Universalities in Cellular Automata

N. Ollinger (LIF, Aix-Marseille Université, CNRS, France)

JAC 2008
Uzès, April 24th

Universalities in Cellular Automata

N. Ollinger (LIF, Aix-Marseille Université, CNRS, France)

JAC 2008
Uzès, April 24th

Universal CA...

1. à la Mazoyer? (Tuesday morning)

Universal CA...

1. à la Mazoyer? (Tuesday morning)
2. Boolean Circuit Simulator?

Wikipedia Commons animation by T. Schoch

Universal CA...

1. à la Mazoyer? (Tuesday morning)
2. Boolean Circuit Simulator?
3. Computation Universality?

Universal CA...

1. à la Mazoyer? (Tuesday morning)
2. Boolean Circuit Simulator?
3. Computation Universality?
4. Intrinsic Universality?

Universal CA...

1. à la Mazoyer? (Tuesday morning)
2. Boolean Circuit Simulator?
3. Computation Universality?
4. Intrinsic Universality?

5. P-complete prediction?

Universal CA...

1.àla Mazoyor? (Tuooday morning)
2. Boolean Circuit Simulator?
3. Computation Universality?
4. Intrinsic Universality?

(i) Higher Dimensions

2D CA

Definition A 2D CA is a triple (S, N, f) where S is the finite set of states, $N \subseteq_{\text {frinte }} \mathbb{Z}^{2}$ is the neighborhood and $f: S^{N} \rightarrow S$ is the local rule of the CA.

A configuration is a mapping $c \in S^{\mathbb{Z}^{2}}$.
The global rule G : $S^{\mathbb{Z}^{2}} \rightarrow S^{\mathbb{Z}^{2}}$ applies the local rule uniformly:
$G(c)(i)=f\left(c\left(i+v_{1}\right), \ldots, c\left(i+v_{k}\right)\right)$
where $\mathrm{V}=\left\{v_{1}, \ldots, v_{\mathrm{k}}\right\}$.

von Neumann

Moore

2D CA

Definition A 2D CA is a triple (S, N, f) where S is the finite set of states, $N \subseteq_{\text {frinte }} \mathbb{Z}^{2}$ is the neighborhood and $f: S^{N} \rightarrow S$ is the local rule of the CA.

A configuration is a mapping $c \in S^{\mathbb{Z}^{2}}$.
The global rule G : $S^{\mathbb{Z}^{2}} \rightarrow S^{\mathbb{Z}^{2}}$ applies the local rule uniformly:
$G(c)(i)=f\left(c\left(i+v_{1}\right), \ldots, c\left(i+v_{k}\right)\right)$
where $\mathrm{V}=\left\{v_{1}, \ldots, v_{\mathrm{k}}\right\}$.

von Neumann

Moore

2D CA

Definition A 2D CA is a triple (S, N, f) where S is the finite set of states, $N \subseteq_{\text {frinte }} \mathbb{Z}^{2}$ is the neighborhood and $f: S^{N} \rightarrow S$ is the local rule of the CA.

A configuration is a mapping $c \in S^{\mathbb{Z}^{2}}$.
The global rule G : $S^{\mathbb{Z}^{2}} \rightarrow S^{\mathbb{Z}^{2}}$ applies the local rule uniformly:
$G(c)(i)=f\left(c\left(i+v_{1}\right), \ldots, c\left(i+v_{k}\right)\right)$
where $\mathrm{V}=\left\{v_{1}, \ldots, v_{\mathrm{k}}\right\}$.

von Neumann

Moore

Boolean Circuits

- [Kleene 56] boolean circuits = FSM = regular languages.
- Computers are build out of:
- wires
- boolean gates
- delays/clocks
- CMOS and other technology uses 2D objects.

Universal Circuits

Boolean circuits can encode
both FSM and secondary devices.

Turing Universality can be achieved using FSM (control) + Tape/Registers (storage).

Intrinsic Universality can be achieved using one FSM (local rule) per cell + uniform wiring (transmission).

Transmitting Signals

- Wires made out of cells are path for the boolean signals with or without explicit wire, several encodings.
- Turning around to route any reasonable family of paths.
- Fan-out to route copies a same signal.

Transmitting Signals

- Wires made out of cells are path for the boolean signals with or without explicit wire, several encodings.
- Turning around to route any reasonable family of paths.
- Fan-out to route copies a same signal.

Transmitting Signals

- Wires made out of cells are path for the boolean signals with or without explicit wire, several encodings.
- Turning around to route any reasonable family of paths.
- Fan-out to route copies a same signal.

Transmitting Signals

- Wires made out of cells are path for the boolean signals with or without explicit wire, several encodings.

- Turning around to route any reasonable family of paths.

Transmitting Signals

- Wires made out of cells are path for the boolean signals with or without explicit wire, several encodings.

