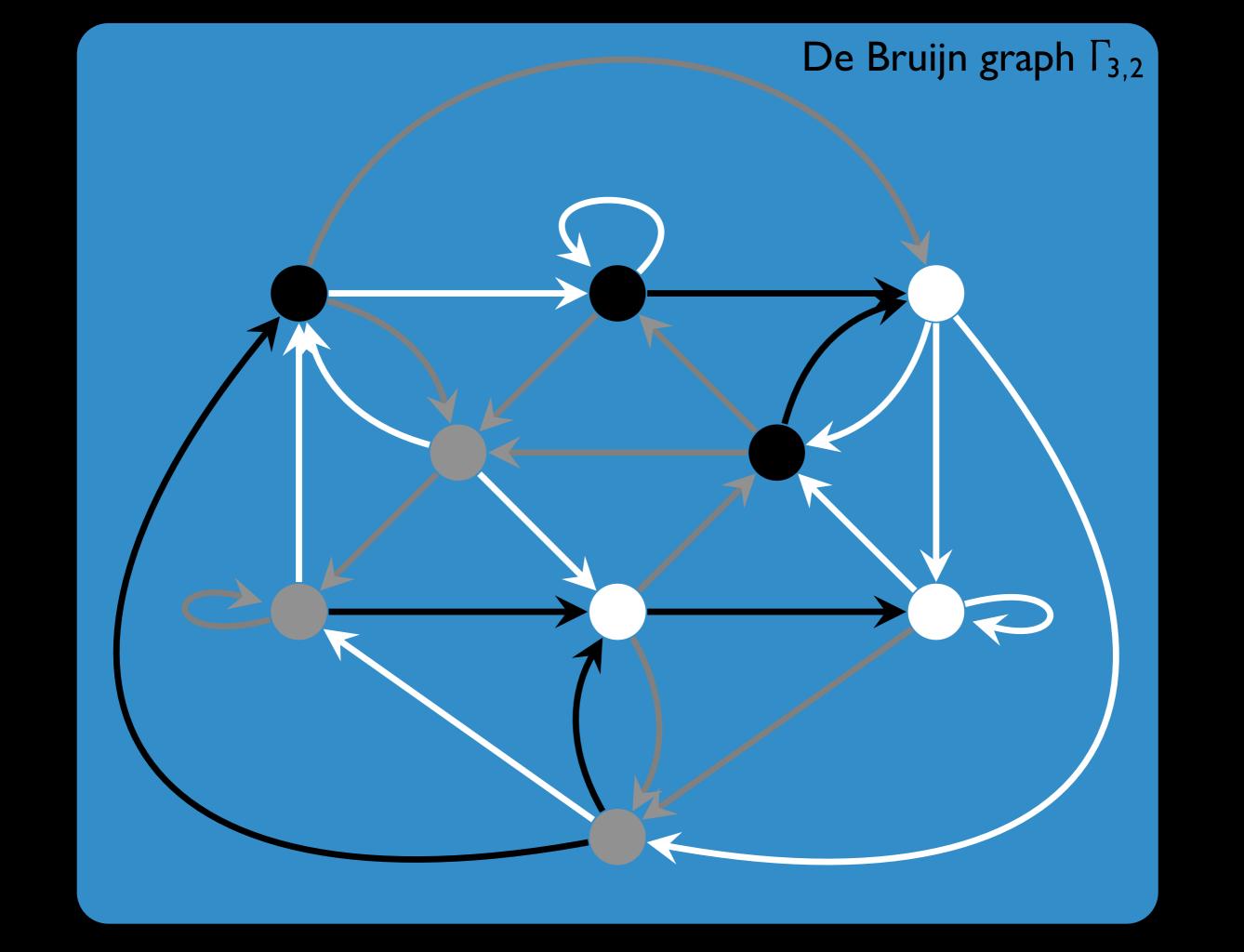


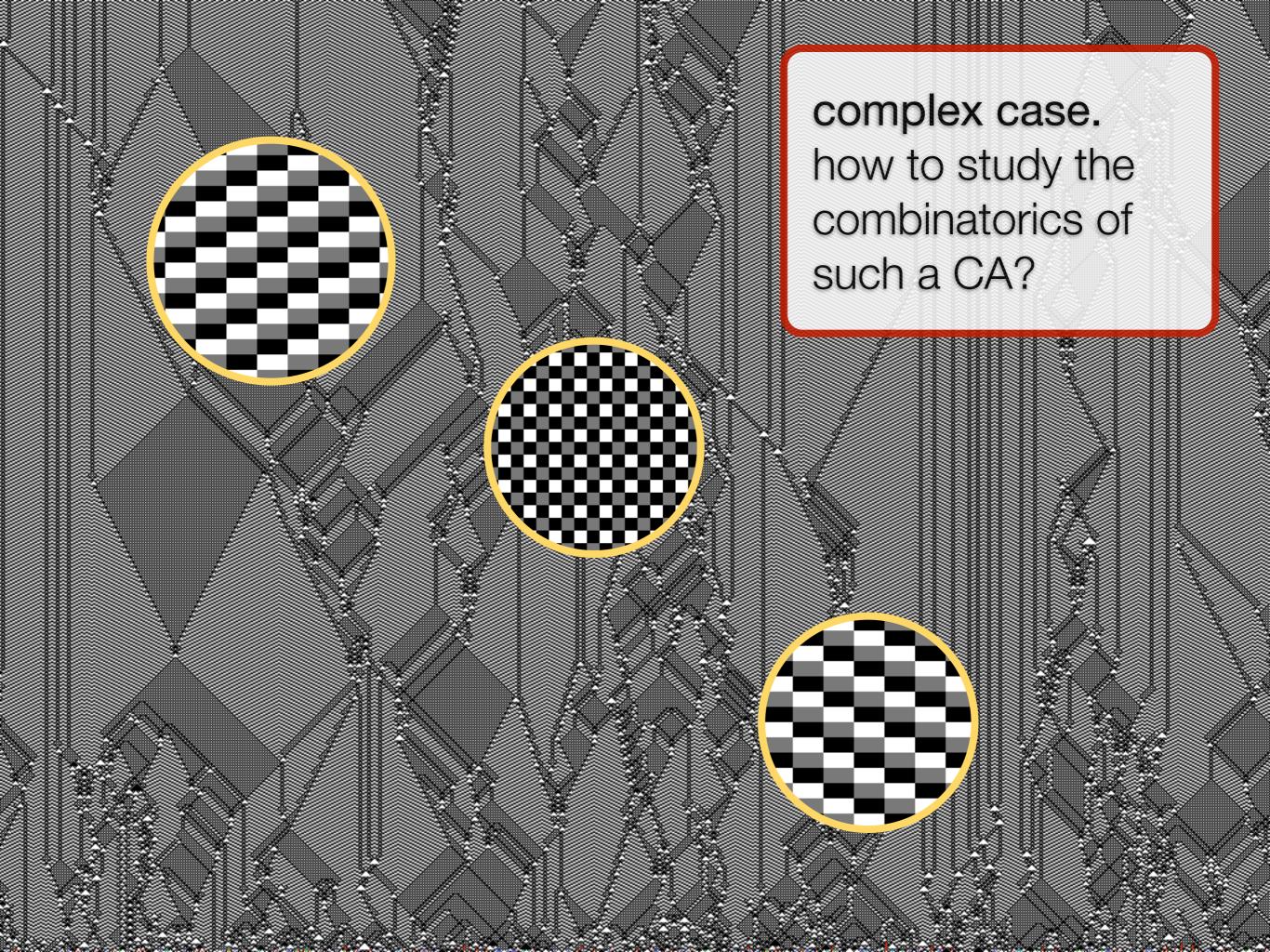


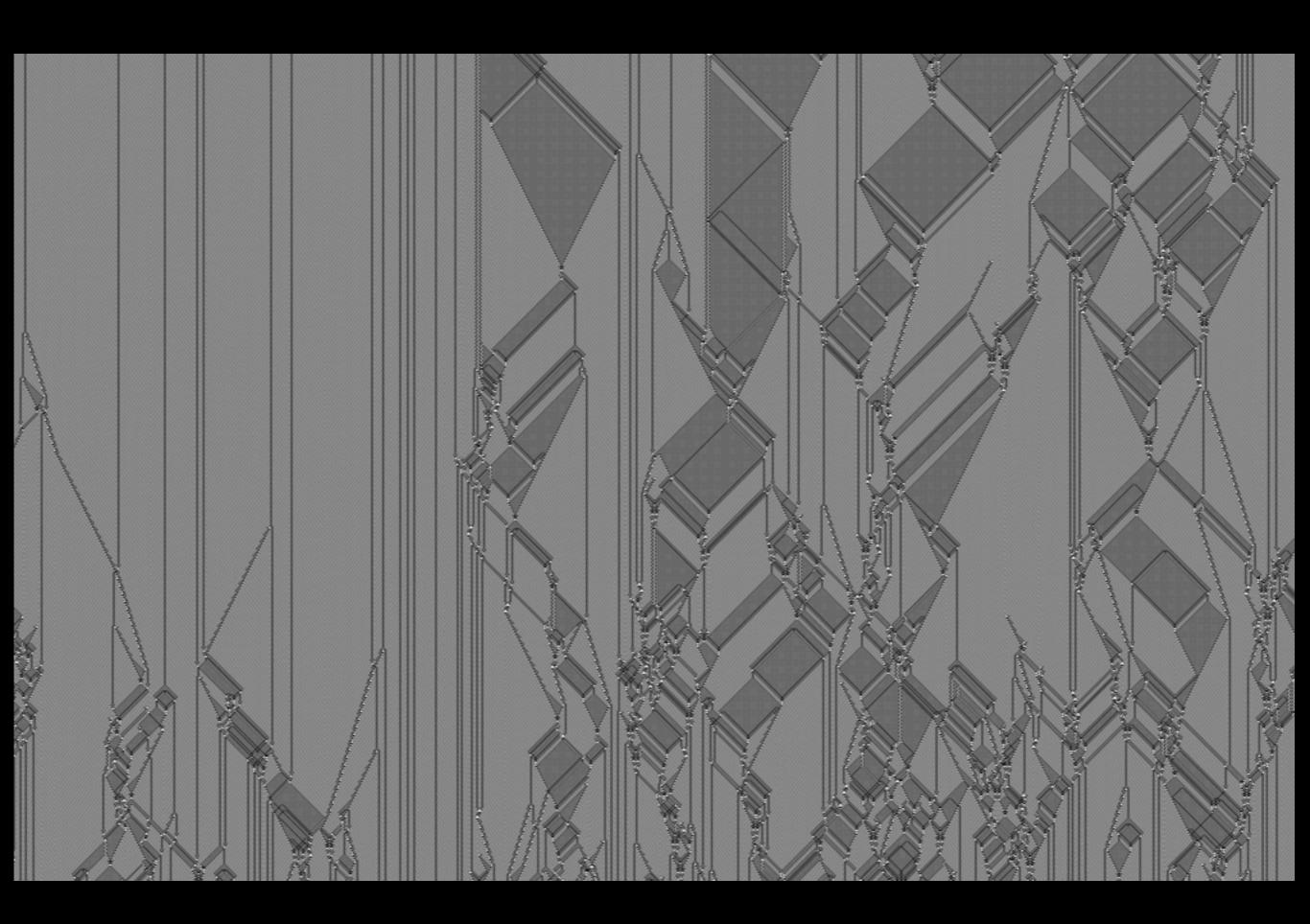


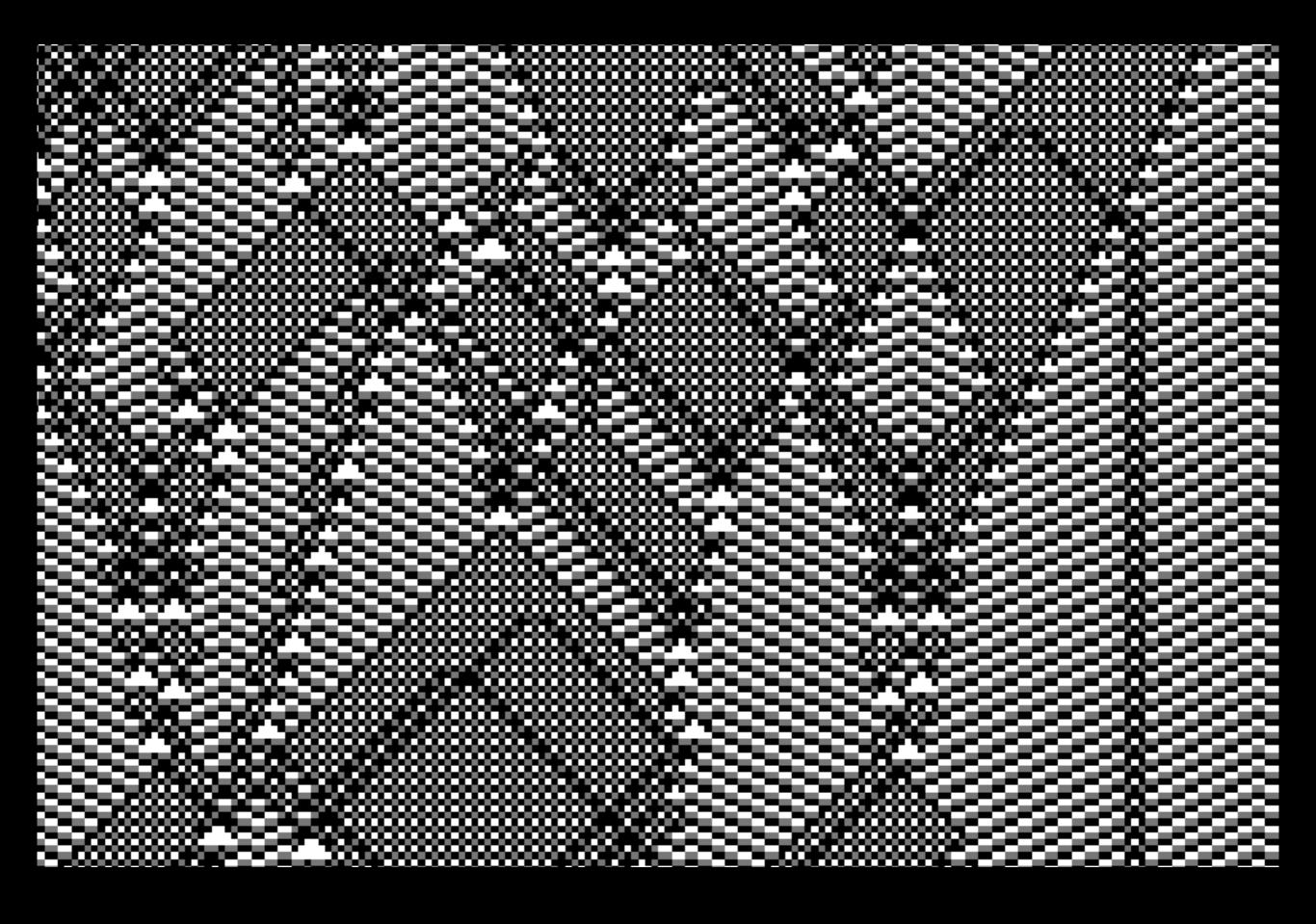


