Periodicity and Immortality in Reversible Computing

Jarkko Kari (Dpt. of Mathematics, University of Turku, Finland) Nicolas Ollinger (LIF, Aix-Marseille Université, CNRS, France)

Toruń, Poland – August 27, 2008

J. Kari and N. Ollinger. Periodicity and Immortality in Reversible Computing.E. Ochmański and J. Tyszkiewicz (Eds.): MFCS 2008, LNCS 5162, pp. 419–430, 2008.

We investigate the **(un)decidability** of **dynamical properties** of three models of **reversible** computation.

We consider the behavior of the models starting from **arbitrary initial configurations**.

Immortality is the property of having at least one non-halting orbit.

Periodicity is the property of always eventually returning back to the starting configuration.

Models of reversible computation

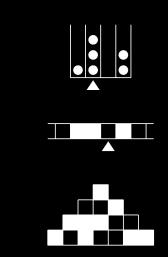
Counter Machines (CM)

Turing Machines (TM)

Cellular Automata (CA)

A machine is **deterministic** if there exists at most one transition from each configuration.

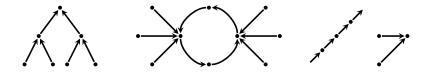
A machine is **reversible** if there exists **another machine** that can inverse **each step** of computation.



Discrete Dynamical Systems

A **DDS** S is a pair (X, F) where X is a **topological space** and $F : X \to X$ is a **partial** and **continuous** map.

In the case of **TM** and **CA**, *X* is the compact and metrizable product of the discrete topology.



The **orbit** of $x \in X$ is the sequence $(F^n(x))$ obtained by iterating *F*.

A model \mathcal{M} is a recursive family of **DDS**.

The immortality problem (IP)

A configuration on which *F* is undefined is **halting**.

A configuration is **mortal** if its orbit is eventually halting.

Halting Problem Given $S \in M$, is $x_0 \in X$ mortal for S?

S is **mortal** if all its configurations are mortal.

S is **uniformly mortal** if a uniform bound *n* exists such that F^n is halting for all configuration.

Immortality Problem Given $S \in M$, is S immortal?

When *X* is compact and the set of halting configurations is open, uniform mortality is the same as mortality.

The periodicity problem (PP)

S is **complete** if *F* is total.

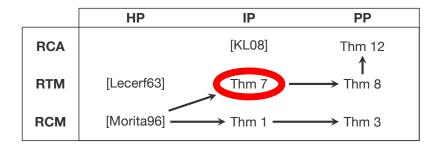
A configuration *x* is *n*-periodic if $F^n(x) = x$.

 \mathcal{S} is **periodic** if all its configurations are periodic.

S is **uniformly periodic** if a uniform bound *n* exists such that F^n is the identity map.

Periodicity Problem Given $S \in M$, is S periodic?

When *X* is compact and the set of *n*-periodic configurations is open, uniform periodicity is the same as periodicity.



denotes many-one reductions.

1. Reversible Counter Machines

A *k*-CM is a triple (S, k, T) where S is a finite set of states and $T \subseteq S \times \{0, +\}^k \times \mathbb{Z}_k \times \{-, 0, +\} \times S$ is a set of instructions.

 $(\mathbf{s}, \mathbf{u}, \mathbf{i}, \phi, \mathbf{t}) \in \mathbf{T}$: "in state **s** with counter values \mathbf{u} , apply ϕ to counter i and enter to state t."

DDS $(S \times \mathbb{N}^k, G)$ where $G(\mathfrak{c})$ is the unique \mathfrak{c}' such that $\mathfrak{c} \vdash \mathfrak{c}'$.

[Hooper66] IP is undecidable for 2-DCM.

Idea for new proof Enforce infinite orbits to go through unbounded initial segments of an orbit from x_0 to reduce **HP**.

[Hooper66] IP is undecidable for 2-DCM.

Idea for new proof Enforce infinite orbits to go through unbounded initial segments of an orbit from x_0 to reduce **HP**.

