
Autour de deux propriétés dynamiques
simples indécidables dans les
automates cellulaires

Nicolas Ollinger (LIF, Aix-Marseille Université, CNRS)

GdT automates — LIAFA, 6 fév. 2009

Discrete dynamical systems

Definition A DDS is a pair (X, F) where X is a topological
space and F : X → X is a continuous map.

The orbit of x ∈ X is the sequence (Fn(x)) obtained by
iterating F .

In this talk, X = SZ where S is a finite alphabet and X is
endowed with the Cantor topology (product of the discrete
topology on S), and F is a continuous map commuting with
the shift map σ : F ◦ σ = σ ◦ F where σ(x)(z) = x(z + 1).

2/54

Two dynamical properties

We consider two simple dynamical properties (as opposed to
more computational properties like reachability questions).

Definition A DDS (X, F) is periodic if for all x ∈ X there
exists n ∈ N such that Fn(x) = x.

Definition A DDS (X, F) is nilpotent if there exists 0 ∈ X
such that for all x ∈ X there exists n ∈ N such that
Fn(x) = 0.

Question With a proper recursive encoding of the DDS,
can we decide given a DDS if it is periodic? if it is nilpotent?

3/54

1. cellular automata

Cellular automata

Definition A CA is a triple (S, r , f) where S is a finite set of
states, r ∈ N is the radius and f : S2r+1 → S is the local
rule of the cellular automaton.

A configuration c ∈ SZ is a coloring of Z by S.

The global map F : SZ → SZ applies f uniformly and locally:

∀c ∈ SZ,∀z ∈ Z, F(c)(z) = f(c(z − r), . . . , c(z + r)).

A space-time diagram ∆ ∈ SN×Z satisfies, for all t ∈ Z+,∆(t + 1) = F(∆(t)).
The associated DDS is (SZ, F).

1. cellular automata 5/54

Space-time diagram

ti
m

e
g
o
es

u
p

S = {0,1,2}, r = 1, f(x,y, z) =
⌊
6430564760289/39x+3y+z⌋ (mod 3)

1. cellular automata 6/54

König’s lemma

König’s lemma Every infinite tree with finite branching
admits an infinite path.

For all n ∈ N and u ∈ S2n+1, the cylinder [u] ⊆ SZ is

[u] =
{
c ∈ SZ

∣∣∣∀i ∈ [−n,n] c(i) = ui+n} .

For all C ⊆ SZ, the König tree AC is the tree of cylinders
intersecting C ordered by inclusion.

The topping AC ⊆ SZ of a König tree is the set of
configurations tagging an infinite path from the root
(intersection of the cylinders on the path).

Definition The König topology over SZ is the topology
whose close sets are the toppings of König trees.

1. cellular automata 7/54

Curtis-Hedlund-Lyndon’s theorem

König and Cantor topologies coincide: their open sets are
unions of cylinders. Compacity arguments have
combinatorial counterparts.

The clopen sets are finite unions of cylinders.

Therefore in this topology continuity means locality.

Theorem [Hedlund 1969] The continuous maps commuting
with the shift coincide with the global maps of cellular
automata.

Cellular automata have a dual nature : topological maps with
finite automata description.

1. cellular automata 8/54

Nilpotency

A CA is nilpotent iff there
exists a uniform bound
n ∈ Z+ such that Fn is a
constant map.

Hint Take the bound of a
universal configuration
containing all words on S.

The Nilpotency Probem (NP)
given a CA decide if it is
nilpotent.

1. cellular automata 9/54

Periodicity

A CA is periodic iff there exists
a uniform period n ∈ Z+ such
that Fn is the identity map.

Hint Take the period of a
universal configuration
containing all words on S.

The Periodicity Probem (PP)
given a CA decide if it is
periodic.

1. cellular automata 10/54

Undecidability of dynamical properties

Both NP and PP are recursively undecidable.

Undecidability is not necessarily a negative result:
it is a hint of complexity.

There exists non trival nilpotent and periodic CA with a very
large bound for quite simple CA (the bound grows faster
than any recursive function).

To prove these results we inject computation into dynamics.

A direct reduction of the halting problem of Turing machines
does not work.

