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() Higher Dimensions



2D CA

Definition A 2D CA is a triple
(S, N, f) where S is the finite set
of states, N C,. .. Z2 is the
neighborhood and f: SN — S
is the local rule of the CA.

A configuration is a mapping
c c SZ°.

The global rule G : SZ° — SZ°
applies the local rule uniformly:

f(c(i+vq),...,c(i+vi))

where V = {v1,..., v}

von Neumann

Moore
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Ircuits
= regular

ts = FSM
languages

circui
¢ boolean gates

e delays/clocks

® \Vires
technology uses 2D

e Computers are build out of
objects.

¢ [Kleene 56] boolean
e CMOS and other

Boolean C



Universal Circuits

Boolean circuits can encode
both FSM and secondary
devices.

Turing Universality can be
achieved using FSM (control) +
Tape/Registers (storage).

Intrinsic Universality can be
achieved using one FSM (local
rule) per cell + uniform wiring
(transmission).




Transmitting Signals

e Wires made out of cells are
path for the boolean
signals with or without
explicit wire, several
encodings.

e Turning around to route
any reasonable family of
paths.

e Fan-out to route copies a
same signal.
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Composing Signals

* Delays to synchronize
signal arrival at gate input
(can be done by turning).

¢ Gates taken in a universal
boolean family (like NAND
or OR+NOT, constants
allowed).

e Crossing either explicit or
implicit (delay trick or
boolean coding).
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Clock?

e Three values on a wire:

* No signal

e Signal O

e Signal 1

¢ \What is the behavior of a B
NAND gate?

e Either use a clock...

® ..0r encode signals on two
wires (with AND + OR + Xing).




Examples

von Neumann 1966. 29 states, 2 type of arrow paths + delays
Codd 1968. 8 states, explicit undirected wire + 5 signal types
Banks 1970. 2 states, trickier encoding of signals

Conway 1970. Game of Life, 2 states (Moore neighborhood), gliders



(i) Turing-Universality



1D CA

Definition A 1D CA is a triple
(S, N, f) where S is the finite set
of states, N C;... Z IS the
neighborhood and f: SN — S
is the local rule of the CA.

A configuration is a mapping
c € S~

The global rule G : S* — S*
applies the local rule uniformly:

Space-time diagram

G(c)(i) = f(cli+v1),...,cli+vi))

where V ={vq,..., Vi




Turing-completeness

¢ In 1D boolean circuit are not that easy to simulate in space-time.

® For Turing Machines [Turing 36] introduces the Universal machine
(with respect to a given enumeration of TM and pairs encoding).

vi,i oul(l,ji)) = @i(j)

e Moreover, it is classical to express the power of models of
computation by simulating well-known Turing-complete models.

® The intuition says “a CA is universal if it can simulate any Turing
machine”... Or replace TM by any reasonable Model of
Computation.



Turing Machines

e TM = FSM + biinfinite tape

e Actions: read, write, move

¢ Input on the tape

¢ |nitial state

e Halting state

e Qutput on the tape
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Tag Systems

¢ Introduced by Post

e TS = FSM + queue

e Actions: enqueue, dequeue

¢ Input, halt, small output

e Canonical model: no state,
constant dequeue +
enqueue word depending
on prefix.

m—
— Nl

dequeue 2

-

15



Turing-Universality

[Durand and Roéka 1996] formalization is needed to define the
frontier between universal and non universal (and prove things) but
there are several difficult problems:

e \When CA simulate an extrinsic model, how is it permitted to
encode the input (infinite configuration)? what is a halting
condition? how do we decode the output (infinite configuration)?

* More pragmatically, there seems to be no agreement on the
definition of a universal TM or universal TS.

Having no definition is a major drawback of Turing-Universality.



a la smith i

® The configuration encodes
the tape.

e The cell pointed by the
head also contains the
state.

(US x x,{—1,0,1},f)

m(n + 1) states
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a la L&N

e
move.

e One step simulated in two

(Z2USU{e,«~},{—1,0,1}, f)

m + n + 2 states

EEN B EeN )
[Lindgren & Nordhal 1990] . . . I
plus encoding with signals. ...... ... I
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(i) Intrinsic Universality



INntrinsic Simulation

e Universality can be seen as an intrinsic property of a model.
* An object is universal if it can simulate all other objects of the family.

¢ For simulation use something reasonable with respect to the initial
model.

e For CA, reasonable simulation certainly means shift-invariance plus
similar space-time diagrams.

* Nice formalization with Bulking (aka Grouping) [Mazoyer & Rapaport
1999, NO 2001, Theysier 2005].



Direct Simulation

A cellular automaton B directly
simulates a cellular automaton
A, denoted G 4 < Gg, accord-
ing to a mapping ¢ : S4 — 2°3
If for any pair of states a,b €
Sa, o(a)Ne@(b) =) and for any
configuration ¢ € S%,

Gg(e(c)) € @(Galc))




Geometric Transform

U is Intrinsically universal if for
each cellular automaton A there
exists an unpacking map o, a
positive integer n € N and a
translation vector v € Z9 such
that

GA<0%1OG1'I}OOmOO—\)

Oy
it
N
N
HE
HHHF
HHE

n alle ol ol olle
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Some Properties

Formal definition allow us to write proofs.

[folklore] Boolean Circuit Universality = IU for 2D+
[Mazoyer & Rapaport 1999] No CA is IU in real-time.
[NO 2003] It is undecidable to know if a given CA is [U.

INO 2002, Theyssier 2005] There exists TU CA that are not |U
(infinitely far from IU).



Parallel TM style

e Comb-like infinite family of

Turing heads, one per | table || | NEE | teble || | NEN | table || |
encoding meta-cell. — S

| table SN | BN | table N | BEN_| table FEN |

e All heads move the same,
only the states and read/
write differ.

e A meta-cell contains
transition table + neighbors
& self states.




Examples

Banks 1970. 18 states (converting 2D IU to 1D IU by slicing)
Albert & Culik 1987. 14 states (totalistic OCA simulation)
NO 2002. 6 states (boolean circuits simulation)

Richard 2008. 4 states (totalistic OCA simulation using signals)



More details...



To learn more

¢ Read the survey in the proceedings
® Few pictures...

e ...but 86 bibliographic reference,

e Chronology,

¢ Tips and tricks.

e Everything to build small Universal CA by yourself.



That’s all folks!