[Morita96] Every *k*-DCM is **simulated** by a 2-RCM. *Idea* Encode a stack with two counters to keep an history of simulated instructions

[Hooper66] IP is undecidable for 2-DCM.

Idea for new proof Enforce infinite orbits to go through unbounded initial segments of an orbit from x_0 to reduce **HP**.

[Morita96] Every *k*-DCM is **simulated** by a 2-RCM. **Idea** Encode a stack with two counters to keep an history of simulated instructions.

Theorem 1 IP is undecidable for 2-RCM.

Idea Morita's simulation preserves immortality.

Theorem 3 PP is undecidable for 2-RCM.

- Idea Reduce IP to PP:
 - IP is still undecidable for 2-RCM with mortal reverse (add a constantly incremented counter to the *k*-DCM)

Theorem 3 PP is undecidable for 2-RCM.

- Idea Reduce IP to PP:
 - IP is still undecidable for 2-RCM with mortal reverse (add a constantly incremented counter to the *k*-DCM)
 - (2) Let $\mathcal{M} = (S, 2, T)$ be a 2-RCM with mortal reverse. \mathcal{M} admits no periodic orbit. Let \mathcal{M}' be the 2-RCM with set of states $S \times \{+, -\}$ simulating \mathcal{M} on + and \mathcal{M}^{-1} on - and inversing polarity on halting states.

Theorem 3 PP is undecidable for 2-RCM.

- Idea Reduce IP to PP:
 - IP is still undecidable for 2-RCM with mortal reverse (add a constantly incremented counter to the *k*-DCM)
 - (2) Let $\mathcal{M} = (S, 2, T)$ be a 2-RCM with mortal reverse. \mathcal{M} admits no periodic orbit. Let \mathcal{M}' be the 2-RCM with set of states $S \times \{+, -\}$ simulating \mathcal{M} on + and \mathcal{M}^{-1} on - and inversing polarity on halting states.
 - (3) \mathcal{M}' is periodic iff \mathcal{M} is mortal.

2. Reversible Turing Machines

A **TM** is a triple (S, Σ, T) where S is a finite set of states, Σ a finite alphabet and $T \subseteq (S \times \{\leftarrow, \rightarrow\} \times S) \cup (S \times \Sigma \times S \times \Sigma)$ is a set of instructions.

 (s, δ, t) : "in state s move according to δ and enter state t." (s, a, t, b): "in state s, reading letter a, write letter b and enter state t."

DDS $(S \times \Sigma^{\mathbb{Z}}, G)$ where $G(\mathfrak{c})$ is the unique \mathfrak{c}' such that $\mathfrak{c} \vdash \mathfrak{c}'$.

" (T_2) To find an effective method, which for every Turing-machine M decides whether or not, for all tapes I (finite and infinite) and all states B, M will eventually halt if started in state B on tape I" (Büchi, 1962)

 $\langle \rangle$

" (T_2) To find an effective method, which for every Turing-machine M decides whether or not, for all tapes I (finite and infinite) and all states B, M will eventually halt if started in state B on tape I" (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.

Idea TM with recursive calls! (we will discuss this)

" (T_2) To find an effective method, which for every Turing-machine M decides whether or not, for all tapes I (finite and infinite) and all states B, M will eventually halt if started in state B on tape I" (Büchi, 1962)

[Hooper66] IP is undecidable for DTM. Idea TM with recursive calls! (we will discuss this)

[Lecerf63] Every DTM is **simulated** by a RTM. *Idea* Keep history on a stack encoded on the tape.

 $\langle \rangle$

" (T_2) To find an effective method, which for every Turing-machine M decides whether or not, for all tapes I (finite and infinite) and all states B, M will eventually halt if started in state B on tape I" (Büchi, 1962)

[Hooper66] IP is undecidable for DTM. Idea TM with recursive calls! (we will discuss this)

[Lecerf63] Every DTM is **simulated** by a RTM. *Idea Keep history on a stack encoded on the tape.*

Problem The simulation **does not** preserve immortality due to **unbounded searches**. We need to rewrite Hooper's proof for reversible machines.