1. cellular automata 11/54

Back to the nilpotency problem

The limit set ΛF = ⋂n∈N Fn(SZ) of a CA F is the non-empty
subshift of configurations appearing in biinfinite space-time
diagrams ∆ ∈ SZ×Z such that ∀t ∈ Z,∆(t + 1) = F(∆(t)).
A CA is nilpotent iff its limit set is a singleton.

A state ⊥ ∈ S is spreading if f(N) = ⊥ when ⊥ ∈ N.

A CA with a spreading state ⊥ is not nilpotent iff it admits a
biinfinite space-time diagram without ⊥.

A tiling problem Find a coloring ∆ ∈ (S \ {⊥})Z2
satisfying

the tiling constraints given by f .

1. cellular automata 12/54

Undecidability of the nilpotency problem

A classical undecidability result concerning tilings is the
undecidability of the domino problem (DP).

Theorem [Berger 1964] DP is undecidable.

Here we need a restriction on the set of tilings.

Theorem [Kari 1992] NW-deterministic DP is undecidable.

NW-deterministic DP reduces to NP for spreading CA.

Theorem [Kari 1992] NP is undecidable.

1. cellular automata 13/54

Back to the periodicity problem

A periodic CA is reversible, which for CA is the same as
bijective and even injective.

One can reduce the periodicity problem of complete
reversible Turing machines to PP.

Immortality is the property of having at least one
non-halting orbit.

One can reduce the immortality problem of reversible
Turing machines without periodic orbit to the periodicity
problem of complete reversible Turing machines.

1. cellular automata 14/54

Undecidability of the periodicity problem

A classical undecidability result concerning Turing machines
is the immortality problem (IP).

Theorem [Hooper 1966] IP is undecidable.

Here we need a restriction to reversible machines.

Theorem [Kari O 2008] Reversible IP is undecidable.

Reversible IP reduces to PP.

Theorem [Kari O 2008] PP is undecidable.

1. cellular automata 15/54

Revisiting classical results

For both NP and PP, we need a stronger version of a
classical result, essentially a restriction on inputs.

The difficult part of the proofs hides into this task.

The main difficulty is to understand the dusty proofs.

Hopefully, we tend to reuse this for other variants.

Now, we will discuss the main ingredients.

1. cellular automata 16/54

2. Domino Problem (CiE 2008)

Entscheidungsproblem: the ∀∃∀ case

Hilbert’s Entscheidungsproblem (semantic version) To
find a method which for every sentence of elementary
quantification theory yields a decision as to whether or not
the sentence is satisfiable.

In the 60s, the classical decision problem is studied with
respect to classes of quantification types.

One big open class: the ∀∃∀ class. Wang and Büchi
introduce in 1961 two decision problems in order to solve it.

The problem is proved undecidable in 1962 by Kahr, Moore
and Wang using a simpler reduction.

2. Domino Problem (CiE 2008) 18/54

The Domino Problem (DP)
“Assume we are given a finite set of square plates of the
same size with edges colored, each in a different manner.
Suppose further there are infinitely many copies of each
plate (plate type). We are not permitted to rotate or reflect
a plate. The question is to find an effective procedure by
which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates
subject to the restriction that adjoining edges must have
the same color.”

(Wang, 1961)

a b c d
ab

a c

d

d

2. Domino Problem (CiE 2008) 19/54

Aperiodicity in DP

The set of tilings of a tile set T is a compact subset of TZ2
.

By compacity, if a tile set does not tile the plane, there exists
a square of size n×n that cannot be tiled.

Tile sets without tilings are recursively enumerable.

A set of Wang tiles with a periodic tiling admits a biperiodic
tiling.

Tile sets with a biperiodic tiling are recursively enumerable.

Undecidability is to be found in aperiodic tile sets, tile sets
that only admit aperiodic tilings.

2. Domino Problem (CiE 2008) 20/54

Undecidability of DP: a short history
1964 Berger proves the undecidability of DP.

Two main type of related activities in the literature:

(1) construct aperiodic tile sets (small ones);

(2) give a full proof of the undecidability of DP (implies (1)).

From 104 tiles (Berger, 1964) to 13 tiles (Čulik, 1996)
aperiodic sets.