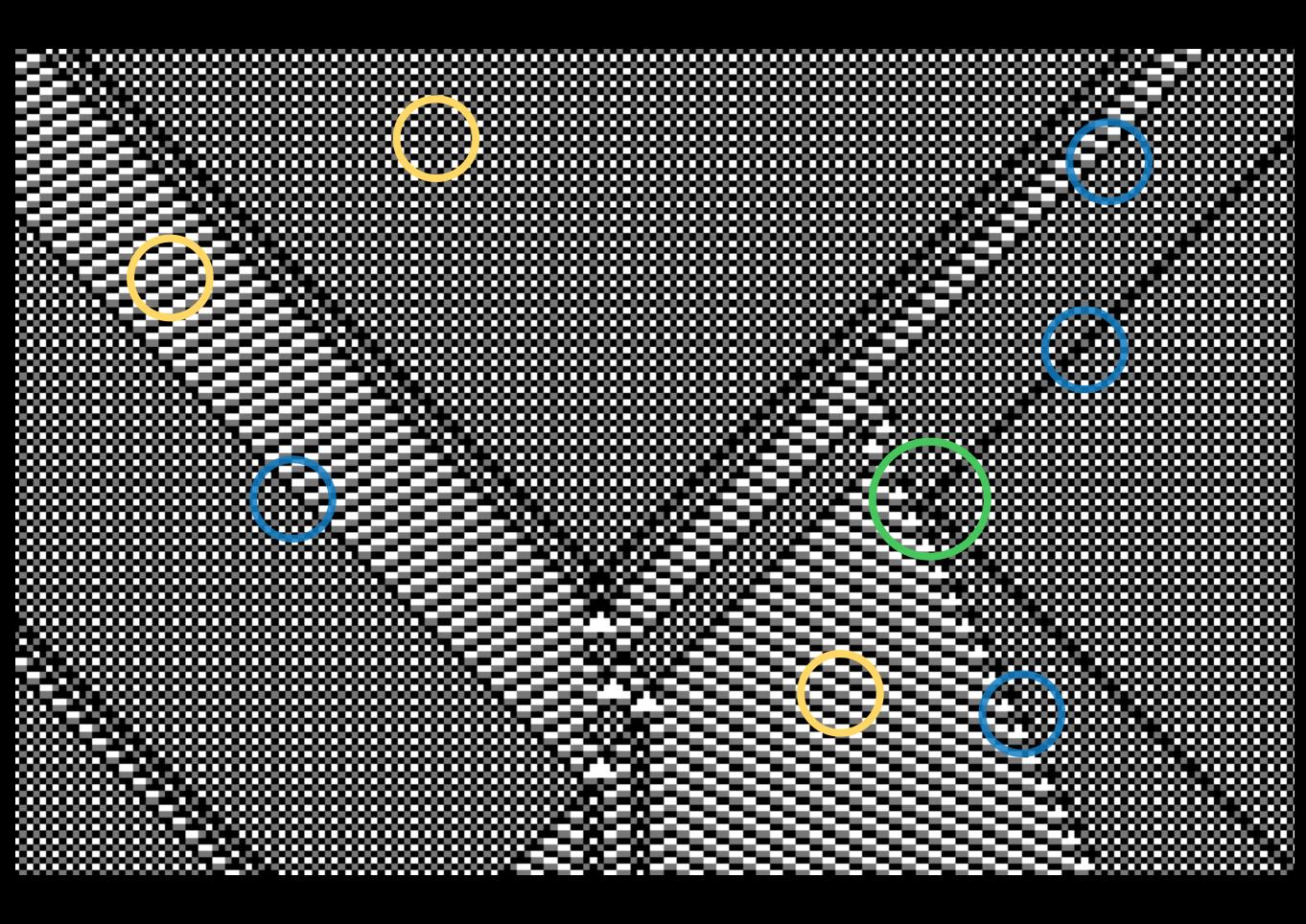


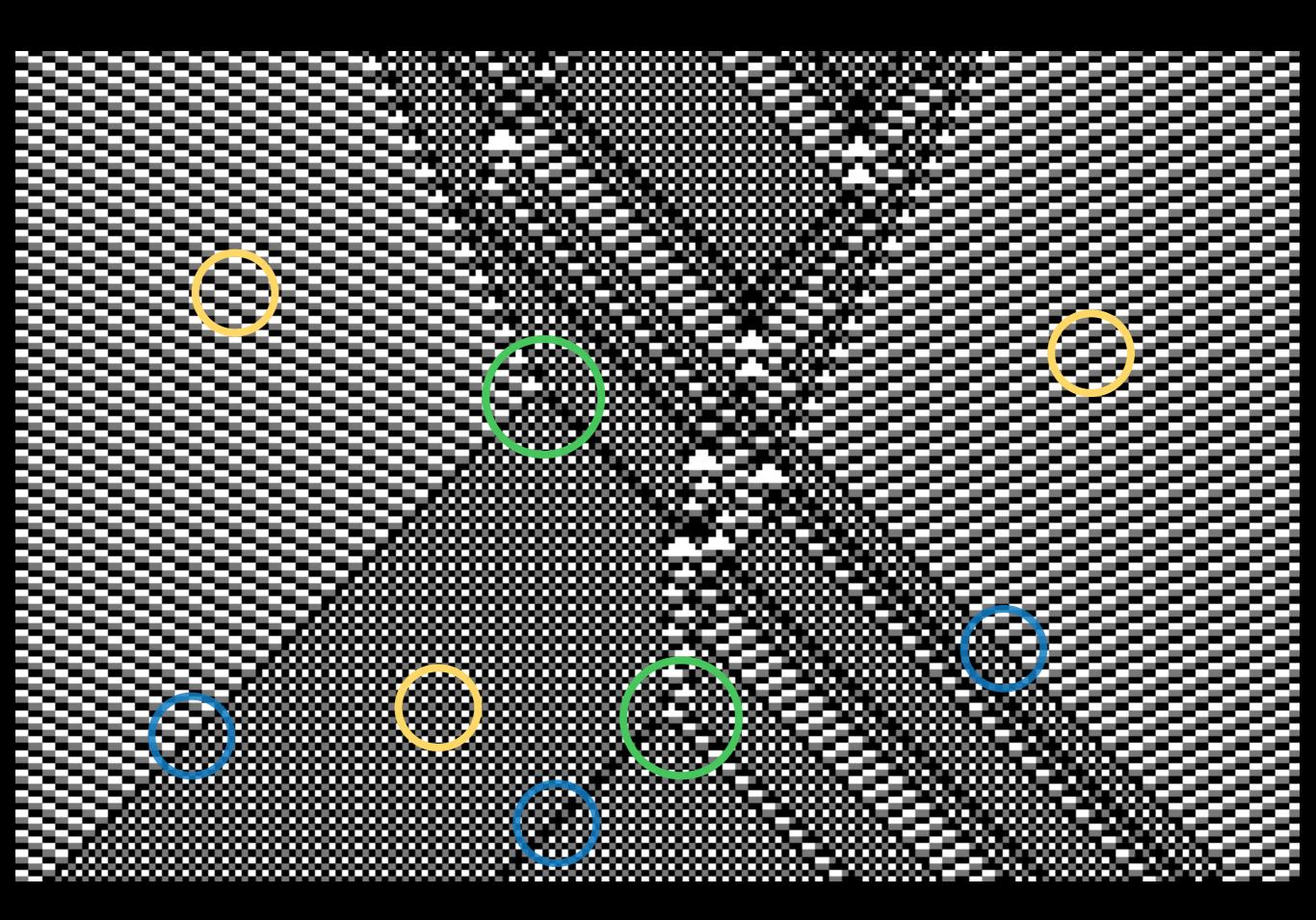


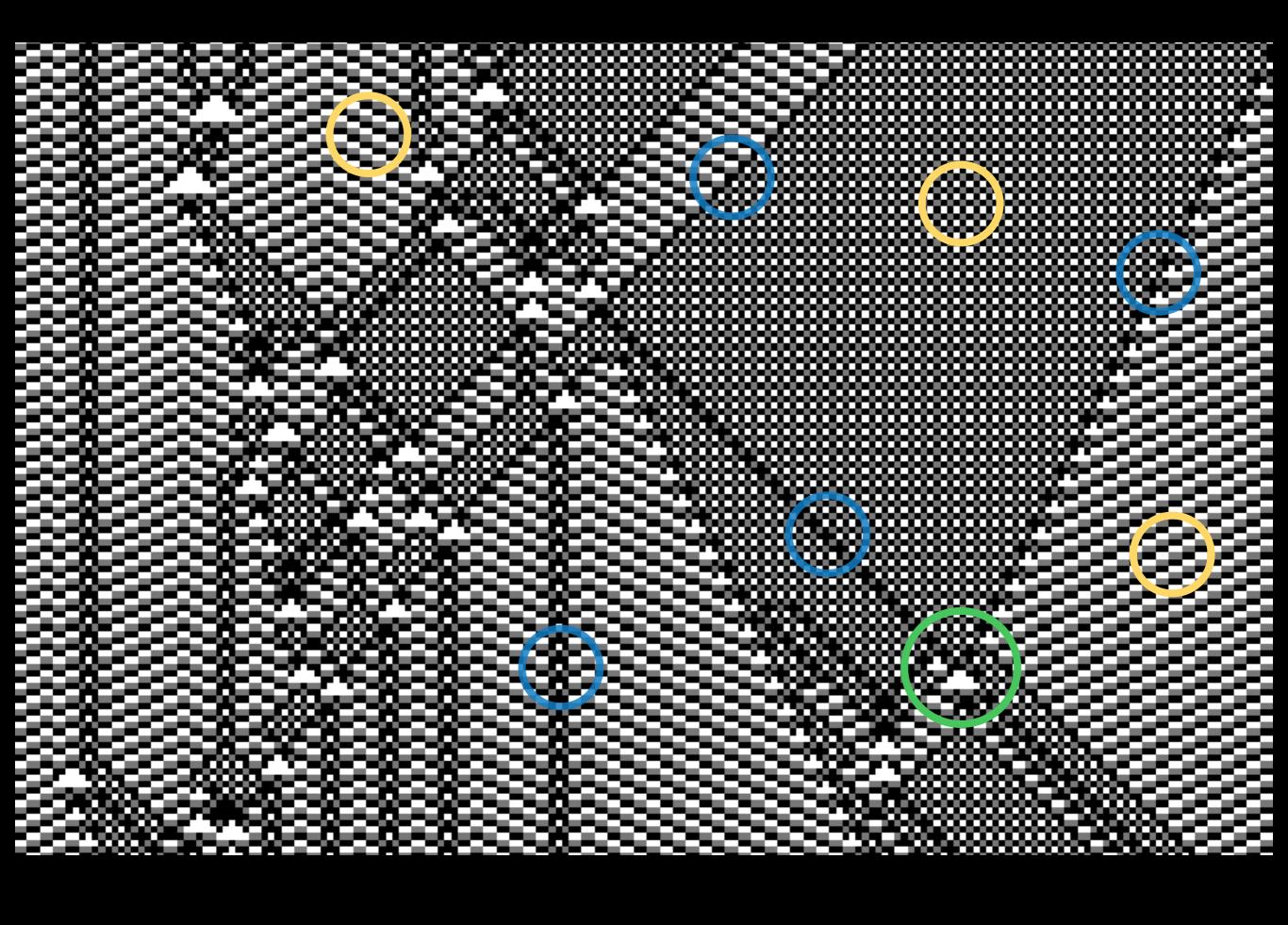


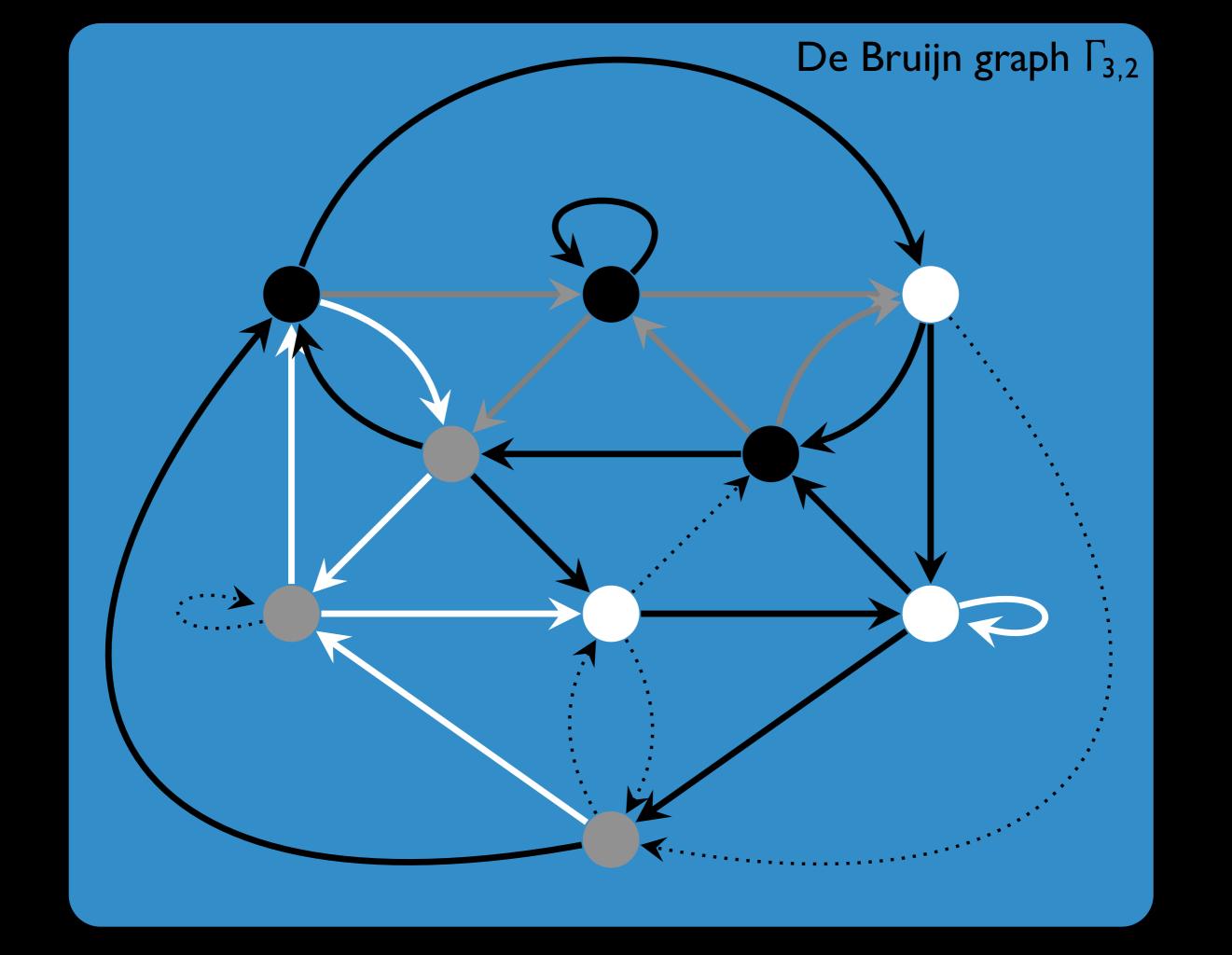






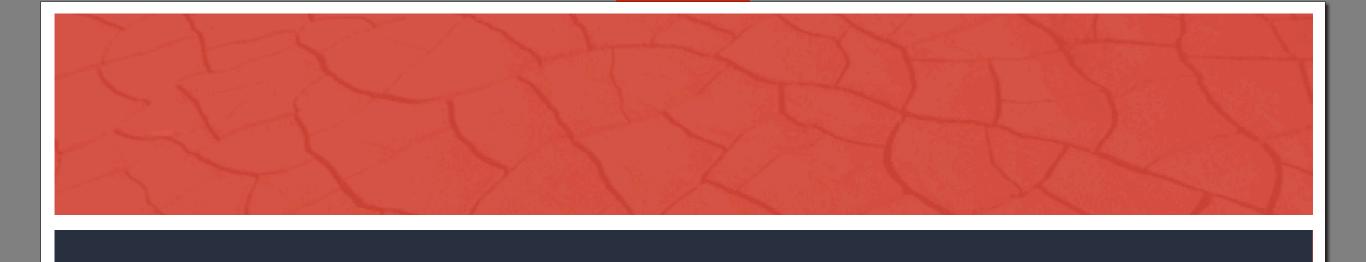