 $\langle \rangle$

 $\langle \rangle$

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

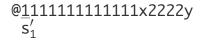
Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

 $\underbrace{@1111111111111x2222y}_{S} \qquad \textit{search } x \rightarrow \\ \underbrace{\\s}$

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:



Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@1<u>1</u>11111111111x2222y s'2

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@@_sxy1111111111x2222y recursive call \$0

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@@_s11111x22222yx2222y s_c

ultimately in case of collision ...

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@@_sxy111111111x2222y ...revert to clean S_b

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@111<u>1</u>111111111x2222y s'_1

pop and continue bounded search 1

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@1111<u>1</u>11111111x2222y s'₂

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@11111<u>1</u>1111111x2222y s'₃

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@111<u>@</u>_sxy1111111x2222y re S₀

recursive call

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@111<u>@</u>_sxy1111111x2222y re S₀

recursive call

Reduction reduce **HP** for 2-RCM $(s, \underline{@}1^m x 2^n y)$

Problem unbounded searches produce immortal configurations. *Idea* by compacity, extract infinite failure sequence

Hooper's trick use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

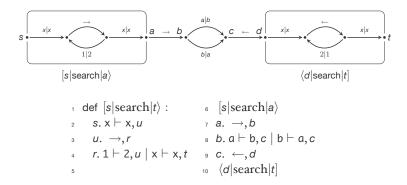
The RTM is immortal iff the 2-RCM is mortal on $(s_0, (0, 0))$.

Programming tips and tricks (1/2)

We designed a TM programming language called Gnirut:

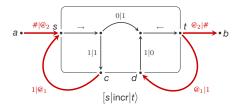
http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/

First ingredient use macros to avoid repetitions:



Programming tips and tricks (2/2)

Second ingredient use recursive calls:



$$\begin{array}{ll} & \text{fun } [s|\text{incr}|t\rangle : & \text{a } call \ [a|\text{incr}|b\rangle \ \text{from } \# \Leftarrow call \ 2 \\ 2 & \text{s.} \rightarrow, r \\ 3 & r. \ 0 \vdash 1, b \mid 1 \vdash 1, c \\ 4 & call \ [c|\text{incr}|d\rangle \ \text{from } 1 \Leftarrow call \ 1 \\ 5 & d. \ 1 \vdash 0, b \\ 6 & b. \ \leftarrow, t \end{array}$$

 $[\mathsf{s}|\mathsf{check}_1|t\rangle \quad \mathsf{satisfies} \quad \mathsf{s}.\ \underline{\mathbb{e}_\alpha} \mathbb{1}^m \mathsf{x} \vdash \underline{\mathbb{e}_\alpha} \mathbb{1}^m \mathsf{x}, t \quad \mathsf{or} \quad \mathsf{s}.\ \underline{\mathbb{e}_\alpha} \mathbb{1}^\omega \uparrow \quad \mathsf{or} \quad \mathsf{halt}.$

$$\begin{split} &[\mathbf{s}|\mathbf{check}_1|t\rangle \quad \text{satisfies} \quad \mathbf{s}. \ \underline{\mathbb{e}_{\alpha}}\mathbf{1}^m\mathbf{x} \vdash \underline{\mathbb{e}_{\alpha}}\mathbf{1}^m\mathbf{x}, t \quad \text{or} \quad \mathbf{s}. \ \underline{\mathbb{e}_{\alpha}}\mathbf{1}^{\omega} \uparrow \quad \text{or halt.} \\ &[\mathbf{s}|\mathbf{search}_1|t_0, t_1, t_2\rangle \quad \text{satisfies} \quad \mathbf{s}. \ \underline{\mathbb{e}_{\alpha}}\mathbf{1}^m\mathbf{x} \vdash \underline{\mathbb{e}_{\alpha}}\mathbf{1}^m\underline{\mathbf{x}}, t_{m[3]} \quad \text{or} \quad \dots \end{split}$$