- Turning around to route any reasonable family of paths.

Transmitting Signals

- Wires made out of cells are path for the boolean signals with or without explicit wire, several encodings.

- Turning around to route any reasonable family of paths.

Transmitting Signals

- Wires made out of cells are path for the boolean signals with or without explicit wire, several encodings.

- Turning around to route any reasonable family of paths.

Transmitting Signals

- Wires made out of cells are path for the boolean signals with or without explicit wire, several encodings.

- Turning around to route any reasonable family of paths.
- Fan-out to route copies a same signal.

Transmitting Signals

- Wires made out of cells are path for the boolean signals with or without explicit wire, several encodings.

- Turning around to route any reasonable family of paths.
- Fan-out to route copies a same signal.

Transmitting Signals

- Wires made out of cells are path for the boolean signals with or without explicit wire, several encodings.

- Turning around to route any reasonable family of paths.
- Fan-out to route copies a same signal.

Transmitting Signals

- Wires made out of cells are path for the boolean signals with or without explicit wire, several encodings.

- Turning around to route any reasonable family of paths.
- Fan-out to route copies a same signal.

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

- Crossing either explicit or implicit (delay trick or boolean coding).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

- Crossing either explicit or implicit (delay trick or boolean coding).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

- Crossing either explicit or implicit (delay trick or boolean coding).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

- Crossing either explicit or implicit (delay trick or boolean coding).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

- Crossing either explicit or implicit (delay trick or boolean coding).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

- Crossing either explicit or implicit (delay trick or boolean coding).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

- Crossing either explicit or implicit (delay trick or boolean coding).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

- Crossing either explicit or implicit (delay trick or boolean coding).

Composing Signals

- Delays to synchronize signal arrival at gate input (can be done by turning).
- Gates taken in a universal boolean family (like NAND or OR+NOT, constants allowed).

- Crossing either explicit or implicit (delay trick or boolean coding).

Clock?

- Three values on a wire:
- No signal
- Signal 0
- Signal 1
- What is the behavior of a NAND gate?
- Either use a clock...

- ...or encode signals on two wires (with AND + OR + Xing).

Examples

von Neumann 1966. 29 states, 2 type of arrow paths + delays

Codd 1968. 8 states, explicit undirected wire +5 signal types

Banks 1970. 2 states, trickier encoding of signals

Conway 1970. Game of Life, 2 states (Moore neighborhood), gliders
(i) Turing-Universality

1D CA

Definition A 1D CA is a triple (S, N, f) where S is the finite set of states, $N \subseteq_{\text {finite }} \mathbb{Z}$ is the neighborhood and $f: S^{N} \rightarrow S$ is the local rule of the CA.

A configuration is a mapping $c \in S^{\mathbb{Z}}$.
The global rule G : $S^{\mathbb{Z}} \rightarrow S^{\mathbb{Z}}$ applies the local rule uniformly:
$G(c)(i)=f\left(c\left(i+v_{1}\right), \ldots, c\left(i+v_{k}\right)\right)$
where $\mathrm{V}=\left\{v_{1}, \ldots, v_{k}\right\}$.

OCA

first n .

Space-time diagram

Turing-completeness

- In 1D boolean circuit are not that easy to simulate in space-time.
- For Turing Machines [Turing 36] introduces the Universal machine (with respect to a given enumeration of TM and pairs encoding).

$$
\forall i, j \quad \varphi_{\mathrm{u}}(\langle\mathrm{i}, \mathfrak{j}\rangle)=\varphi_{\mathrm{i}}(\mathfrak{j})
$$

- Moreover, it is classical to express the power of models of computation by simulating well-known Turing-complete models.
- The intuition says "a CA is universal if it can simulate any Turing machine"... Or replace TM by any reasonable Model of Computation.

Turing Machines

- TM = FSM + biinfinite tape
- Actions: read, write, move
- Input on the tape
- Initial state
- Halting state
- Output on the tape

Turing Machines

- TM = FSM + biinfinite tape
- Actions: read, write, move
- Input on the tape

- Initial state
- Halting state
- Output on the tape

Turing Machines

- TM = FSM + biinfinite tape
- Actions: read, write, move
- Input on the tape
- Initial state
- Halting state
- Output on the tape

Turing Machines

- TM = FSM + biinfinite tape
- Actions: read, write, move
- Input on the tape

- Initial state
- Halting state
- Output on the tape

Turing Machines

- TM = FSM + biinfinite tape
- Actions: read, write, move
- Input on the tape
- Initial state
- Halting state
- Output on the tape

Tag Systems

- Introduced by Post
- TS = FSM + queue
- Actions: enqueue, dequeue
- Input, halt, small output
- Canonical model: no state, constant dequeue + enqueue word depending on prefix.
dequeue 2

Turing-Universality

[Durand and Róka 1996] formalization is needed to define the frontier between universal and non universal (and prove things) but there are several difficult problems:

- When CA simulate an extrinsic model, how is it permitted to encode the input (infinite configuration)? what is a halting condition? how do we decode the output (infinite configuration)?
- More pragmatically, there seems to be no agreement on the definition of a universal TM or universal TS.

