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Cellular automata

Definition A cellular automaton (CA) is a quadruple (d, S, N, f)
where S is a finite set of states, N C,,. Z° is the neighborhood
and f: SN — Sis the local rule.

A configuration c € ¥ isa coloring of Z° by S.
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The global map F : s g% applies f uniformly and locally:

Ve € SZ,VZ € Z, F(C)(Z) = f(C\z—l-N)'

A space-time diagram A € SNXZd satisfies, forallt € Z™*,
Alt+1) =F(A(t)).
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Space-time diagram

time goes up

= |6430564760289/3% ¥ 2| (mod 3
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Universality in higher dimensions

Construction of universal CA appeared with CA as a tool to embed
computation into the CA world. First, for 2D CA
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A natural idea in 2D is to emulate universal boolean circuits by
embedding ingredients into the CA space: signals, wires, turns,
fan-outs, gates, delays, clocks, etc.
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Banks’ 2-state Universal CA
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Banks’ CA: gadgets
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Universality in 1D

Boolean circuits are less intuitive to simulate, but it is easy to
simulate sequential models of coumputation like Turing machines.
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A. R. Smith lll. Simple computation-universal cellular spaces. 1971
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A cellular automaton is Turing-universality if
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A cellular automaton is Turing-universality if... What exactly is the
formal definition? What is a non universal CA?

A consensual yet formal definition is unknown and seems difficult to
achieve [Durand & Roka 1999].

7/24



Another path to universality

Sequential models of computations are basically FSM + storage.

bus

Boolean circuits can also simulate parallel models of computation.

This leads to a notion of intrinsic universality that is used implicitly
in the literature [Banks 1970] [Albert & Culik 1l 1987].
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1. Intrinsic Universality



Bulking classifications

Idea define a quasi-order on cellular automata, equivalence
classes capturing behaviors.

Grouping quasi-order [Mazoyer & Rapaport 1999] was introduced
as a classification to capture simple algebraic properties of CA.

Bulking quasi-order [NO PhD 2002] is an extension of grouping to
capture algorithmic properties and intrinsic universality as a
maximal equivalence class.

The study was further developed in [Theyssier PhD 2005] where
some less strict quasi-order where developed (skipped in this talk).
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The sub-automaton relation

A CA A is algorithmically simpler than a CA B if all the space-time
diagrams of A are space-time diagrams of 5.

Formally, A C B if there exists @ : S4 — Sg injective such that
PoGyu=Gpo@

That is, the following diagram commutes:

c —= 9

Remark Different elementary relations can be considered.
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Bulking

We quotient the set of CA by discrete affine transformations, the
only geometrical transformations preserving CA.

The (m, n, k) transformation of A satisfies:
G g(mny = 000" 0 G 00"
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The bulking quasi-order is defined by A < B if there exists
(m,n, k) and (m’,n’ k) such that
Almnk) C Bm’ 'K
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The big picture

no recursive “\/-1” Ivl
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Intrinsic universality

A CA U is intrinsically universal if it is maximal for <,
i.e. for all CA A, there exists o such that A C /.

Theorem There exists Turing universal CA that are not intrinsically
universal.

Turing universality is obtained in a very classical way to ensure compatibility with

your own definition.

Theorem [NO STACS 2003] It is undecidable, given a CA to
determine if it is intrinsically universal.

The proof proceeds by reduction of the nilpotency problem on spatially periodic

configurations.
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2. Constructing small universal CA



Using boolean circuits

Every 2D intrinsically universal CA can be converted to a 1D
intrinsically universal CA [Banks 1970].

Cut slices of a periodic configuration, catenate them horizontally,
use the adequate neighborhood.
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The neighborhood can be transformed into radius 1 at the cost of
increase of the number of states.
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Using highly parallel Turing machines

table  — | N table  — | N table ¢ |

.

table  FENNNESN  teble  FENNNNESE tabe  NEU NN

Use one Turing-like head per macro-cell, the moving sequence
being independent of the computation.
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6 states

right Op
left Op

We constructed a 6 states intrinsically
universal CA of radius 1 embedding boolean
circuits into the line [NO ICALP 2002].

i
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4 states

Using our framework for particles and collisions, this was improved
to 4 states by arithmetical encoding [NO Richard CSP 2008].

2. Constructing small universal CA 19/24



3. ldentifying non universal CA



Proving non universality

We have a formal definition of intrinsic universality. How do we
prove that a CA is not universal?

Easy if the CA has a property that cannot be a property of universal
CA: injectivity, surjectivity, ultimate periodicity, additivity, etc.

What about non trivial CA?

Maybe communication complexity might help?
[Goles, Meunier, Rapaport & Theyssier CSP 2008]
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Deciding the pattern problem

Pattern Problem Given an ultimately periodic configuration and a
finite pattern, decide whether the pattern appears in the orbit of the
configuration.

Decidable for simple CA.
0’-complete for intrinsically universal CA.

...for non trivial CA, this requires intermediate degrees.
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Complexity of the verification problem

Verification Problem Given a finite ball of radius rt and a state,
decide whether in t steps, the ball reduces to the state.

2rt +1

Constant for trivial CA.
P-complete for intrinsically universal CA.

...for non trivial CA, this requires separating P from lower classes.
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To go further...

Open Problem Is rule 110 intrinsically universal?

(we know that particles and collisions of Matthew are not enough)

Find better methods and invariants to prove non universality.
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