 $|s|check_1|t\rangle$ satisfies s. $@_{\alpha}1^m x \vdash @_{\alpha}1^m x, t$ or s. $@_{\alpha}1^{\omega} \uparrow$ or halt. $|s|search_1|t_0, t_1, t_2\rangle$ satisfies s. $@_{\alpha}1^m \mathbf{x} \vdash @_{\alpha}1^m \mathbf{x}, t_{m[3]}$ or . . . **RCM** ingredients: $|s|test_1|z,p\rangle$ and $|s|test_2|z,p\rangle$ testing counters

increment counter

decrement counter

 $|s|inc1|t, co\rangle$ and $|s|inc2|t, co\rangle$ $|s|dec_1|t, co\rangle$ and $|s|dec_2|t, co\rangle$

$$\begin{split} & [s|\text{check}_1|t\rangle \quad \text{satisfies} \quad s. \ \underline{\mathbb{e}_{\alpha}} \mathbb{1}^m \mathsf{x} \vdash \underline{\mathbb{e}_{\alpha}} \mathbb{1}^m \mathsf{x}, t \quad \text{or} \quad s. \ \underline{\mathbb{e}_{\alpha}} \mathbb{1}^{\omega} \uparrow \quad \text{or halt.} \\ & [s|\text{search}_1|t_0, t_1, t_2\rangle \quad \text{satisfies} \quad s. \ \underline{\mathbb{e}_{\alpha}} \mathbb{1}^m \mathsf{x} \vdash \mathbb{e}_{\alpha} \mathbb{1}^m \underline{\mathsf{x}}, t_{m[3]} \quad \text{or} \quad \dots \\ & \textbf{RCM} \text{ ingredients:} \\ & \text{testing counters} \qquad [s|\text{test}_1|z, p\rangle \text{ and } [s|\text{test}_2|z, p\rangle \\ & \text{increment counter} \qquad [s|\text{incr}_1t, co\rangle \text{ and } [s|\text{inc}_2|t, co\rangle \\ & \text{decrement counter} \qquad [s|\text{decr}_1t, co\rangle \text{ and } [s|\text{dec}_2|t, co\rangle \end{split}$$

Simulator [s $|RCM_{\alpha}|co_1, co_2, \ldots\rangle$ initialize then compute

$$\begin{split} & [s|\text{check}_1|t\rangle \quad \text{satisfies} \quad \text{s.} \; \underline{\mathbb{e}_{\alpha}} \mathbb{1}^m \mathsf{x} \vdash \underline{\mathbb{e}_{\alpha}} \mathbb{1}^m \mathsf{x}, t \quad \text{or} \quad \text{s.} \; \underline{\mathbb{e}_{\alpha}} \mathbb{1}^{\omega} \uparrow \quad \text{or halt.} \\ & [s|\text{search}_1|t_0, t_1, t_2\rangle \quad \text{satisfies} \quad \text{s.} \; \underline{\mathbb{e}_{\alpha}} \mathbb{1}^m \mathsf{x} \vdash \mathbb{e}_{\alpha} \mathbb{1}^m \underline{\mathsf{x}}, t_{m[3]} \quad \text{or} \quad \dots \\ & \textbf{RCM} \text{ ingredients:} \\ & \text{testing counters} \qquad [s|\text{test}_1|z, p\rangle \text{ and } [s|\text{test}_2|z, p\rangle \\ & \text{increment counter} \qquad [s|\text{incr}_1|t, co\rangle \text{ and } [s|\text{incr}_2|t, co\rangle \\ & \text{decrement counter} \qquad [s|\text{decr}_1|t, co\rangle \text{ and } [s|\text{decr}_2|t, co\rangle \end{split}$$

