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In this talk.

We investigate the (un)decidability of dynamical properties of three
models of reversible computation.

We consider the behavior of the models starting from arbitrary initial
configurations.

Immortality is the property of having at least one non-halting orbit.

Periodicity is the property of always eventually returning back to the
starting configuration.
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Models of reversible computation.

Counter Machines (CM)

Turing Machines (TM)

Cellular Automata (CA)

A machine is deterministic if
there exists at most one transition
from each configuration.

A machine is reversible if there
exists another machine that can
inverse each step of computation.

.

.

.
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Discrete Dynamical Systems.

A DDS S is a pair (X, F) where X is a topological space and
F : X→ X is a partial and continuous map.

In the case of TM and CA, X is the compact and metrizable product
of the discrete topology.

.

The orbit of x ∈ X is the sequence (Fn(x)) obtained by iterating F.

A modelM is a recursive family of DDS.
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The immortality problem (IP).
A configuration on which F is undefined is halting.

A configuration is mortal if its orbit is eventually halting.

Halting Problem Given S ∈ M, is x0 ∈ X mortal for S?

S is mortal if all its configurations are mortal.

S is uniformly mortal if a uniform bound n exists such that Fn is
halting for all configuration.

Immortality Problem Given S ∈ M, is S immortal?

When X is compact and the set of halting configurations is open,
uniform mortality is the same as mortality.
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The periodicity problem (PP).

S is complete if F is total.

A configuration x is n-periodic if Fn(x) = x.

S is periodic if all its configurations are periodic.

S is uniformly periodic if a uniform bound n exists such that Fn is
the identity map.

Periodicity Problem Given S ∈ M, is S periodic?

When X is compact and the set of n-periodic configurations is open,
uniform periodicity is the same as periodicity.
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Results.

. .RCM

.RTM

.RCA

.HP .IP .PP

.[Morita96]

.[Lecerf63]

.Thm 1

.[KL08]

.Thm 3

.Thm 7 .Thm 8

.Thm 12

. denotes many-one reductions.
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1. Reversible Counter Machines

A k-CM is a triple (S, k, T) where S is a finite set of states and
T ⊆ S× {0,+}k × Zk × {−, 0,+} × S is a set of instructions.

(s, u, i,ϕ, t) ∈ T : “in state s with counter values u,
apply ϕ to counter i and enter to state t.”

DDS (S× Nk,G) where G(c) is the unique c ′ such that c ⊢ c ′.



.Immortality.

[Minsky67] Every recursive function is computed by a 2-DCM and
thus HP is undecidable for 2-DCM.

[Hooper66] IP is undecidable for 2-DCM.
Idea for new proof Enforce infinite orbits to go through unbounded initial

segments of an orbit from x0 to reduce HP. ♢

[Morita96] Every k-DCM is simulated by a 2-RCM.
Idea Encode a stack with two counters to keep an history of simulated

instructions. ♢

Theorem 1 IP is undecidable for 2-RCM.
Idea Morita’s simulation preserves immortality. ♢
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.Periodicity.

Theorem 3 PP is undecidable for 2-RCM.

Idea Reduce IP to PP:

(1) IP is still undecidable for 2-RCM with mortal reverse
(add a constantly incremented counter to the k-DCM)

(2) LetM = (S, 2, T) be a 2-RCM with mortal reverse.
M admits no periodic orbit.
LetM ′ be the 2-RCM with set of states S× {+,−}
simulatingM on + andM−1 on − and inversing polarity on
halting states.

(3) M ′ is periodic iffM is mortal. ♢
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2. Reversible Turing Machines

A TM is a triple (S,Σ, T) where S is a finite set of states, Σ a finite
alphabet and T ⊆ (S× {←,→}× S) ∪ (S× Σ× S× Σ) is a set
of instructions.

(s, δ, t) : “in state s move according to δ and enter state t.”
(s, a, t, b) : “in state s, reading letter a, write letter b and enter state t.”

DDS (S× ΣZ,G) where G(c) is the unique c ′ such that c ⊢ c ′.



.Immortality: a first attempt.

“(T2) To find an effective method, which for every Turing-machine M
decides whether or not, for all tapes I (finite and infinite) and all states B,
M will eventually halt if started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) ♢

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♢

Problem The simulation does not preserve immortality due to
unbounded searches. We need to rewrite Hooper’s proof for
reversible machines.
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.Immortality: simulating RCM.

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

The RTM is immortal iff the 2-RCM is mortal on (s0, (0, 0)).
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.Programming tips and tricks (1/2).
We designed a TM programming language called Gnirut:

http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/

First ingredient use macros to avoid repetitions:

..s
. . .a.x|x

.→

.1|2

.x|x

.[s|search|a⟩

.d . .
.t

.x|x
.←

.2|1

.x|x

.⟨d|search|t]

.b .c.→ .←
.a|b

.b|a

1 def [s|search|t⟩ :
2 s. x ⊢ x, u
3 u. →, r
4 r. 1 ⊢ 2, u | x ⊢ x, t
5

6 [s|search|a⟩
7 a. →, b
8 b. a ⊢ b, c | b ⊢ a, c
9 c. ←, d

10 ⟨d|search|t]

2. Reversible Turing Machines 13/20

http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/


.Programming tips and tricks (2/2).
Second ingredient use recursive calls:

..s . .