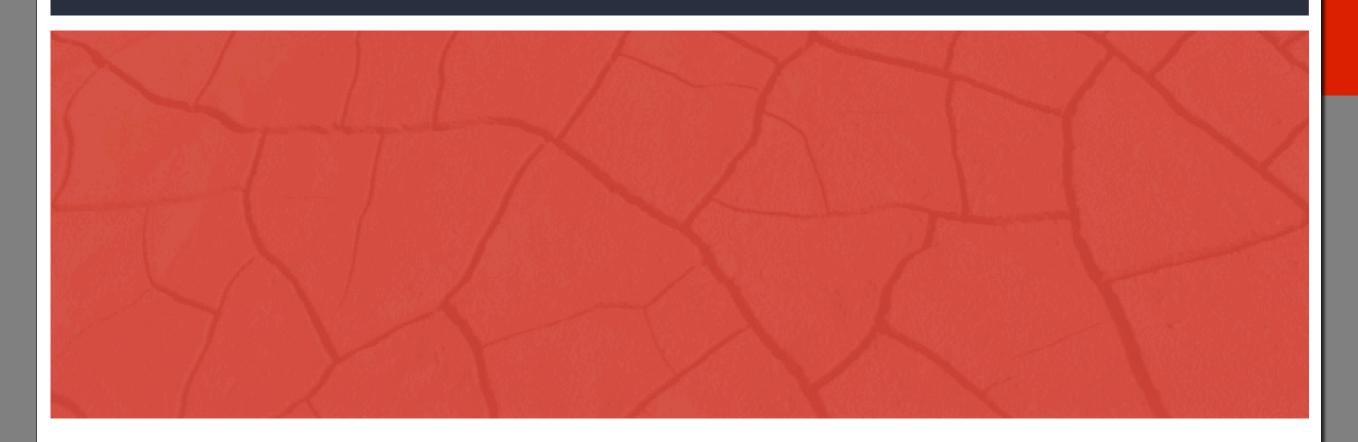


Questions

- What kind of tool can we hope to find?
- How to explain such a self-organization?
- How to study a given family of particles?
