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Discrete dynamical systems.

Definition A DDS is a pair (X, F) where X is a topological space
and F : X → X is a continuous map.

.

The orbit of x ∈ X is the sequence (Fn(x)) obtained by iterating F.

In this talk, X = SZ where S is a finite alphabet and X is endowed
with the Cantor topology (product of the discrete topology on S),
and F is a continuous map that commutes with the shift map σ:
F ◦ σ = σ ◦ F where σ(x)(z) = x(z + 1).
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Two dynamical properties.

We consider two simple dynamical properties (as opposed to more
computational properties like reachability questions).

Definition A DDS (X, F) is periodic if for all x ∈ X there exists
n ∈ N such that Fn(x) = x.

Definition A DDS (X, F) is nilpotent if there exists 0 ∈ X such that
for all x ∈ X there exists n ∈ N such that Fn(x) = 0.

Question With a proper recursive encoding of the DDS, can we
decide given a DDS if it is periodic? if it is nilpotent?
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Contents of the talk.

1. cellular automata
more combinatorial definitions

2. domino and immortality problems
some undecidability tools

3. undecidable dynamical properties
applying tools to cellular automata
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1. cellular automata



Cellular automata.

Definition A CA is a triple (S, r, f) where S is a finite set of states,
r ∈ N is the radius and f : S2r+1 → S is the local rule.

A configuration c ∈ SZ is a coloring of Z by S.

The global map F : SZ → SZ applies f uniformly and locally:

∀c ∈ SZ,∀z ∈ Z, F(c)(z) = f(c(z − r), . . . , c(z + r)).

A space-time diagram∆ ∈ SN×Z satisfies, for all t ∈ Z+,
∆(t + 1) = F(∆(t)).

The associated DDS is (SZ, F).
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Space-time diagram.
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S = {0, 1, 2}, r = 1, f(x, y, z) = ⌊6430564760289/39x+3y+z⌋ (mod 3)

1. cellular automata 7/24



König’s lemma.

König’s lemma Every infinite tree with finite branching admits an
infinite path.

For all n ∈ N and u ∈ S2n+1, the cylinder [u] ⊆ SZ is

[u] =
{

c ∈ SZ
∣∣∣∀i ∈ [−n, n] c(i) = ui+n

}
.

For all C ⊆ SZ, the König treeAC is the tree of cylinders of C.

The toppingAC ⊆ SZ of a König tree is the set of configurations
tagging an infinite path from the root (intersection of the cylinders on the path).

Definition The König topology over SZ is the topology whose close
sets are the toppings of König trees.
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Curtis-Hedlund-Lyndon’s theorem.

König and Cantor topologies coincide: their open sets are unions of
cylinders. Compacity arguments have combinatorial counterparts.

The clopen sets are finite unions of cylinders.

Therefore in this topology continuity means locality.

Theorem [Hedlund 1969] The continuous maps commuting with
the shift coincide with the global maps of cellular automata.

Cellular automata have a dual nature : topological maps with finite
automata description.
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Periodicity.

A CA is periodic iff there exists a
uniform period n ∈ Z+ such that
Fn is the identity map.

Hint Take the period of a
universal configuration
containing all finite words on S.

The Periodicity Probem (PP)
given a CA decide if it is periodic.
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Nilpotency.

A CA is nilpotent iff there exists a
uniform bound n ∈ Z+ such that
Fn is a constant map.

Hint Take the bound of a
universal configuration
containing all finite words on S.

The Nilpotency Probem (NP)
given a CA decide if it is nilpotent.
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2. domino and immortality problems



Entscheidungsproblem: the ∀∃∀ case.

Hilbert’s Entscheidungsproblem (semantic version) To find a
method which for every sentence of elementary quantification theory
yields a decision as to whether or not the sentence is satisfiable.

In the 60s, the classical decision problem is studied with respect to
classes of quantification types.

One big open class: the ∀∃∀ class. Wang and Büchi introduce in
1961 two decision problems in order to solve it.

The problem is proved undecidable in 1962 by Kahr, Moore and
Wang using a simpler reduction.
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The Domino Problem (DP).
“Assume we are given a finite set of square plates of the same size
with edges colored, each in a different manner. Suppose further there
are infinitely many copies of each plate (plate type). We are not
permitted to rotate or reflect a plate. The question is to find an
effective procedure by which we can decide, for each given finite set of
plates, whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates subject to the
restriction that adjoining edges must have the same color.”

(Wang, 1961)
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Aperiodicity in DP.

The set of tilings of a tile set T is a compact subset of TZ2
.

By compacity, if a tile set does not tile the plane, there exists a
square of size n× n that cannot be tiled.

Tile sets without tilings are recursively enumerable.

A set of Wang tiles with a periodic tiling admits a biperiodic tiling.

Tile sets with a biperiodic tiling are recursively enumerable.

Undecidability is to be found in aperiodic tile sets, tile sets that only
admit aperiodic tilings.
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Undecidability of DP.
Theorem [Berger 1964] DP is undecidable.

Composition technique [Robinson 1971, O 2008] Define an

unambiguous substitution, encode it with local constraints to obtain an

aperiodic tile set. Modify the tile set to insert everywhere prefixes of

unbounded length of TM computation.