.c . d

.t.→
.0|1

.←

.1|1 .1|0

.[s|incr|t⟩

.b
.@2|#

.a
.#|@2

.1|@1 .@1|1

1 fun [s|incr|t⟩ :
2 s. →, r
3 r. 0 ⊢ 1, b | 1 ⊢ 1, c
4 call [c|incr|d⟩ from 1⇐ call 1

5 d. 1 ⊢ 0, b
6 b. ←, t
7

8 call [a|incr|b⟩ from #⇐ call 2
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.Immortality: skeleton.

[s|check1|t⟩ satisfies s. @α1mx ⊢ @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2⟩ satisfies s. @α1mx ⊢ @α1mx, tm[3] or . . .

RCM ingredients:

testing counters [s|test1|z, p⟩ and [s|test2|z, p⟩
increment counter [s|inc1|t, co⟩ and [s|inc2|t, co⟩
decrement counter [s|dec1|t, co⟩ and [s|dec2|t, co⟩

Simulator [s|RCMα|co1, co2, . . .⟩ initialize then compute

[s|checkα|t⟩ = [s|RCMα|co1, co2, . . .⟩ + ⟨co1, co2, . . .|RCMα|s]
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.Program it!.
1 def [s|search1|t0, t1, t2⟩ :
2 s. @α ⊢ @α, l
3 l.→, u
4 u. x ⊢ x, t0
5 | 1x ⊢ 1x, t1
6 | 11x ⊢ 11x, t2
7 | 111 ⊢ 111, c
8 call [c|check1|p⟩ from 1
9 p. 111 ⊢ 111, l

10

11 def [s|search2|t0, t1, t2⟩ :
12 s. x ⊢ x, l
13 l.→, u
14 u. y ⊢ y, t0
15 | 2y ⊢ 2y, t1
16 | 22y ⊢ 22y, t2
17 | 222 ⊢ 222, c
18 call [c|check2|p⟩ from 2
19 p. 222 ⊢ 222, l
20

21 def [s|test1|z, p⟩ :
22 s. @αx ⊢ @αx, z
23 | @α1 ⊢ @α1, p
24

25 def [s|endtest2|z, p⟩ :
26 s. xy ⊢ xy, z
27 | x2 ⊢ x2, p
28

29 def [s|test2|z, p⟩ :
30 [s|search1|t0, t1, t2⟩
31 [t0|endtest2|z0, p0⟩
32 [t1|endtest2|z1, p1⟩
33 [t2|endtest2|z2, p2⟩
34 ⟨z0, z1, z2|search1|z]
35 ⟨p0, p1, p2|search1|p]
36

37 def [s|mark1|t, co⟩ :
38 s. y1 ⊢ 2y, t
39 | yx ⊢ yx, co
40

41 def [s|endinc1|t, co⟩ :
42 [s|search2|r0, r1, r2⟩
43 [r0|mark1|t0, co0⟩
44 [r1|mark1|t1, co1⟩
45 [r2|mark1|t2, co2⟩
46 ⟨t2, t0, t1|search2|t]
47 ⟨co0, co1, co2|search2|co]
48

49 def [s|inc21|t, co⟩ :
50 [s|search1|r0, r1, r2⟩
51 [r0|endinc1|t0, co0⟩
52 [r1|endinc1|t1, co1⟩
53 [r2|endinc1|t2, co2⟩
54 ⟨t0, t1, t2|search1|t]
55 ⟨co0, co1, co2|search1|co]
56

57 def [s|dec21|t⟩ :
58 ⟨s, co|inc21|t]
59

60 def [s|mark2|t, co⟩ :
61 s. y2 ⊢ 2y, t
62 | yx ⊢ yx, co
63

64 def [s|endinc2|t, co⟩ :
65 [s|search2|r0, r1, r2⟩
66 [r0|mark2|t0, co0⟩
67 [r1|mark2|t1, co1⟩
68 [r2|mark2|t2, co2⟩
69 ⟨t2, t0, t1|search2|t]
70 ⟨co0, co1, co2|search2|co]
71

72 def [s|inc22|t, co⟩ :
73 [s|search1|r0, r1, r2⟩
74 [r0|endinc2|t0, co0⟩
75 [r1|endinc2|t1, co1⟩
76 [r2|endinc2|t2, co2⟩
77 ⟨t0, t1, t2|search1|t]
78 ⟨co0, co1, co2|search1|co]
79