- How to exhibit complex particle CA?



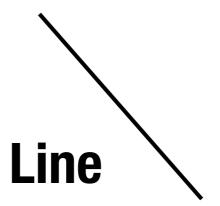
2 PaCo systems

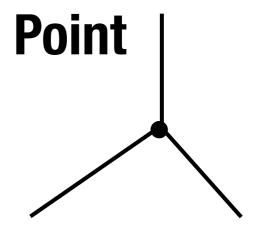


Back to basics

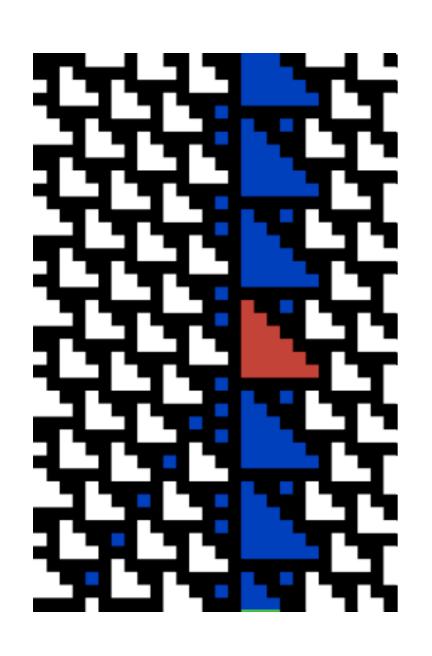
- We manipulate space-time diagrams
- Background (2D): bipériodic finite pattern ;
- Particle (1D): finite periodic pattern + bg;
- Collision (OD): finite pattern + particles.