Seminal self-similarity based proofs (reduction from HP):

• Berger, 1964 (20426 tiles, a full PhD thesis)

• Robinson, 1971 (56 tiles, 17 pages, long case analysis)

• Durand et al, 2007 (Kleene’s fixpoint existence argument)

Tiling rows seen as transducer trace based proof:
Kari, 2007 (affine maps, short concise proof, reduces IP)

2. Domino Problem (CiE 2008) 21/54

In this talk

A new self-similarity based construction building on classical
proof schemes with concise arguments and few tiles:

1. two-by-two substitution systems and aperiodicity

2. an aperiodic tile set of 104 tiles

3. enforcing any substitution and reduction from HP
(sketch)

This work combines tools and ideas from:

[Berger 64] The Undecidability of the Domino Problem

[Robinson 71] Undecidability and nonperiodicity for tilings of the
plane

[Grünbaum Shephard 89] Tilings and Patterns, an introduction

[Durand Levin Shen 05] Local rules and global order, or
aperiodic tilings

2. Domino Problem (CiE 2008) 22/54

Two-by-two substitution systems

A 2×2 substitution system
maps a finite alphabet to 2×2
squares of letters on that
alphabet.

s : Σ→ Σê
The substitution is iterated to
generate bigger squares.

S : ΣP → Σ�(P)
∀z ∈ P,∀c ∈ ê,
S(C)(2z + c) = s(C(z))(c)

S(u · C) = 2u · S(C)

Σ = { , , ,
}

s : , + rotations

2. Domino Problem (CiE 2008) 23/54

Coloring the whole plane via limit sets

What is a coloring of the plane
generated by a substitution?

With tilings in mind the set of
colorings should be closed by
translation and compact.

We take the limit set of
iterations of the (continuous)
global map closed up to
translations.

ΛS = ⋂nΛnS where Λ0
S = ΣZ2

Λn+1
S ={
u · S(C)

∣∣∣C ∈ ΛnS , u ∈ ê}

s : , ,

S : ,

ΛS =

∪
 x

y

x,y∈Z2

2. Domino Problem (CiE 2008) 24/54

Unambiguous substitutions are aperiodic

A substitution is aperiodic if its limit set ΛS is aperiodic.

A substitution is unambiguous if, for every coloring C from
its limit set ΛS , there exists a unique coloring C′ and a
unique translation u ∈ ê satisfying C = u · S(C′).

Proposition 3. Unambiguity implies aperiodicity.

Sketch of the proof. Consider a periodic coloring with
minimal period p, its preimage has period p/2. ♦

Idea. Construct a tile set whose tilings are in the limit set of
an unambiguous substitution system.

2. Domino Problem (CiE 2008) 25/54

Coding tile sets into tile sets

A tile set τ is a triple
(T ,H ,V) where H and V
define horizontal and vertical
matching constraints.

The set of tilings of τ is Xτ .

A tile set (T ′,H ′,V ′) codes a
tile set (T ,H ,V), according
to a coding rule t : T → T ′ê if
t is injective and

Xτ′ = {u · t(C)|C ∈ Xτ , u ∈ ê} .

new tiles

layer 1

layer 2

τ H / ∼H V/ ∼V

coding tile set

coding rule

2. Domino Problem (CiE 2008) 26/54

Aperiodicity via unambiguous self-coding

A tile set (T ,H ,V) codes a substitution s : T → Tê if it
codes itself according to the coding rule s.

Proposition 4. A tile set both admitting a tiling and coding
an unambiguous substitution is aperiodic.

Sketch of the proof. Xτ ⊆ ΛS and Xτ ≠∅. ♦

2. Domino Problem (CiE 2008) 27/54

A coding scheme with fixpoint?

Better scheme: not strictly
increasing the number of tiles.

Problem. it cannot encode any
layered tile set, constraints
between layer 1 and layer 2
are checked edge by edge.

Solution. add a third layer
with one bit of information per
edge.

new tiles

layer 1

layer 2

layer 2H -colorsV -colors corners

coding tile set

coding rule

2. Domino Problem (CiE 2008) 28/54

Canonical substitution

Copy the tile in the SW corner
but for layer 1.

Put the only possible X in NE
that carry layer 1 of the
original tile on SW wire.

Propagate wires colors.

Let H et V tile propagate layer
3 arrows.

The substitution is injective.