Fixpoint technique [Durand, Romashchenko, Shen 2008] Define a

tile set with prototiles enforcing tiling constraints using a Turing machine. A

fixpoint tile set is aperiodic. Modify the tile set to insert everywhere prefixes

of unbounded length of TM computation.

Transducer and sturmian words [Kari 2007] Consider lines of tilings

as a transducer coding a relation on biinfinite words. Encode tuples of real

numbers in a sturmian way, the transducer enforcing affine relations.

Reduce the immortality problem of Turing machines to the immortality

problem of affine maps.
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The Immortality Problem (IP).

“(T2) To find an effective method, which for every Turing-machine M
decides whether or not, for all tapes I (finite and infinite) and all states B,
M will eventually halt if started in state B on tape I” (Büchi, 1962)

A TM is a triple (S, Σ, T) where S is a finite set of states, Σ a finite
alphabet and T ⊆ (S× {←,→}× S) ∪ (S×Σ × S×Σ) is a set
of instructions.

(s, δ, t) : “in state s move according to δ and enter state t.”

(s, a, t, b) : “in state s, reading letter a, write letter b and enter state t.”

Partial DDS (S×ΣZ,G) where G is a partial continuous map.

A TM is mortal if all configurations are ultimately halting.
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Aperiodicity in IP.

As S×ΣZ is compact, G is continuous and the set of halting
configurations is open, mortality implies uniform mortality.

Mortal TM are recursively enumerable.

TM with a periodic orbit are recursively enumerable.

Undecidability is to be found in aperiodic TM, TM whose infinite
orbits are all aperiodic.
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Undecidability of IP.

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

The TM is immortal iff the 2-CM halts from (s0, (0, 0)).
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Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
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1111111111111x2222y search x →
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Undecidability of IP.

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

@1
s′1
111111111111x2222y bounded search 1

The TM is immortal iff the 2-CM halts from (s0, (0, 0)).
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Undecidability of IP.

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

@11
s′2
11111111111x2222y bounded search 2

The TM is immortal iff the 2-CM halts from (s0, (0, 0)).

2. domino and immortality problems 20/24



Undecidability of IP.

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

@111
s′3
1111111111x2222y bounded search 3

The TM is immortal iff the 2-CM halts from (s0, (0, 0)).
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Undecidability of IP.

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

@@s
s0
xy1111111111x2222y recursive call

The TM is immortal iff the 2-CM halts from (s0, (0, 0)).
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Undecidability of IP.

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

@@s11111x22222y
sc
x2222y ultimately in case of collision...

The TM is immortal iff the 2-CM halts from (s0, (0, 0)).
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Undecidability of IP.

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

@@s
sb
xy1111111111x2222y ...revert and clean

The TM is immortal iff the 2-CM halts from (s0, (0, 0)).
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Undecidability of IP.

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

@1111
s′1
111111111x2222y pop and continue bounded search 1

The TM is immortal iff the 2-CM halts from (s0, (0, 0)).
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Undecidability of IP.

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

@11111
s′2
11111111x2222y bounded search 2

The TM is immortal iff the 2-CM halts from (s0, (0, 0)).
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Undecidability of IP.

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

@111111
s′3
1111111x2222y bounded search 3

The TM is immortal iff the 2-CM halts from (s0, (0, 0)).
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Undecidability of IP.
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segments of the simulation of increasing sizes:

@111@s
s0
xy1111111x2222y recursive call
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Undecidability of IP.

Theorem [Hooper 1966] IP is undecidable.

Reduction reduce HP for 2-CM (s, @1mx2ny)

Problem unbounded searches produce immortal configurations.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls to initial
segments of the simulation of increasing sizes:

@111@s
s0
xy1111111x2222y recursive call

The TM is immortal iff the 2-CM halts from (s0, (0, 0)).
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3. undecidable dynamical properties



Undecidability of the nilpotency problem.

A tile set is NW-deterministic if, for each pair of colors, there exists
at most one tile with these colors on N and W sides.

Theorem [Kari 1992] NW-deterministic DP is undecidable.

The limit set ΛF of a CA F is the non-empty subshift
ΛF =

⋂
n∈N Fn(SZ) of configurations appearing in biinfinite

space-time diagrams∆ ∈ SZ×Z such that
∀t ∈ Z, ∆(t + 1) = F(∆(t)).

NW-deterministic DP reduces to NP.

Theorem [Kari 1992] NP is undecidable.
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Undecidability of the periodicity problem.

A TM is reversible if it is deterministic with a deterministic inverse.

Theorem [Kari O 2008] reversible IP is undecidable.

This implies to prove Hooper’s result again with more constraints
(no easy reduction to the reversible case preserving mortality).

Reversible IP reduces to PP.

Theorem [Kari O 2008] PP is undecidable.
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Undecidability of dynamical properties.

Undecidability is not necessarily a negative result:
it is a hint of complexity.

There exists non trival nilpotent and periodic CA with a very large
bound for quite simple CA (the bound grows faster than any
recursive function).

Next step is to consider dynamical properties from topological
dynamics, like K °urka’s classification.

Open Problem Is positive expansivity decidable?
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