Plane





PaCo 110



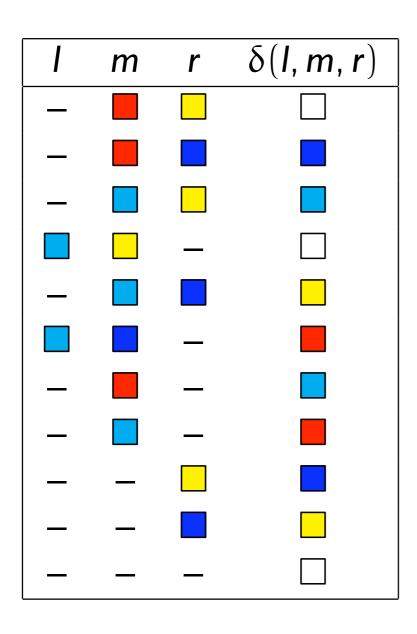
$$A = \left\langle \begin{pmatrix} 0 \\ 7 \end{pmatrix}, \begin{matrix} \bullet & \bullet \\ \end{pmatrix} \right\rangle \qquad B = \left\langle \begin{pmatrix} 0 \\ 7 \end{pmatrix}, \begin{matrix} \bullet & \bullet \\ \end{pmatrix}$$

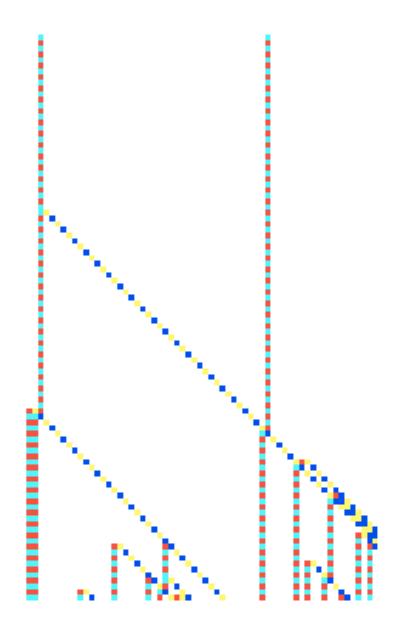
$$B = \left\langle \begin{pmatrix} 0 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\rangle$$

$$C = \left\langle {2 \choose 3}, \blacksquare \right
angle$$

$$\Gamma: \quad \binom{0}{0}C + \binom{0}{-4}A \vdash \binom{0}{5}B$$

A simpler example





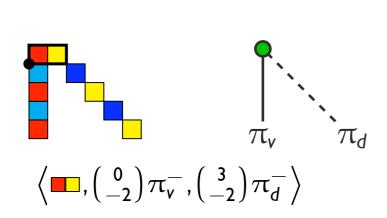
A simpler example (cont')

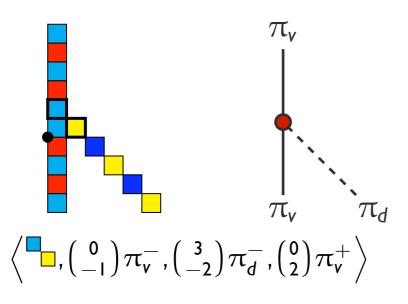
$$\left\langle \Box, \begin{pmatrix} I \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ I \end{pmatrix} \right\rangle$$

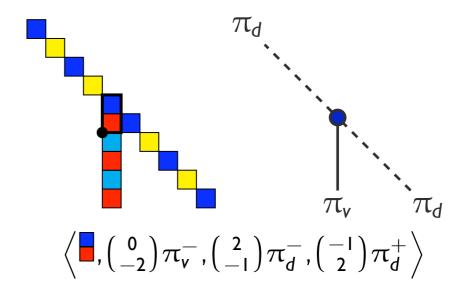
$$\pi_{d}=\left\langle lacksquare, egin{pmatrix} -2 \ 2 \end{pmatrix}
ight
angle$$

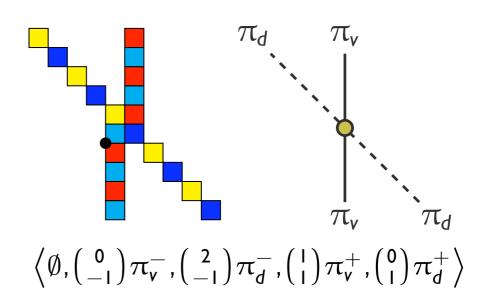
$$\pi_{\mathsf{v}} = \left\langle lacksquare{0}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}
ight
angle$$

A simpler example (cont')









Simplicity ⇒ Properties

- These objects are kept simple on purpose
- Finite & periodic = regular, rational
- Elements can be composed easily (algo)

Already too much complicated!

Composing PaCo

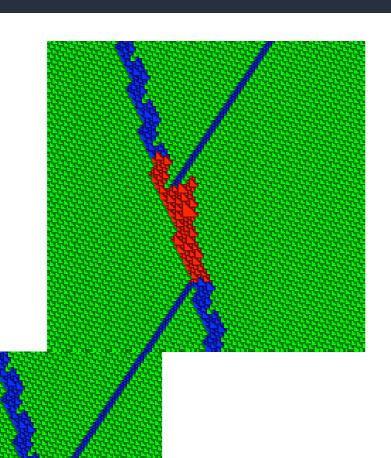
One can bind collisions together.

Principle Merge incoming and outgoing particles when possible. Some bindings are not valid!

$$\Gamma' = \left(\begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix} \Gamma_1 + \begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} \Gamma_2 + \dots + \begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix} \Gamma_n \right)_{\text{bind}}$$

Binding is easy to construct and validate.

Binding in 110



$$\Gamma_c: \alpha L + \beta R \vdash \gamma L + \delta R$$

$$\Gamma_2 = (\Gamma_c + \gamma \Gamma_c)_{R_1^{\text{out}} + R_2^{\text{in}}}$$

$$\Gamma_2: \quad \alpha L + \beta R + \gamma \alpha L \vdash \gamma L + \gamma \gamma L + \gamma \delta R$$

Simple not simplistic

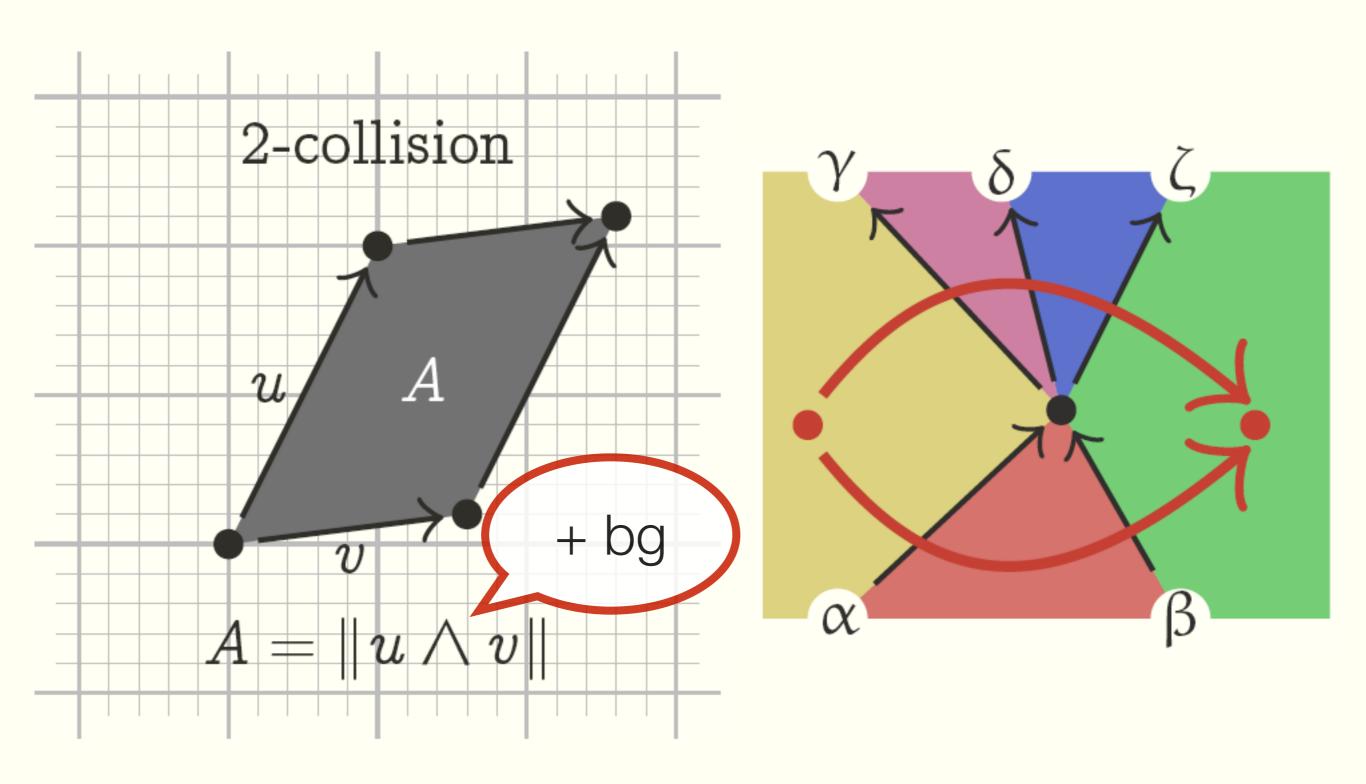
- Glider-Gun are not a problem
- Most constructions fit (e.g. 110, 4st)
- Match with intuition à la Wolfram...