Having no definition is a major drawback of Turing-Universality.

à la Smith III

- The configuration encodes the tape.
- The cell pointed by the head also contains the state.
$(\Sigma \cup S \times \Sigma,\{-1,0,1\}, f)$

$m(n+1)$ states

à la Smith III

- The configuration encodes the tape.
- The cell pointed by the head also contains the state.
$(\Sigma \cup S \times \Sigma,\{-1,0,1\}, f)$

$m(n+1)$ states

à la Smith III

- The configuration encodes the tape.
- The cell pointed by the head also contains the state.
$(\Sigma \cup S \times \Sigma,\{-1,0,1\}, f)$

$m(n+1)$ states

à la Smith III

- The configuration encodes the tape.
- The cell pointed by the head also contains the state.
$(\Sigma \cup S \times \Sigma,\{-1,0,1\}, f)$

$m(n+1)$ states

à la Smith III

- The configuration encodes the tape.
- The cell pointed by the head also contains the state.
$(\Sigma \cup S \times \Sigma,\{-1,0,1\}, f)$

$m(n+1)$ states

à la L\&N

- Separate read/write from move.
- One step simulated in two steps.
$(\Sigma \cup S \cup\{\bullet, \leftrightarrow\},\{-1,0,1\}, f)$
$m+n+2$ states
[Lindgren \& Nordhal 1990] plus encoding with signals.

Cook 2004

[Cook 2004] Rule 110 is

Turing-Universal

- Simulation of

Cyclic Tag Systems

- See Gaétan’s talk just after!

(iii) Intrinsic Universality

Intrinsic Simulation

- Universality can be seen as an intrinsic property of a model.
- An object is universal if it can simulate all other objects of the family.
- For simulation use something reasonable with respect to the initial model.
- For CA, reasonable simulation certainly means shift-invariance plus similar space-time diagrams.
- Nice formalization with Bulking (aka Grouping) [Mazoyer \& Rapaport 1999, NO 2001, Theysier 2005].

Direct Simulation

A cellular automaton \mathcal{B} directly simulates a cellular automaton \mathcal{A}, denoted $\mathrm{G}_{\mathcal{A}} \prec \mathrm{G}_{\mathcal{B}}$, according to a mapping $\varphi: \mathrm{S}_{\mathcal{A}} \rightarrow 2^{\mathrm{S}_{\mathcal{B}}}$ if for any pair of states $\mathrm{a}, \mathrm{b} \in$ $S_{\mathcal{A}}, \varphi(\mathrm{a}) \cap \varphi(\mathrm{b})=\emptyset$ and for any configuration $c \in S_{\mathcal{A}}^{\mathbb{Z}}$,

$$
\mathrm{G}_{\mathcal{B}}(\varphi(\mathrm{c})) \subseteq \varphi\left(\mathrm{G}_{\mathcal{A}}(\mathrm{c})\right) .
$$

Geometric Transform

\mathcal{U} is intrinsically universal if for each cellular automaton \mathcal{A} there exists an unpacking map o_{m}, a positive integer $n \in \mathbb{N}$ and a translation vector $v \in \mathbb{Z}^{\mathrm{d}}$ such that

$$
\mathrm{G}_{\mathcal{A}} \prec \mathrm{o}_{\mathrm{m}}^{-1} \circ \mathrm{G}_{\mathfrak{u}}^{n} \circ \mathrm{o}_{\mathfrak{m}} \circ \sigma_{v} .
$$

Some Properties

Formal definition allow us to write proofs.
[folklore] Boolean Circuit Universality = IU for 2D+
[Mazoyer \& Rapaport 1999] No CA is IU in real-time.
[NO 2003] It is undecidable to know if a given CA is IU.
[NO 2002, Theyssier 2005] There exists TU CA that are not IU (infinitely far from IU).

Parallel TM style

- Comb-like infinite family of Turing heads, one per encoding meta-cell.
- All heads move the same, only the states and read/ write differ.
- A meta-cell contains transition table + neighbors \& self states.

Examples

Banks 1970. 18 states (converting 2D IU to 1D IU by slicing)

Albert \& Čulik 1987. 14 states (totalistic OCA simulation)

NO 2002. 6 states (boolean circuits simulation)

Richard 2008. 4 states (totalistic OCA simulation using signals)

More details...

To learn more

- Read the survey in the proceedings
- Few pictures...
- ...but 86 bibliographic reference,
- Chronology,
- Tips and tricks.
- Everything to build small Universal CA by yourself.

That’s all folks!

