
Universalities in Cellular Automata

N. Ollinger (LIF, Aix-Marseille Université, CNRS, France)

JAC 2008
Uzès, April 24th

Universalities in Cellular Automata

N. Ollinger (LIF, Aix-Marseille Université, CNRS, France)

JAC 2008
Uzès, April 24th

Universal CA...

1. à la Mazoyer? (Tuesday morning)

2

Temps

Espace

Universal CA...

1. à la Mazoyer? (Tuesday morning)

2. Boolean Circuit Simulator?

Wikipedia Commons animation by T. Schoch

2

Universal CA...

1. à la Mazoyer? (Tuesday morning)

2. Boolean Circuit Simulator?

3. Computation Universality?

!

2

Universal CA...

1. à la Mazoyer? (Tuesday morning)

2. Boolean Circuit Simulator?

3. Computation Universality?

4. Intrinsic Universality?

l

m

R

R

l′
m′

R

R

(b)

(b’)

(f)

(c)

(d)

(e)

(a)

(a’)

(g)

(g’)

(a)

(b) (c) (d)

(e) (f) (g)

2

Universal CA...

1. à la Mazoyer? (Tuesday morning)

2. Boolean Circuit Simulator?

3. Computation Universality?

4. Intrinsic Universality?

5. P-complete prediction?

t

2t+ 1

2

Universal CA...

1. à la Mazoyer? (Tuesday morning)

2. Boolean Circuit Simulator?

3. Computation Universality?

4. Intrinsic Universality?

5. P-complete prediction?

t

2t+ 1

2

(i) Higher Dimensions

2D CA

4

von Neumann Moore

Definition A 2D CA is a triple

(S,N, f) where S is the finite set

of states, N ⊆finite Z2 is the

neighborhood and f : SN → S

is the local rule of the CA.

A configuration is a mapping

c ∈ SZ2
.

The global rule G : SZ2 → SZ2

applies the local rule uniformly:

G(c)(i) = f(c(i+v1), . . . , c(i+vk))

where V = {v1, . . . , vk}.

2D CA

4

von Neumann Moore

Definition A 2D CA is a triple

(S,N, f) where S is the finite set

of states, N ⊆finite Z2 is the

neighborhood and f : SN → S

is the local rule of the CA.

A configuration is a mapping

c ∈ SZ2
.

The global rule G : SZ2 → SZ2

applies the local rule uniformly:

G(c)(i) = f(c(i+v1), . . . , c(i+vk))

where V = {v1, . . . , vk}.

2D CA

4

von Neumann Moore

Definition A 2D CA is a triple

(S,N, f) where S is the finite set

of states, N ⊆finite Z2 is the

neighborhood and f : SN → S

is the local rule of the CA.

A configuration is a mapping

c ∈ SZ2
.

The global rule G : SZ2 → SZ2

applies the local rule uniformly:

G(c)(i) = f(c(i+v1), . . . , c(i+vk))

where V = {v1, . . . , vk}.

Boolean Circuits

• [Kleene 56] boolean
circuits = FSM = regular
languages.

• Computers are build out of:

• wires

• boolean gates

• delays/clocks

• CMOS and other
technology uses 2D
objects.

5

Wikipedia Commons GDL image

Universal Circuits

6

Boolean circuits can encode

both FSM and secondary

devices.

Turing Universality can be

achieved using FSM (control) +

Tape/Registers (storage).

Intrinsic Universality can be

achieved using one FSM (local

rule) per cell + uniform wiring

(transmission).

FSM

bus

S T O R E

FSM FSM FSM FSM

FSM FSM FSM FSM

FSM FSM FSM FSM

FSM FSM FSM FSM

Transmitting Signals

• Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

• Turning around to route
any reasonable family of
paths.

• Fan-out to route copies a
same signal.

7

→

→→→→→→→

→

Transmitting Signals

• Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

• Turning around to route
any reasonable family of
paths.

• Fan-out to route copies a
same signal.

7

→

→→→→→→→

→

Transmitting Signals

• Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

• Turning around to route
any reasonable family of
paths.

• Fan-out to route copies a
same signal.

7

→

→→→→→→→

→

Transmitting Signals

• Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

• Turning around to route
any reasonable family of
paths.

7

→

Transmitting Signals

• Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

• Turning around to route
any reasonable family of
paths.