From CA to PaCo

- How to select background, particles, collisions?
- Completness if difficult to achieve...
- By now, we just choose acording to goal.

How to bound the collisions?

- Let's fix both background and particles.
- What collisions may happen?
- Why are there only collisions occuring?



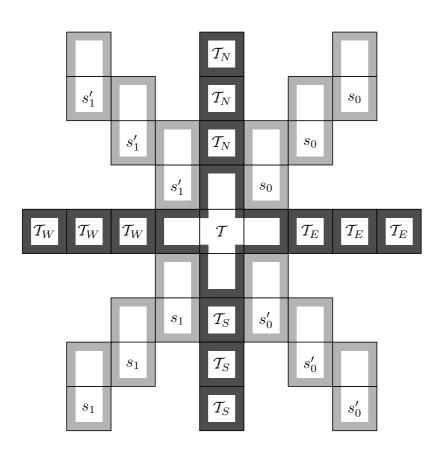
à la Crutchfield

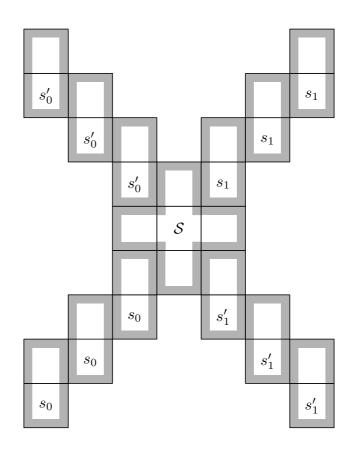
à la B. Martin II

Dealing with constructions

- Think in 2 dimensions
- PaCo ⇔ Wang tileset:
 - PaCo diagrams are tilings (straightforward);
 - Tileset can be encoded into PaCo (easy):

Gadgets

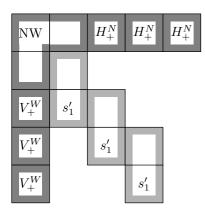


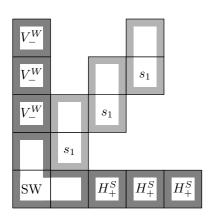


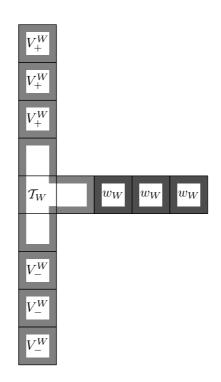
Finite binding is undecidable

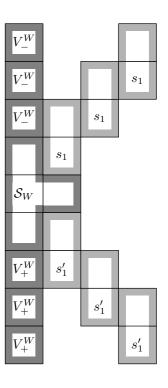
- With tilings come undecidability
- Finite collision binding can be reduced to the problem of finite tiling of the plane.

Gadgets

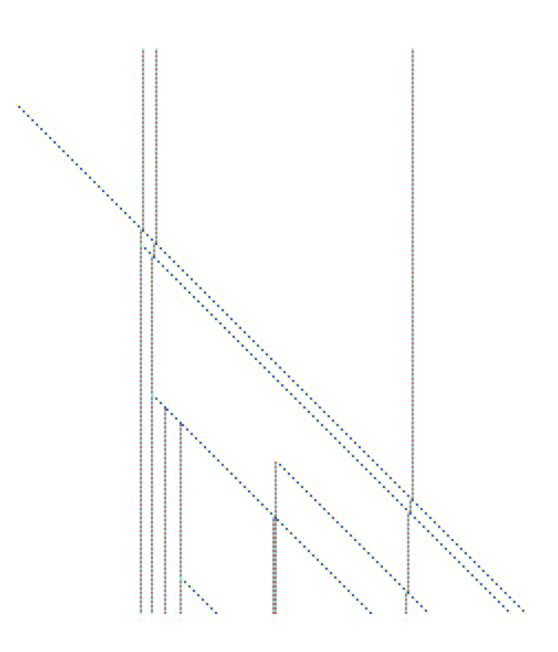


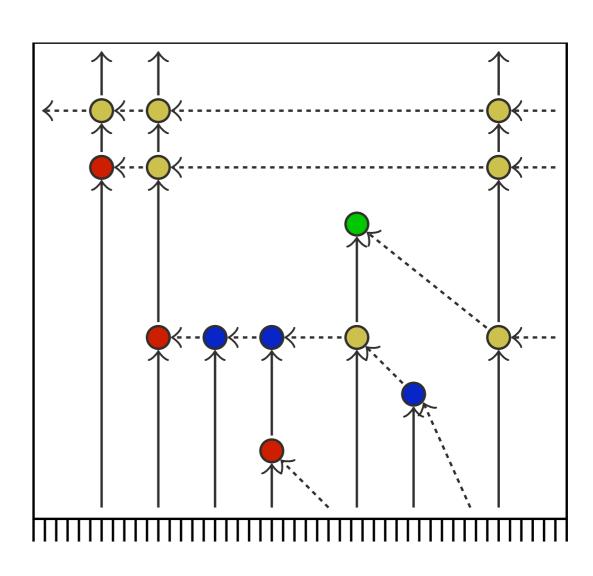






Space-time diagrams?



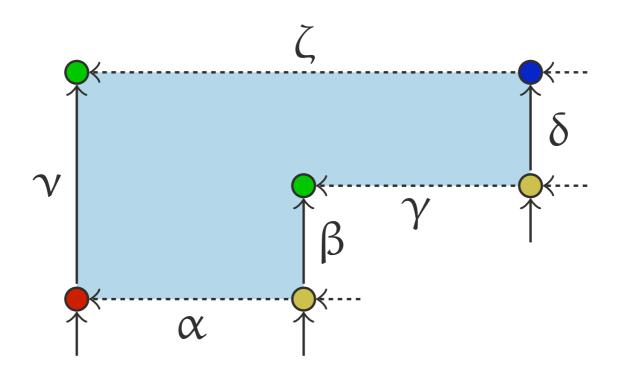


Planar maps

- Networks of collisions...
- ...are graphs
- Better: planar graphs
- and planar graphs have Faces!