(,α,β)

(,α,β)

,

,

2. Domino Problem (CiE 2008) 29/54

Aperiodicity: sketch of the proof

1. The tile set admits a tiling:
Generate a valid tiling by iterating the substitution rule:
Xτ ∩ΛS ≠∅.

2. The substitution is unambiguous:
It is injective and the projectors have disjoined images.

3. The tile set codes the substitution:

(a) each tiling is an image of the canonical substitution
Consider any tiling, level by level, short case analysis.

(b) the preimage of a tiling is a tiling
Straightforward by construction (preimage remove
constraints).

2. Domino Problem (CiE 2008) 31/54

Enforcing substitutions via tilings

Let π map every tile of τ(s′)
to s′(a)(u) where a and u are
the letter and the value of ê
on layer 1.

Theorem 2. Let s′ be any
substitution system. The tile
set τ(s′) enforces s′:
π
(
Xτ(s′)

)
= ΛS′ .

Idea. Every tiling of τ(s′)
codes an history of S′ and
every history of S′ can be
encoded into a tiling of τ(s′).

a

b = s(a)
(

1
1

)

a

b = s(a)
(

0
0

)

2. Domino Problem (CiE 2008) 32/54

Infinitely many squares of unbounded size

, t
t
t
t

, h
h
h
h

, v
v
v
v

t ,

h ,

v ,

t
t

t
t

t v t v

h t h t

t v t v

h t h t

t v t v

h t h t

t v t v

h t h t

t v t v

h t h t

t v t v

h t h t

t v t v

h t h t

t v t v

h t h t

2. Domino Problem (CiE 2008) 33/54

Reducing HP to DP
Any tiling by previous tile set
contains infinitely many finite
squares of unbounded size.

In each square, simulate the
computation of the given
Turing machine from an
empty tape.

Initial computation is enforced
in the SW corner.

Remove the halting state.

The tile set tiles the plan iff
the Turing machine does not
halt.

a

a

qD a
q

a

q a

a

qG a
q

a

q a

q a

q′? a′

2. Domino Problem (CiE 2008) 34/54

3. Immortality Problem (MFCS 2008)

The Immortality Problem (IP)

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

A TM is a triple (S,Σ, T) where S is a finite set of states, Σ a
finite alphabet and T ⊆ (S × {←,→}× S)∪ (S × Σ× S × Σ) is
a set of instructions.

(s, δ, t) : “in state s move according to δ and enter state t.”
(s, a, t, b) : “in state s, reading letter a, write letter b and enter
state t.”

Partial DDS (S × ΣZ, G) where G is a partial continuous map.

A TM is mortal if all configurations are ultimately halting.

3. Immortality Problem (MFCS 2008) 36/54

Aperiodicity in IP

As S × ΣZ is compact, G is continuous and the set of halting
configurations is open, mortality implies uniform mortality.

Mortal TM are recursively enumerable.

TM with a periodic orbit are recursively enumerable.

Undecidability is to be found in aperiodic TM, TM whose
infinite orbits are all aperiodic.

3. Immortality Problem (MFCS 2008) 37/54

In this talk

We investigate the (un)decidability of dynamical properties
of three models of reversible computation.

We consider the behavior of the models starting from
arbitrary initial configurations.

Immortality is the property of having at least one
non-halting orbit.

Periodicity is the property of always eventually returning
back to the starting configuration.

38/54

Models of reversible computation

Counter Machines (CM)

Turing Machines (TM)

Cellular Automata (CA)

A machine is deterministic if
there exists at most one
transition from each
configuration.

A machine is reversible if
there exists another machine
that can inverse each step of
computation.

39/54

The periodicity problem (PP)

S is complete if F is total.

A configuration x is n-periodic if Fn(x) = x.

S is periodic if all its configurations are periodic.

S is uniformly periodic if a uniform bound n exists such
that Fn is the identity map.

Periodicity Problem Given S ∈M, is S periodic?

When X is compact and the set of n-periodic configurations
is open, uniform periodicity is the same as periodicity.

40/54

Results

RCM

RTM

RCA

HP IP PP

[Morita96]

[Lecerf63]

Thm 1

[KL08]

Thm 3

Thm 7 Thm 8

Thm 12

denotes many-one reductions.

