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The Domino Problem (DP).
“Assume we are given a finite set of square plates of the same size
with edges colored, each in a different manner. Suppose further there
are infinitely many copies of each plate (plate type). We are not
permitted to rotate or reflect a plate. The question is to find an
effective procedure by which we can decide, for each given finite set of
plates, whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates subject to the
restriction that adjoining edges must have the same color.”

(Wang, 1961)
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The need for aperiodic tilings.
A tiling is periodic if it admits two
non-collinear periodicity vectors.

A tile set is periodic if it admits a
periodic tiling.

Lemma. Periodic tile sets are
recursively enumerable.

Lemma. Non-tiling tile sets are
recursively enumerable.

Corollary. If DP is not recursive,
there exists aperiodic tile sets.
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Undecidability of DP: a short history.
1964 Berger proves the undecidability of DP.

Two main type of related activities in the literature:

(1) construct aperiodic tile sets (small ones);

(2) give a full proof of the undecidability of DP (implies (1)).

From 104 tiles (Berger, 1964) to 13 tiles (Culik, 1996) aperiodic sets.

Seminal self-similarity based proofs (reduction from HP):

• Berger, 1964 (20426 tiles, a full PhD thesis)

• Robinson, 1971 (56 tiles, 17 pages, long case analysis)

• Durand et al, 2007 (Kleene’s fixpoint existence argument)

Tiling rows seen as transducer trace based proof:
Kari, 2007 (affine maps, short concise proof, reduction from IP)
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In this talk.

A new self-similarity based construction building on classical proof
schemes with concise arguments and few tiles:

1. two-by-two substitution systems and aperiodicity

2. an aperiodic tile set of 104 tiles

3. enforcing any substitution and reduction from HP (sketch)

This work combines tools and ideas from:

[Berger 64] The Undecidability of the Domino Problem

[Robinson 71] Undecidability and nonperiodicity for tilings of the plane

[Grünbaum Shephard 89] Tilings and Patterns, an introduction

[Durand Levin Shen 05] Local rules and global order, or aperiodic tilings
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Two-by-two substitution systems.

A 2×2 substitution system maps a
finite alphabet to 2×2 squares of
letters on that alphabet.

s : Σ → Σ⊞

The substitution is iterated to
generate bigger squares.

S : ΣP → Σ✷(P)

∀z ∈ P, ∀c ∈ ⊞,
S(C)(2z + c) = s(C(z))(c)

S(u · C) = 2u · S(C)

Σ = {
.
,

.
,

.
,

.
}

s :
.
7→

.

+ rotations

.
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Coloring the whole plane via limit sets.

What is a coloring of the plane
generated by a substitution?

With tilings in mind the set of
colorings should be closed by
translation and compact.

We take the limit set of iterations
of the (continuous) global map
closed up to translations.

ΛS =
∩

n Λ
n
S where Λ0

S = ΣZ2

Λn+1
S = {u · S(C)|C ∈ Λn

S, u ∈ ⊞}

s :
.
7→

.
.
7→

.

S :

.

7→
.

ΛS =

{
.

}
∪

{
. .x

.y

}
x,y∈Z2
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Unambiguous substitutions are aperiodic.

A substitution is aperiodic if its limit set ΛS is aperiodic.

A substitution is unambiguous if, for every coloring C from its limit
set ΛS, there exists a unique coloring C ′ and a unique translation
u ∈ ⊞ satisfying C = u · S(C ′).

Proposition 3. Unambiguity implies aperiodicity.

Sketch of the proof. Consider a periodic coloring with minimal
period p, its preimage has period p/2. ✸

Idea. Construct a tile set whose tilings are in the limit set of an
unambiguous substitution system.

1. two-by-two substitution systems 9/20



2. an aperiodic tile set of 104 tiles
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Coding tile sets into tile sets.

A tile set τ is a triple (T,H,V)
whereH and V define horizontal
and vertical matching constraints.

The set of tilings of τ is Xτ .

A tile set (T ′,H ′,V ′) codes a tile
set (T,H,V), according to a
coding rule t : T → T′⊞ if t is
injective and

Xτ ′ = {u · t(C)|C ∈ Xτ , u ∈ ⊞} .

.
.new tiles

.layer 1

.layer 2

.τ .H/ ∼H .V/ ∼V

coding tile set

.

coding rule
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Aperiodicity via unambiguous self-coding.

A tile set (T,H,V) codes a substitution s : T → T⊞ if it codes itself
according to the coding rule s.

Proposition 4. A tile set both admitting a tiling and coding an
unambiguous substitution is aperiodic.

Sketch of the proof. Xτ ⊆ ΛS and Xτ ̸= ∅. ✸
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A coding scheme with fixpoint?.

Better scheme: not strictly
increasing the number of tiles.

Problem. it cannot encode any
layered tile set, constraints
between layer 1 and layer 2 are
checked edge by edge.

Solution. add a third layer with
one bit of information per edge.

.
.new tiles

.layer 1

.layer 2

.layer 2 .H-colors .V-colors .corners

coding tile set

.

coding rule
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Canonical substitution.

Copy the tile in the SW corner but
for layer 1.

Put the only possible X in NE that
carry layer 1 of the original tile on
SW wire.

Propagate wires colors.

Let H et V tile propagate layer 3
arrows.

The substitution is injective.

.
.( . , α, β)

.( . , α, β)

.
7→

.

.
7→

.
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Aperiodicity: sketch of the proof.

1. The tile set admits a tiling:
Generate a valid tiling by iterating the substitution rule: Xτ ∩ ΛS ̸= ∅.

2. The substitution is unambiguous:
It is injective and the projectors have disjoined images.

3. The tile set codes the substitution:

(a) each tiling is an image of the canonical substitution
Consider any tiling, level by level, short case analysis.

(b) the preimage of a tiling is a tiling
Straightforward by construction (preimage remove constraints).

2. an aperiodic tile set of 104 tiles 16/20
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Enforcing substitutions via tilings.
Let π map every tile of τ(s ′) to
s ′(a)(u) where a and u are the
letter and the value of ⊞ on
layer 1.

Theorem 2. Let s ′ be any
substitution system. The tile set
τ(s ′) enforces s ′:

π
(

Xτ(s ′)

)
= ΛS ′ .

Idea. Every tiling of τ(s ′) codes
an history of S ′ and every history
of S ′ can be encoded into a tiling
of τ(s ′).

.

.

.a

.b = s(a)
(

1
1

)

.
.a

.b = s(a)
(

0
0

)
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Infinitely many squares of unbounded size.

.
7→

.
.t
.t

.t

.t

.
7→

.
.h
.h

.h

.h

.
7→

.
.v
.v

.v

.v

.
.t 7→

.

.
.h 7→

.

.
.v 7→

.

. .
.t
.t

.t

.t

. .

.t .v .t .v

.h .t .h .t

.t .v .t .v

.h .t .h .t

.t .v .t .v

.h .t .h .t

.t .v .t .v

.h .t .h .t

.t .v .t .v

.h .t .h .t

.t .v .t .v

.h .t .h .t

.t .v .t .v

.h .t .h .t

.t .v .t .v

.h .t .h .t

.
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Reducing HP to DP.
Any tiling by previous tile set
contains infinitely many finite
squares of unbounded size.

In each square, simulate the
computation of the given Turing
machine from an empty tape.

Initial computation is enforced in
the SW corner.

Remove the halting state.

The tile set tiles the plan iff the
Turing machine does not halt.

.
.a

.a
.qD .a

.q
.a

.q .a

.a
.qG .a

.q
.a

.q .a

.q .a

.q ′? .a ′
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