Simulator $[s|RCM_{\alpha}|co_1, co_2, ... \rangle$ initialize then compute

 $[\mathbf{s}|\mathbf{check}_{\alpha}|t\rangle = [\mathbf{s}|\mathbf{RCM}_{\alpha}|\mathbf{co}_{1},\mathbf{co}_{2},\ldots\rangle + \langle \mathbf{co}_{1},\mathbf{co}_{2},\ldots|\mathbf{RCM}_{\alpha}|\mathbf{s}]$

2. Reversible Turing Machines

20

23

25

28

27

28

33

35

38

37

39

Program it!

```
1 def [s]search<sub>1</sub>|t_0, t_1, t_2\rangle :
                                                                     41 def [s|endinc<sub>1</sub>|t,co) :
    s. @_{\alpha} \vdash @_{\alpha}, I
    I. \rightarrow . u
    u. \underline{x} \vdash \underline{x}, t_0
     |1x \vdash 1x, t_1|
     | 11x \vdash 11x, t_2
     | 111 ⊢ 111.c
    call [c|check1 |p) from 1
                                                                     48
    p. 111 ⊢ 111./
                                                                     49
                                                                         de
def [s|search_2|t_0, t_1, t_2\rangle :
    s. x ⊢ x,1
    I. \rightarrow . u
    u. y ⊢ y, t<sub>0</sub>
     |2y \vdash 2y, t_1|
     |22y \vdash 22y, t_2
                                                                     56
     222 ⊢ 222, c
                                                                     67
                                                                         de
    call [c|check<sub>2</sub>|p) from 2
    p. 222 ⊢ 222.1
                                                                          de
def [s|test1|z,p) :
                                                                     61
    s. @_{\alpha}x \vdash @_{\alpha}x, z
      \overline{e_{\alpha}}1 \vdash \overline{e_{\alpha}}1, p
                                                                     64
                                                                         de
def [s|endtest_2|z, p\rangle :
    s. xy ⊢ xy.z
     | \underline{x}2 \vdash \underline{x}2, p
def [s|test_2|z,p\rangle :
     [s|search1|t0,t1,t2)
     [to]endtest2|z0.p0)
     t_1 endtest z_1, p_1
                                                                     72
                                                                         de
     [t_2|endtest2|z_2, p_2\rangle
     \langle z_0, z_1, z_2 | search_1 | z \rangle
     \langle p_0, p_1, p_2 | \text{search}_1 | p \rangle
                                                                     76
def [s|mark1|t.co) :
    s. v1 ⊢ 2v.t
      yx⊢yx,co
                                                                     80
                                                                         de
                                                                     81
```