80 def [s|dec22|t⟩ :
81 ⟨s, co|inc22|t]
82

83 def
[
s
∣∣pushinc1∣∣t, co

〉
:

84 s. x2 ⊢ 1x, c
85 | xy1 ⊢ 1xy, pt
86 | xyx ⊢ 1yx, pco
87 [c|endinc1|pt0, pco0⟩
88 pt0.→, t0
89 t0. 2 ⊢ 2, pt
90 pt.←, t
91 pco0. x ⊢ 2, pco
92 pco.←, zco
93 zco. 1 ⊢ x, co
94

95 def [s|inc11|t, co⟩ :
96 [s|search1|r0, r1, r2⟩
97

[
r0
∣∣pushinc1∣∣t0, co0

〉
98

[
r1
∣∣pushinc1∣∣t1, co1

〉
99

[
r2
∣∣pushinc1∣∣t2, co2

〉
100 ⟨t2, t0, t1|search1|t]
101 ⟨co0, co1, co2|search1|co]
102

103 def [s|dec11|t⟩ :
104 ⟨s, co|inc11|t]
105

106 def
[
s
∣∣pushinc2∣∣t, co

〉
:

107 s. x2 ⊢ 1x, c
108 | xy2 ⊢ 1xy, pt
109 | xyy ⊢ 1yy, pco
110 [c|endinc2|pt0, pco0⟩
111 pt0.→, t0
112 t0. 2 ⊢ 2, pt
113 pt.←, t
114 pco0. x ⊢ 2, pco
115 pco.←, zco
116 zco. 1 ⊢ x, co
117

118 def [s|inc12|t, co⟩ :
119 [s|search1|r0, r1, r2⟩
120

[
r0
∣∣pushinc2∣∣t0, co0

〉
121

[
r1
∣∣pushinc2∣∣t1, co1

〉
122

[
r2
∣∣pushinc2∣∣t2, co2

〉
123 ⟨t2, t0, t1|search1|t]
124 ⟨co0, co1, co2|search1|co]

125

126 def [s|dec12|t⟩ :
127 ⟨s, co|inc12|t]
128

129 def [s|init1|r⟩ :
130 s.→, u
131 u. 11 ⊢ xy, e
132 e.←, r
133

134 def [s|RCM1|co1, co2⟩ :
135 [s|init1|s0⟩
136 [s0|test1|s1z, n⟩
137 [s1|inc11|s2, co1⟩
138 [s2|inc21|s3, co2⟩
139 [s3|test1|n’, s1p⟩
140 ⟨s1z, s1p|test1|s1]
141

142 def [s|init2|r⟩ :
143 s.→, u
144 u. 22 ⊢ xy, e
145 e.←, r
146

147 def [s|RCM2|co1, co2⟩ :
148 [s|init2|s0⟩
149 [s0|test1|s1z, n⟩
150 [s1|inc12|s2, co1⟩
151 [s2|inc22|s3, co2⟩
152 [s3|test1|n’, s1p⟩
153 ⟨s1z, s1p|test1|s1]
154

155 fun [s|check1|t⟩ :
156 [s|RCM1|co1, co2, . . .⟩
157 ⟨co1, co2, . . .|RCM1|t]
158

159 fun [s|check2|t⟩ :
160 [s|RCM2|co1, co2, . . .⟩
161 ⟨co1, co2, . . .|RCM2|t]
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.Periodicity.

Theorem 8 PP is undecidable for RTM.

Idea Reduce IP to PP:

(1) IP is still undecidable for RTM without periodic orbit.

(2) LetM = (S,Σ, T) be a RTM without periodic orbit
LetM ′ be the complete RTM with set of states S× {+,−}
simulatingM on + andM−1 on − and inversing polarity on
halting states.

(3) M ′ is periodic iffM is mortal. ♢
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.

..3. Reversible Cellular Automata

A CA is a triple (S, r, f) where S is a finite set of states, r the radius
and f : S2r+1 → S the local rule.

DDS (SZ,G) where ∀z ∈ Z, G(c)(z) = f(c(z− r), . . . , c(z + r))



.
Periodicity.

Theorem 12 PP is undecidable for RCA.

Idea Reduce PP for RTM to PP for RCA:

(1) PP is still undecidable for complete RTM.

(2) LetM = (S,Σ, T) be a complete RTM
Let (S ′, 2, f) be the RCA with set of states
Σ× (S× {+,−} ∪ {←,→}) simulatingM on + andM−1

on − on two levels.

(3) In case of local inconsistency, invert polarity.

(4) The RCA is periodic iffM is periodic. ♢
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Open Problems with conjectures

Conjecture 1 It is undecidable whether a given complete 2-RCM
admits a periodic configuration. (proven if you remove complete or
replace 2 by 3)

Conjecture 2 There exists a complete RTM without a periodic con-
figuration. (known for DTM [BCN02])

Conjecture 3 It is undecidable whether a given complete RTM admits
a periodic configuration. (known for DTM [BCN02])
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