41/54

Reversible Counter Machines

A k-CM is a triple (S, k, T) where S is a finite set of states and
T ⊆ S × {0,+}k × Zk × {−,0,+} × S is a set of instructions.

(s,u, i,φ, t) ∈ T : “in state s with counter values u,
apply φ to counter i and enter to state t.”

DDS (S ×Nk, G) where G(c) is the unique c′ such that c ` c′.

3. Immortality Problem (MFCS 2008) 42/54

Immortality

[Minsky67] Every recursive function is computed by a 2-DCM
and thus HP is undecidable for 2-DCM.

[Hooper66] IP is undecidable for 2-DCM.
Idea for new proof Enforce infinite orbits to go through
unbounded initial segments of an orbit from x0 to reduce HP. ♦

[Morita96] Every k-DCM is simulated by a 2-RCM.
Idea Encode a stack with two counters to keep an history of
simulated instructions. ♦

Theorem 1 IP is undecidable for 2-RCM.
Idea Morita’s simulation preserves immortality. ♦

3. Immortality Problem (MFCS 2008) 43/54

Immortality

[Minsky67] Every recursive function is computed by a 2-DCM
and thus HP is undecidable for 2-DCM.

[Hooper66] IP is undecidable for 2-DCM.
Idea for new proof Enforce infinite orbits to go through
unbounded initial segments of an orbit from x0 to reduce HP. ♦

[Morita96] Every k-DCM is simulated by a 2-RCM.
Idea Encode a stack with two counters to keep an history of
simulated instructions. ♦

Theorem 1 IP is undecidable for 2-RCM.
Idea Morita’s simulation preserves immortality. ♦

3. Immortality Problem (MFCS 2008) 43/54

Immortality

[Minsky67] Every recursive function is computed by a 2-DCM
and thus HP is undecidable for 2-DCM.

[Hooper66] IP is undecidable for 2-DCM.
Idea for new proof Enforce infinite orbits to go through
unbounded initial segments of an orbit from x0 to reduce HP. ♦

[Morita96] Every k-DCM is simulated by a 2-RCM.
Idea Encode a stack with two counters to keep an history of
simulated instructions. ♦

Theorem 1 IP is undecidable for 2-RCM.
Idea Morita’s simulation preserves immortality. ♦

3. Immortality Problem (MFCS 2008) 43/54

Immortality

[Minsky67] Every recursive function is computed by a 2-DCM
and thus HP is undecidable for 2-DCM.

[Hooper66] IP is undecidable for 2-DCM.
Idea for new proof Enforce infinite orbits to go through
unbounded initial segments of an orbit from x0 to reduce HP. ♦

[Morita96] Every k-DCM is simulated by a 2-RCM.
Idea Encode a stack with two counters to keep an history of
simulated instructions. ♦

Theorem 1 IP is undecidable for 2-RCM.
Idea Morita’s simulation preserves immortality. ♦

3. Immortality Problem (MFCS 2008) 43/54

Reversible Turing Machines

A TM is a triple (S,Σ, T) where S is a finite set of states, Σ a
finite alphabet and T ⊆ (S × {←,→}× S)∪ (S × Σ× S × Σ) is a
set of instructions.

(s, δ, t) : “in state s move according to δ and enter state t.”
(s, a, t, b) : “in state s, reading letter a, write letter b and
enter state t.”

DDS (S × ΣZ, G) where G(c) is the unique c′ such that c ` c′.

3. Immortality Problem (MFCS 2008) 44/54

Immortality: a first attempt

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) ♦

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♦

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.

3. Immortality Problem (MFCS 2008) 45/54

Immortality: a first attempt

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) ♦

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♦

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.

3. Immortality Problem (MFCS 2008) 45/54

Immortality: a first attempt

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) ♦

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♦

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.

3. Immortality Problem (MFCS 2008) 45/54

Immortality: a first attempt

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) ♦

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♦

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.

3. Immortality Problem (MFCS 2008) 45/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@
s
1111111111111x2222y search x →

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@1
s′1
111111111111x2222y bounded search 1

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@11
s′2
11111111111x2222y bounded search 2

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111
s′3
1111111111x2222y bounded search 3

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@@s
s0
xy1111111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@@s11111x22222y
sc
x2222y ultimately in case of collision...