$ s search_2 r_0, r_1, r_2\rangle$	84	s. <u>x</u> 2 ⊢ 1 <u>x</u> , c
$[r_0 mark_1 t_0, co_0 \rangle$	85	xy1 ⊢ 1xy, pt
$[r_1 mark_1 t_1, co_1)$	86	xyx ⊢ 1yx, pco
$ r_2 $ mark ₁ $ t_2, co_2\rangle$	87	[c endinc1 pt0,pco0)
$\langle t_2, t_0, t_1 \text{search}_2 t $	88	pt0. →, t0
(co0, co1, co2 search2 co]	89	t0. 2 ⊢ 2, pt
	90	pt. ←, t
f [s inc21 t,co) :	91	pco0. x ⊢ 2,pco
$ s $ search ₁ $ r_0, r_1, r_2\rangle$	92	pco. ←,zco
$ r_0 $ endinc ₁ $ t_0, co_0\rangle$	93	zco. 1 ⊢ x, co
$[r_1 endinc_1 t_1, co_1)$	94	
$[r_2 $ endinc ₁ $ t_2, co_2)$	95	def [s inc11 t,co) :
$\langle t_0, t_1, t_2 \text{search}_1 t]$	96	$ s $ search ₁ $ r_0, r_1, r_2\rangle$
(co0, co1, co2 search1 co]	97	$ r_0 $ pushinc $ t_0, co_0\rangle$
	98	$ r_1 $ pushinc $ t_1, co_1\rangle$
$f[s dec_{1} t\rangle$:	22	$ r_2 $ pushinc $ t_2, co_2\rangle$
(s, co inc21 t]	100	$\langle t_2, t_0, t_1 \text{search}_1 t \rangle$
	101	(co0, co1, co2 search1 co]
f [s mark ₂ t, co) :	102	(
s. y2 ⊢ 2y, t	103	def $[s decr_1 t\rangle$:
yx⊢yx,co	104	(s, co inc11 t]
	105	
f [s endinc ₂ t, co) :	106	def $[s pushinc_{0} t, co\rangle$:
$ s search_2 r_0, r_1, r_2\rangle$	107	s. x2 ⊢ 1x, c
$[r_0 mark_2 t_0, co_0)$	108	xy2 ⊢ 1xy, pt
$[r_1 mark_2 t_1, co_1)$	109	xyy ⊢ 1yy, pco
$[r_2 mark_2 t_2, co_2\rangle$	110	[c endinc ₂ pt0,pco0)
$\langle t_2, t_0, t_1 \text{search}_2 t]$	111	pt0. →, t0
(co ₀ , co ₁ , co ₂ search ₂ co]	112	t0. 2 ⊢ 2, pt
	113	pt. ←, t
f [s inc2 ₂ t,co) :	114	pco0. x ⊢ 2,pco
$ s search_1 r_0, r_1, r_2\rangle$	115	pco. ←,zco
$ r_0 $ endinc ₂ $ t_0, co_0\rangle$	116	zco. 1 ⊢ x, co
$[r_1 endinc_2 t_1, co_1\rangle$	117	
$[r_2 \text{endinc}_2 t_2, co_2\rangle$	118	def [s inc12 t,co> :
$\langle t_0, t_1, t_2 \text{search}_1 t]$	119	$ s $ search ₁ $ r_0, r_1, r_2\rangle$
(co ₀ , co ₁ , co ₂ search ₁ co]	120	$ r_0 $ pushinc $ t_0, co_0\rangle$
	121	$ r_1 $ pushinc $ t_1, co_1\rangle$
$f[s dec_{2} t\rangle$:	122	$ r_2 $ pushinc $ t_2, co_2\rangle$
$(s, co inc2_2 t]$	123	$\langle t_2, t_0, t_1 \text{search}_1 t \rangle$
	124	(co0, co1, co2 search1 co]
		())

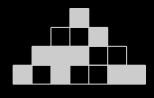
as def $[s | pushinc_1 | t, co \rangle$: def $[s|dec_{12}|t\rangle$: 1x.c 126 (s. colincial) 1xy, pt 127 1yx,pco 128 $nc_1 | pt0, pco0 \rangle$ def $[s|init_1|r\rangle$: tO $s \rightarrow \mu$ u. 11 ⊢ xv.e , pt e. ←.r - 2.pco 153 def $[s|RCM_1|co_1, co_2\rangle$: $|s|init_1|s_0\rangle$ x,co 125 $|s_0|$ test $|s_{17}, n\rangle$ 138 (1 | t. co) ; [s1 |inc11 | s2. co1) [s2 |inc21 |s2. co2) $h_1 | r_0, r_1, r_2 \rangle$ ninc. to. coo [s2 test1 n', s10) 139 $\operatorname{hinc}_1 | t_1, co_1 \rangle$ (s1z, s1p test1|s1] hinc, t2, co2 def $[s|init_2|r\rangle$: search1 t . co | search | co | s. →. u u. 22 ⊢ xv. e 145 e. ←. r $t_1 | t > :$ $ncr_1[t]$ def $[s|RCM_2|co_1, co_2\rangle$: shinc, t. co): [s|init2|s0) 148 so testi s1. n) x.c 149 [s1 |inc12 | s2. CO1) 1xy, pt 150 [s2|inc22|s3, co2) 1yy,pco 151 [s3]test1[n', s10] $nc_2 | pt0, pco0 \rangle$ 152 (s17, s10 test1 s1] 153 0 . pt fun $[s]check_1|t$: [s|RCM1|co1,co2,...) 150 - 2,pco (co1, co2, ... |RCM1|t] zco x,co fun $[s|check_2|t)$: 150 [s|RCM₂|co₁, co₂,...) alt.co) : 160 $\langle co_1, co_2, \ldots | RCM_2 | t \rangle$ $h_1 | r_0, r_1, r_2 \rangle$ 161 $hinc_0 | t_0, co_0 \rangle$ $\operatorname{ninc}_2 t_1, co_1$

- Idea Reduce IP to PP:
 - (1) **IP** is still undecidable for RTM without periodic orbit.