7

↑

Transmitting Signals

• Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

• Turning around to route
any reasonable family of
paths.

7

↑

Transmitting Signals

• Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

• Turning around to route
any reasonable family of
paths.

7

↑

Transmitting Signals

• Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

• Turning around to route
any reasonable family of
paths.

• Fan-out to route copies a
same signal.

7

→ "

Transmitting Signals

• Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

• Turning around to route
any reasonable family of
paths.

• Fan-out to route copies a
same signal.

7

→ "

Transmitting Signals

• Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

• Turning around to route
any reasonable family of
paths.

• Fan-out to route copies a
same signal.

7

! !

Transmitting Signals

• Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

• Turning around to route
any reasonable family of
paths.

• Fan-out to route copies a
same signal.

7

!
↓

↑

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

• Crossing either explicit or
implicit (delay trick or
boolean coding).

8

→

→

◦

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

• Crossing either explicit or
implicit (delay trick or
boolean coding).

8

→

→

◦

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

• Crossing either explicit or
implicit (delay trick or
boolean coding).

8

→

•

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

• Crossing either explicit or
implicit (delay trick or
boolean coding).

8

→

•

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

• Crossing either explicit or
implicit (delay trick or
boolean coding).

8

→

→

◦

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

8

&̄

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

8

&̄

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

8

&̄

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

8

&̄

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

• Crossing either explicit or
implicit (delay trick or
boolean coding).

8

→
↑

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

• Crossing either explicit or
implicit (delay trick or
boolean coding).

8

→ ↑

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

• Crossing either explicit or
implicit (delay trick or
boolean coding).

8

→
↑

Composing Signals

• Delays to synchronize
signal arrival at gate input
(can be done by turning).

• Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

• Crossing either explicit or
implicit (delay trick or
boolean coding).

8

→

↑

Clock?

• Three values on a wire:

• No signal

• Signal 0

• Signal 1

• What is the behavior of a
NAND gate?

• Either use a clock...

• ...or encode signals on two
wires (with AND + OR + Xing).

9

no signal

signal 0

signal 1

Examples

von Neumann 1966. 29 states, 2 type of arrow paths + delays

Codd 1968. 8 states, explicit undirected wire + 5 signal types

Banks 1970. 2 states, trickier encoding of signals

Conway 1970. Game of Life, 2 states (Moore neighborhood), gliders

(ii) Turing-Universality

1D CA

12

Definition A 1D CA is a triple

(S,N, f) where S is the finite set

of states, N ⊆finite Z is the

neighborhood and f : SN → S

is the local rule of the CA.

A configuration is a mapping

c ∈ SZ.

The global rule G : SZ → SZ

applies the local rule uniformly:

G(c)(i) = f(c(i+v1), . . . , c(i+vk))

where V = {v1, . . . , vk}.

OCA first n.

Space-time diagram

Turing-completeness

• In 1D boolean circuit are not that easy to simulate in space-time.

• For Turing Machines [Turing 36] introduces the Universal machine
(with respect to a given enumeration of TM and pairs encoding).

• Moreover, it is classical to express the power of models of
computation by simulating well-known Turing-complete models.

• The intuition says “a CA is universal if it can simulate any Turing
machine”... Or replace TM by any reasonable Model of
Computation.

∀i, j ϕU(〈i, j〉) = ϕi(j)

Turing Machines

• TM = FSM + biinfinite tape

• Actions: read, write, move

• Input on the tape

• Initial state

• Halting state

• Output on the tape

14

Turing Machines

• TM = FSM + biinfinite tape

• Actions: read, write, move

• Input on the tape

• Initial state

• Halting state

• Output on the tape

14

Turing Machines

• TM = FSM + biinfinite tape

• Actions: read, write, move

• Input on the tape

• Initial state

• Halting state

• Output on the tape

14

Turing Machines

• TM = FSM + biinfinite tape

• Actions: read, write, move

• Input on the tape

• Initial state

• Halting state

• Output on the tape

14

Turing Machines

• TM = FSM + biinfinite tape

• Actions: read, write, move

• Input on the tape

• Initial state

• Halting state

• Output on the tape

14

Tag Systems

• Introduced by Post

• TS = FSM + queue

• Actions: enqueue, dequeue

• Input, halt, small output

• Canonical model: no state,
constant dequeue +
enqueue word depending
on prefix.