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@@s
sb
xy1111111111x2222y ...revert to clean

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@1111
s′1
111111111x2222y pop and continue bounded search 1

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@11111
s′2
11111111x2222y bounded search 2

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111111
s′3
1111111x2222y bounded search 3

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111@s
s0
xy1111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111@s
s0
xy1111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111@s
s0
xy1111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Immortality Problem (MFCS 2008) 46/54

Programming tips and tricks (1/2)

We designed a TM programming language called Gnirut:
http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/

First ingredient use macros to avoid repetitions:

s ax|x
→

1|2

x|x

[s|search|a〉

d
t

x|x
←

2|1

x|x

〈d|search|t]

b c→ ←
a|b

b|a

1 def [s|search|t〉 :
2 s. x ` x,u
3 u. →, r
4 r. 1 ` 2,u | x ` x, t
5

6 [s|search|a〉
7 a. →,b
8 b. a ` b, c | b ` a, c
9 c. ←,d

10 〈d|search|t]

3. Immortality Problem (MFCS 2008) 47/54

http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/

Programming tips and tricks (2/2)

Second ingredient use recursive calls:

s

c d

t→
0|1

←

1|1 1|0

[s|incr|t〉

b
@2|#

a
#|@2

1|@1 @1|1

1 fun [s|incr|t〉 :
2 s. →, r
3 r. 0 ` 1,b | 1 ` 1, c
4 call [c|incr|d〉 from 1 ⇐ call 1

5 d. 1 ` 0,b
6 b. ←, t
7

8 call [a|incr|b〉 from # ⇐ call 2

3. Immortality Problem (MFCS 2008) 48/54

Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Immortality Problem (MFCS 2008) 49/54

Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Immortality Problem (MFCS 2008) 49/54

Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Immortality Problem (MFCS 2008) 49/54

Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Immortality Problem (MFCS 2008) 49/54

Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Immortality Problem (MFCS 2008) 49/54

Program it!
1 def [s|search1|t0, t1, t2〉 :
2 s. @α ` @α, l
3 l.→,u
4 u. x ` x, t0

5 | 1x ` 1x, t1

6 | 11x ` 11x, t2

7 | 111 ` 111, c
8 call [c

∣∣check1

∣∣p
〉

from 1
9 p. 111 ` 111, l

10

11 def [s|search2|t0, t1, t2〉 :
12 s. x ` x, l
13 l.→,u
14 u. y ` y, t0

15 | 2y ` 2y, t1

16 | 22y ` 22y, t2

17 | 222 ` 222, c
18 call [c

∣∣check2

∣∣p
〉

from 2
19 p. 222 ` 222, l
20

21 def [s
∣∣test1

∣∣z,p
〉

:
22 s. @αx ` @αx, z
23 | @α1 ` @α1,p
24

25 def [s
∣∣endtest2

∣∣z,p
〉

:
26 s. xy ` xy, z
27 | x2 ` x2,p
28

29 def [s
∣∣test2

∣∣z,p
〉

:
30 [s|search1|t0, t1, t2〉
31

[
t0

∣∣endtest2
∣∣z0,p0

〉
32

[
t1

∣∣endtest2
∣∣z1,p1

〉
33

[
t2

∣∣endtest2
∣∣z2,p2

〉
34 〈z0, z1, z2|search1|z]
35

〈
p0,p1,p2

∣∣search1

∣∣p
]

36

37 def [s|mark1|t, co〉 :
38 s. y1 ` 2y, t
39 | yx ` yx, co
40

41 def [s|endinc1|t, co〉 :
42 [s|search2|r0, r1, r2〉
43 [r0|mark1|t0, co0〉
44 [r1|mark1|t1, co1〉
45 [r2|mark1|t2, co2〉
46 〈t2, t0, t1|search2|t]
47 〈co0, co1, co2|search2|co]
48

49 def [s|inc21|t, co〉 :
50 [s|search1|r0, r1, r2〉
51 [r0|endinc1|t0, co0〉
52 [r1|endinc1|t1, co1〉
53 [r2|endinc1|t2, co2〉
54 〈t0, t1, t2|search1|t]
55 〈co0, co1, co2|search1|co]
56