- Idea Reduce IP to PP:
 - (1) IP is still undecidable for RTM without periodic orbit.
 - (2) Let $\mathcal{M} = (S, \Sigma, T)$ be a RTM without periodic orbit Let \mathcal{M}' be the complete RTM with set of states $S \times \{+, -\}$ simulating \mathcal{M} on + and \mathcal{M}^{-1} on - and inversing polarity on halting states.

- Idea Reduce IP to PP:
 - (1) IP is still undecidable for RTM without periodic orbit.
 - (2) Let $\mathcal{M} = (S, \Sigma, T)$ be a RTM without periodic orbit Let \mathcal{M}' be the complete RTM with set of states $S \times \{+, -\}$ simulating \mathcal{M} on + and \mathcal{M}^{-1} on - and inversing polarity on halting states.

(3)
$$\mathcal{M}'$$
 is periodic iff \mathcal{M} is mortal.



3. Reversible Cellular Automata

A **CA** is a triple (S, r, f) where S is a finite set of states, r the radius and $f : S^{2r+1} \rightarrow S$ the local rule.

DDS $(S^{\mathbb{Z}}, G)$ where $\forall z \in \mathbb{Z}, \ G(c)(z) = f(c(z-r), \dots, c(z+r))$

Idea Reduce **PP** for RTM to **PP** for RCA:

(1) **PP** is still undecidable for **complete** RTM.

Idea Reduce PP for RTM to PP for RCA:

(1) **PP** is still undecidable for **complete** RTM.

(2) Let
$$\mathcal{M} = (S, \Sigma, T)$$
 be a complete RTM
Let $(S', 2, f)$ be the RCA with set of states
 $\Sigma \times (S \times \{+, -\} \cup \{\leftarrow, \rightarrow\})$ simulating \mathcal{M} on $+$ and \mathcal{M}^{-1}
on $-$ on two levels.

Idea Reduce PP for RTM to PP for RCA:

(1) **PP** is still undecidable for **complete** RTM.

(2) Let
$$\mathcal{M} = (S, \Sigma, T)$$
 be a complete RTM
Let $(S', 2, f)$ be the RCA with set of states
 $\Sigma \times (S \times \{+, -\} \cup \{\leftarrow, \rightarrow\})$ simulating \mathcal{M} on $+$ and \mathcal{M}^{-1}
on $-$ on two levels.

(3) In case of local inconsistency, invert polarity.

Idea Reduce PP for RTM to PP for RCA:

(1) **PP** is still undecidable for **complete** RTM.

(2) Let
$$\mathcal{M} = (S, \Sigma, T)$$
 be a complete RTM
Let $(S', 2, f)$ be the RCA with set of states
 $\Sigma \times (S \times \{+, -\} \cup \{\leftarrow, \rightarrow\})$ simulating \mathcal{M} on $+$ and \mathcal{M}^{-1}
on $-$ on two levels.

- (3) In case of local inconsistency, invert polarity.
- (4) The RCA is periodic iff \mathcal{M} is periodic.

 \sim

Open Problems with conjectures

Conjecture 1 It is undecidable whether a given complete 2-RCM admits a periodic configuration. (proven if you remove complete or replace 2 by 3)

Conjecture 2 There exists a complete **RTM** without a periodic configuration. *(known for DTM [BCN02])*

Conjecture 3 It is undecidable whether a given complete **RTM** admits a periodic configuration. *(known for DTM [BCN02])*