15

dequeue 2

Turing-Universality

[Durand and Róka 1996] formalization is needed to define the
frontier between universal and non universal (and prove things) but
there are several difficult problems:

• When CA simulate an extrinsic model, how is it permitted to
encode the input (infinite configuration)? what is a halting
condition? how do we decode the output (infinite configuration)?

• More pragmatically, there seems to be no agreement on the
definition of a universal TM or universal TS.

Having no definition is a major drawback of Turing-Universality.

à la Smith III

• The configuration encodes
the tape.

• The cell pointed by the
head also contains the
state.

17

m(n + 1) states

(Σ ∪ S× Σ, {−1, 0, 1} , f)

à la Smith III

• The configuration encodes
the tape.

• The cell pointed by the
head also contains the
state.

17

m(n + 1) states

(Σ ∪ S× Σ, {−1, 0, 1} , f)

à la Smith III

• The configuration encodes
the tape.

• The cell pointed by the
head also contains the
state.

17

m(n + 1) states

(Σ ∪ S× Σ, {−1, 0, 1} , f)

à la Smith III

• The configuration encodes
the tape.

• The cell pointed by the
head also contains the
state.

17

m(n + 1) states

(Σ ∪ S× Σ, {−1, 0, 1} , f)

à la Smith III

• The configuration encodes
the tape.

• The cell pointed by the
head also contains the
state.

17

m(n + 1) states

(Σ ∪ S× Σ, {−1, 0, 1} , f)

à la L&N

18

• Separate read/write from
move.

• One step simulated in two
steps.

[Lindgren & Nordhal 1990]
plus encoding with signals.

m + n + 2 states

(Σ ∪ S ∪ {•,↔} , {−1, 0, 1} , f)

Cook 2004

[Cook 2004] Rule 110 is
Turing-Universal

• Simulation of
Cyclic Tag Systems

• See Gaétan’s talk just after!

19

(iii) Intrinsic Universality

Intrinsic Simulation

• Universality can be seen as an intrinsic property of a model.

• An object is universal if it can simulate all other objects of the family.

• For simulation use something reasonable with respect to the initial
model.

• For CA, reasonable simulation certainly means shift-invariance plus
similar space-time diagrams.

• Nice formalization with Bulking (aka Grouping) [Mazoyer & Rapaport
1999, NO 2001, Theysier 2005].

Direct Simulation

22

≺

A cellular automaton B directly

simulates a cellular automaton

A, denoted GA ≺ GB, accord-

ing to a mapping ϕ : SA → 2SB

if for any pair of states a,b ∈
SA, ϕ(a)∩ϕ(b) = ∅ and for any

configuration c ∈ SZ
A,

GB(ϕ(c)) ⊆ ϕ(GA(c)) .

+

+

Geometric Transform

23

U is intrinsically universal if for

each cellular automaton A there

exists an unpacking map om, a

positive integer n ∈ N and a

translation vector v ∈ Zd such

that

GA ≺ o−1
m ◦Gn

U ◦ om ◦ σv .

Some Properties

Formal definition allow us to write proofs.

[folklore] Boolean Circuit Universality = IU for 2D+

[Mazoyer & Rapaport 1999] No CA is IU in real-time.

[NO 2003] It is undecidable to know if a given CA is IU.

[NO 2002, Theyssier 2005] There exists TU CA that are not IU
(infinitely far from IU).

Parallel TM style

• Comb-like infinite family of
Turing heads, one per
encoding meta-cell.

• All heads move the same,
only the states and read/
write differ.

• A meta-cell contains
transition table + neighbors
& self states.

25

table ← ↓ → table ← ↓ → table ← ↓ →

table ← ↓ → table ← ↓ → table ← ↓ →

table ← ↓ → table ← ↓ → table ← ↓ →

table ← ↓ → table ← ↓ → table ← ↓ →

table ← ↓ → table ← ↓ → table ← ↓ →

Examples

Banks 1970. 18 states (converting 2D IU to 1D IU by slicing)

Albert & Čulik 1987. 14 states (totalistic OCA simulation)

NO 2002. 6 states (boolean circuits simulation)

Richard 2008. 4 states (totalistic OCA simulation using signals)

More details...

To learn more

• Read the survey in the proceedings

• Few pictures...

• ...but 86 bibliographic reference,

• Chronology,

• Tips and tricks.

• Everything to build small Universal CA by yourself.

That’s all folks!