Faces

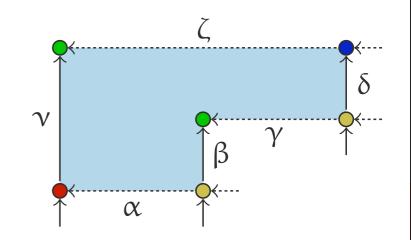
Here a face corresponds to a polyomino bounded by particles and collisions.



Constraints on repetitions

System of linear equations over integers searching for integer solutions

can be encoded in Presburger arithmetic solutions are semi-linear sets



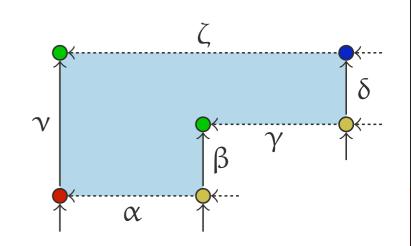
$$\alpha \begin{pmatrix} 3 \\ -24 \end{pmatrix} + \alpha \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

We cheated!

We just checked for a closed loop.

We need to care about near particles
We need to care about particles crossing

= We need to check for polyomino!



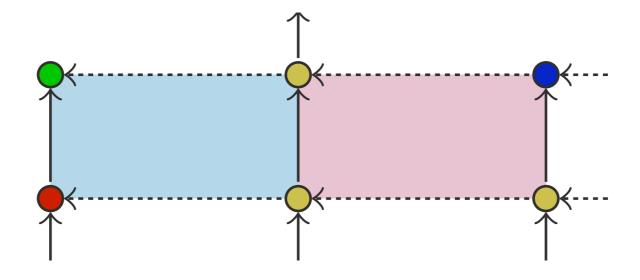
Encode the frontier of the polyomino over N, S, E, W

$$SSESE \cdot (SESE)^{\alpha} \cdot E \cdot (NN)^{\beta} \cdot NESE \cdot (SESE)^{\gamma} \cdot \cdots$$

Encode lack of collision using Presburger arithmetic

$$\bigwedge \bigwedge \neg \exists i \exists j \, (i \in [1, \alpha_m] \land j \in [1, \beta_n] \land \varphi_m(i) = \varphi_n(j))$$

Combining faces



To solve combined faces, apply a synchronization product on the Presburger formulas:

$$\varphi(\alpha) \wedge \psi(\beta) \wedge \alpha = \beta$$

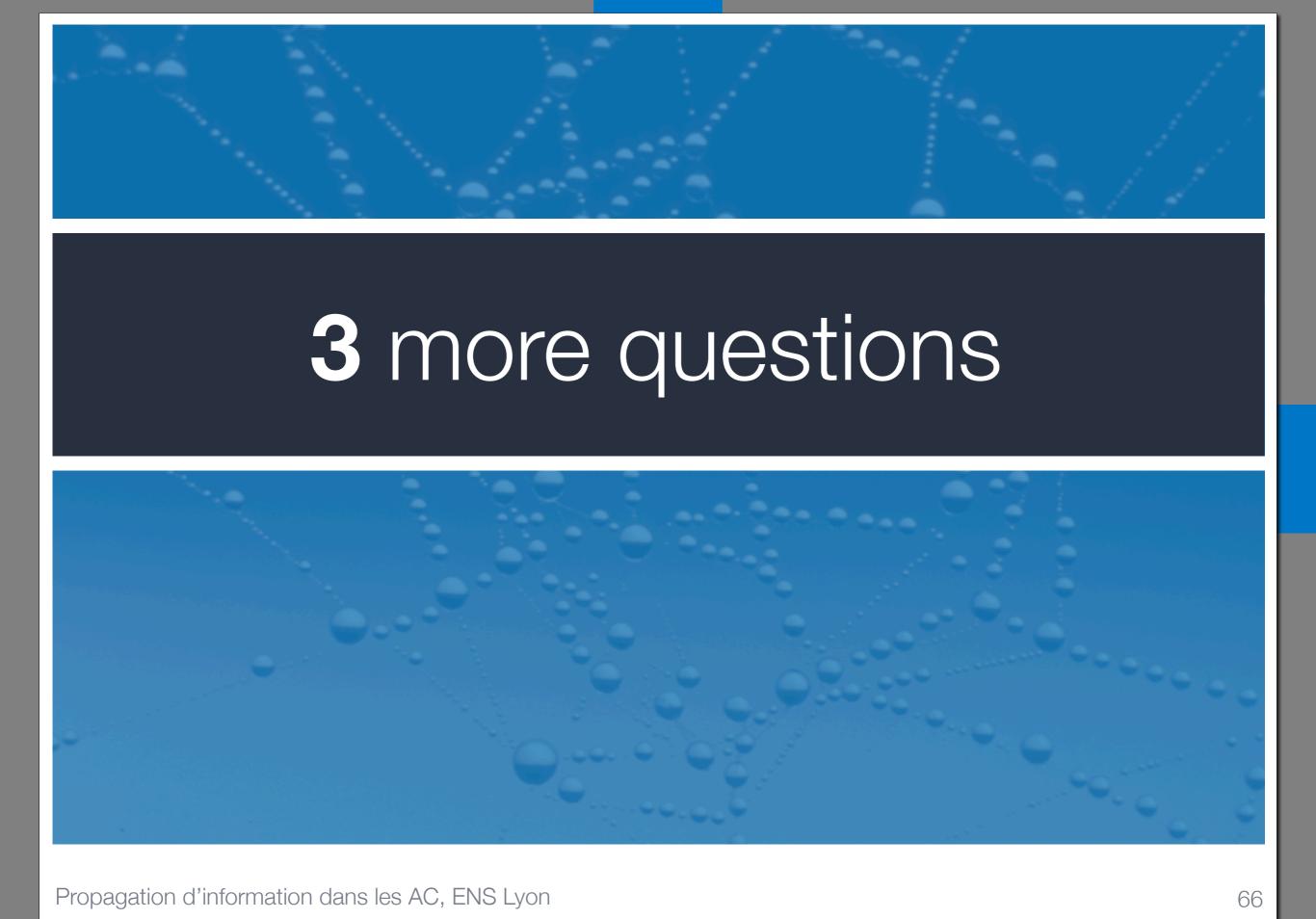
Solutions are still semi-linear sets (which admit finite encoding)

That's all

- Are there other constraints for finite bindings?
- Take care of infinite faces on the border
- And that's it!
- Allowed finite bindings are caracterized.

Some questions

- How to describe the set of all finite bindings?
- How to caracterize the complexity of this set?
- How to construct complex PaCo?



Backgrounds and particles

- Backgrounds are periodic configurations
- Particles are ult periodic configurations
- Collisions are transient phenomena

Ult periodic configurations

- Finite and periodic configurations are well studied (injectivity, surjectivity, etc)
- What can we say about 1D ult per conf?

Study growth rate of the nonperiodic part

Combining ult per confs

Put two ult per confs side by side



- What about the growth rate?
- How to describe the dynamic?
- limit set stable sublanguage?