57 def [s|dec21|t〉 :
58 〈s, co|inc21|t]
59

60 def [s|mark2|t, co〉 :
61 s. y2 ` 2y, t
62 | yx ` yx, co
63

64 def [s|endinc2|t, co〉 :
65 [s|search2|r0, r1, r2〉
66 [r0|mark2|t0, co0〉
67 [r1|mark2|t1, co1〉
68 [r2|mark2|t2, co2〉
69 〈t2, t0, t1|search2|t]
70 〈co0, co1, co2|search2|co]
71

72 def [s|inc22|t, co〉 :
73 [s|search1|r0, r1, r2〉
74 [r0|endinc2|t0, co0〉
75 [r1|endinc2|t1, co1〉
76 [r2|endinc2|t2, co2〉
77 〈t0, t1, t2|search1|t]
78 〈co0, co1, co2|search1|co]
79

80 def [s|dec22|t〉 :
81 〈s, co|inc22|t]
82

83 def
[
s
∣∣pushinc1

∣∣t, co
〉

:
84 s. x2 ` 1x, c
85 | xy1 ` 1xy,pt
86 | xyx ` 1yx,pco
87 [c

∣∣endinc1

∣∣pt0,pco0
〉

88 pt0.→, t0
89 t0. 2 ` 2,pt
90 pt.←, t
91 pco0. x ` 2,pco
92 pco.←, zco
93 zco. 1 ` x, co
94

95 def [s|inc11|t, co〉 :
96 [s|search1|r0, r1, r2〉
97

[
r0

∣∣pushinc1

∣∣t0, co0
〉

98
[
r1

∣∣pushinc1

∣∣t1, co1
〉

99
[
r2

∣∣pushinc1

∣∣t2, co2
〉

100 〈t2, t0, t1|search1|t]
101 〈co0, co1, co2|search1|co]
102

103 def [s|dec11|t〉 :
104 〈s, co|inc11|t]
105

106 def
[
s
∣∣pushinc2

∣∣t, co
〉

:
107 s. x2 ` 1x, c
108 | xy2 ` 1xy,pt
109 | xyy ` 1yy,pco
110 [c

∣∣endinc2

∣∣pt0,pco0
〉

111 pt0.→, t0
112 t0. 2 ` 2,pt
113 pt.←, t
114 pco0. x ` 2,pco
115 pco.←, zco
116 zco. 1 ` x, co
117

118 def [s|inc12|t, co〉 :
119 [s|search1|r0, r1, r2〉
120

[
r0

∣∣pushinc2

∣∣t0, co0
〉

121
[
r1

∣∣pushinc2

∣∣t1, co1
〉

122
[
r2

∣∣pushinc2

∣∣t2, co2
〉

123 〈t2, t0, t1|search1|t]
124 〈co0, co1, co2|search1|co]

125

126 def [s|dec12|t〉 :
127 〈s, co|inc12|t]
128

129 def [s|init1|r〉 :
130 s.→,u
131 u. 11 ` xy, e
132 e.←, r
133

134 def [s|RCM1|co1, co2〉 :
135 [s|init1|s0〉
136 [s0|test1|s1z,n〉
137 [s1|inc11|s2, co1〉
138 [s2|inc21|s3, co2〉
139

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
140

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
141

142 def [s|init2|r〉 :
143 s.→,u
144 u. 22 ` xy, e
145 e.←, r
146

147 def [s|RCM2|co1, co2〉 :
148 [s|init2|s0〉
149 [s0|test1|s1z,n〉
150 [s1|inc12|s2, co1〉
151 [s2|inc22|s3, co2〉
152

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
153

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
154

155 fun [s|check1|t〉 :
156 [s|RCM1|co1, co2, . . .〉
157 〈co1, co2, . . .|RCM1|t]
158

159 fun [s|check2|t〉 :
160 [s|RCM2|co1, co2, . . .〉
161 〈co1, co2, . . .|RCM2|t]

3. Immortality Problem (MFCS 2008) 50/54

Periodicity

Theorem 8 PP is undecidable for RTM.

Idea Reduce IP to PP:

(1) IP is still undecidable for RTM without periodic orbit.

(2) Let M= (S,Σ, T) be a RTM without periodic orbit
LetM′ be the complete RTM with set of states S × {+,−}
simulating M on + and M−1 on − and inversing polarity
on halting states.

(3) M′ is periodic iff M is mortal. ♦

3. Immortality Problem (MFCS 2008) 51/54

Periodicity

Theorem 8 PP is undecidable for RTM.

Idea Reduce IP to PP:

(1) IP is still undecidable for RTM without periodic orbit.

(2) Let M= (S,Σ, T) be a RTM without periodic orbit
LetM′ be the complete RTM with set of states S × {+,−}
simulating M on + and M−1 on − and inversing polarity
on halting states.

(3) M′ is periodic iff M is mortal. ♦

3. Immortality Problem (MFCS 2008) 51/54

Periodicity

Theorem 8 PP is undecidable for RTM.

Idea Reduce IP to PP:

(1) IP is still undecidable for RTM without periodic orbit.

(2) Let M= (S,Σ, T) be a RTM without periodic orbit
LetM′ be the complete RTM with set of states S × {+,−}
simulating M on + and M−1 on − and inversing polarity
on halting states.

(3) M′ is periodic iff M is mortal. ♦

3. Immortality Problem (MFCS 2008) 51/54

Reversible Cellular Automata

A CA is a triple (S, r , f) where S is a finite set of states, r the
radius and f : S2r+1 → S the local rule.

DDS (SZ, G) where∀z ∈ Z, G(c)(z) = f(c(z−r), . . . , c(z+r))

3. Immortality Problem (MFCS 2008) 52/54

Periodicity

Theorem 12 PP is undecidable for RCA.

Idea Reduce PP for RTM to PP for RCA:

(1) PP is still undecidable for complete RTM.

(2) Let M= (S,Σ, T) be a complete RTM
Let (S′,2, f) be the RCA with set of statesΣ× (S × {+,−} ∪ {←,→}) simulating M on + and M−1

on − on two levels.

(3) In case of local inconsistency, invert polarity.

(4) The RCA is periodic iff M is periodic. ♦

3. Immortality Problem (MFCS 2008) 53/54

Periodicity

Theorem 12 PP is undecidable for RCA.

Idea Reduce PP for RTM to PP for RCA:

(1) PP is still undecidable for complete RTM.

(2) Let M= (S,Σ, T) be a complete RTM
Let (S′,2, f) be the RCA with set of statesΣ× (S × {+,−} ∪ {←,→}) simulating M on + and M−1

on − on two levels.

(3) In case of local inconsistency, invert polarity.

(4) The RCA is periodic iff M is periodic. ♦

3. Immortality Problem (MFCS 2008) 53/54

Periodicity

Theorem 12 PP is undecidable for RCA.

Idea Reduce PP for RTM to PP for RCA:

(1) PP is still undecidable for complete RTM.

(2) Let M= (S,Σ, T) be a complete RTM
Let (S′,2, f) be the RCA with set of statesΣ× (S × {+,−} ∪ {←,→}) simulating M on + and M−1

on − on two levels.

(3) In case of local inconsistency, invert polarity.

(4) The RCA is periodic iff M is periodic. ♦

3. Immortality Problem (MFCS 2008) 53/54

Periodicity

Theorem 12 PP is undecidable for RCA.

Idea Reduce PP for RTM to PP for RCA:

(1) PP is still undecidable for complete RTM.

(2) Let M= (S,Σ, T) be a complete RTM
Let (S′,2, f) be the RCA with set of statesΣ× (S × {+,−} ∪ {←,→}) simulating M on + and M−1

on − on two levels.

(3) In case of local inconsistency, invert polarity.

(4) The RCA is periodic iff M is periodic. ♦

3. Immortality Problem (MFCS 2008) 53/54

???

Open Problems and conjectures

CA Consider properties from topological classifications (e.g.
Kůrka). Is positive expansivity decidable?

RTM We conjecture undecidable whether a given complete
RTM admits a periodic configuration. Prove it!

Tilings Provide tools to prove that a set of colorings cannot
be recognized by tilings (up to projection, aka sofic subshifts).

DP and IP Is it possible to consider the two problems some-
how dual? Kari reduced IP to DP. Do the inverse naturally.

4. open problems 54/54

	cellular automata
	Domino Problem (CiE 2008)
	Immortality Problem to(MFCS 2008)
	open problems

