#### L'indécidable périodicité des automates cellulaires

Nicolas Ollinger (LIF, Aix-Marseille Université, CNRS)

Séminaire LIMD – LAMA, 17 janvier 2010



#### Discrete dynamical systems

**Definition** A DDS is a pair (X, F) where X is a **topological** space and  $F : X \rightarrow X$  is a **continuous** map.



The **orbit** of  $x \in X$  is the sequence  $(F^n(x))$  obtained by iterating *F*.

In this talk,  $X = S^{\mathbb{Z}}$  where *S* is a finite alphabet and *X* is endowed with the **Cantor topology** (product of the discrete topology on *S*), and *F* is a continuous map **commuting with the shift map**  $\sigma$ :  $F \circ \sigma = \sigma \circ F$  where  $\sigma(x)(z) = x(z+1)$ .

## Two dynamical properties

We consider two simple dynamical properties (as opposed to more computational properties like reachability questions).

**Definition** A DDS (X, F) is **periodic** if for all  $x \in X$  there exists  $n \in \mathbb{N}$  such that  $F^n(x) = x$ .

**Definition** A DDS (X, F) is **nilpotent** if there exists  $0 \in X$  such that for all  $x \in X$  there exists  $n \in \mathbb{N}$  such that  $F^n(x) = 0$ .

**Question** With a **proper recursive encoding** of the DDS, can we decide given a DDS if it is periodic? if it is nilpotent?

#### 1. cellular automata

#### Cellular automata

**Definition** A **CA** is a triple (S, r, f) where S is a **finite set of** states,  $r \in \mathbb{N}$  is the **radius** and  $f : S^{2r+1} \to S$  is the **local** rule of the cellular automaton.

A configuration  $c \in S^{\mathbb{Z}}$  is a coloring of  $\mathbb{Z}$  by *S*.



The global map  $F: S^{\mathbb{Z}} \to S^{\mathbb{Z}}$  applies f uniformly and locally:  $\forall c \in S^{\mathbb{Z}}, \forall z \in \mathbb{Z}, \quad F(c)(z) = f(c(z-r), \dots, c(z+r)).$ 

A space-time diagram  $\Delta \in S^{\mathbb{N} \times \mathbb{Z}}$  satisfies, for all  $t \in \mathbb{Z}^+$ ,  $\Delta(t+1) = F(\Delta(t)).$ 

The associated DDS is  $(S^{\mathbb{Z}}, F)$ .

1. cellular automata

#### Space-time diagram



### König's lemma

**König's lemma** Every infinite tree with finite branching admits an infinite path.

For all  $n \in \mathbb{N}$  and  $u \in S^{2n+1}$ , the cylinder  $[u] \subseteq S^{\mathbb{Z}}$  is  $[u] = \left\{ c \in S^{\mathbb{Z}} \middle| \forall i \in [-n, n] \ c(i) = u_{i+n} \right\}$ .

For all  $C \subseteq S^{\mathbb{Z}}$ , the König tree  $\mathcal{A}_C$  is the tree of cylinders intersecting *C* ordered by inclusion.

The **topping**  $\overline{A_C} \subseteq S^{\mathbb{Z}}$  of a König tree is the set of configurations tagging an infinite path from the root (intersection of the cylinders on the path).

**Definition** The König topology over  $S^{\mathbb{Z}}$  is the topology whose close sets are the toppings of König trees.

#### Curtis-Hedlund-Lyndon's theorem

König and Cantor topologies coincide: their open sets are unions of cylinders. Compacity arguments have combinatorial counterparts.

The **clopen sets** are finite unions of cylinders.

Therefore in this topology **continuity** means **locality**.

**Theorem [Hedlund 1969]** The continuous maps commuting with the shift coincide with the global maps of cellular automata.

Cellular automata have a dual nature : topological maps with finite automata description.

## Nilpotency

A CA is nilpotent iff there exists a **uniform bound**  $n \in \mathbb{Z}^+$  such that  $F^n$  is a constant map.

**Hint** Take the bound of a **universal configuration** containing all words on *S*.

The Nilpotency Probem (NP) given a CA decide if it is nilpotent.

## Periodicity

A CA is periodic iff there exists a **uniform period**  $n \in \mathbb{Z}^+$  such that  $F^n$  is the identity map.

**Hint** Take the period of a **universal configuration** containing all words on *S*.

**The Periodicity Probem (PP)** given a CA decide if it is periodic.



## Undecidability of dynamical properties

Both **NP** and **PP** are **recursively undecidable**.

Undecidability is not necessarily a negative result: it is a hint of complexity.

There exists non trival nilpotent and periodic CA with a very large bound for quite simple CA (the bound grows faster than any recursive function).

To prove these results we inject computation into dynamics.

A direct reduction of the halting problem of Turing machines does not work.

### Back to the nilpotency problem

The limit set  $\Lambda_F = \bigcap_{n \in \mathbb{N}} F^n(S^{\mathbb{Z}})$  of a CA F is the non-empty subshift of configurations appearing in biinfinite space-time diagrams  $\Delta \in S^{\mathbb{Z} \times \mathbb{Z}}$  such that  $\forall t \in \mathbb{Z}, \Delta(t+1) = F(\Delta(t))$ .

A CA is nilpotent iff its limit set is a **singleton**.

A state  $\bot \in S$  is spreading if  $f(N) = \bot$  when  $\bot \in N$ .

A CA with a spreading state  $\perp$  is not nilpotent iff it admits a biinfinite space-time diagram without  $\perp$ .

A tiling problem Find a coloring  $\Delta \in (S \setminus \{\bot\})^{\mathbb{Z}^2}$  satisfying the tiling constraints given by f.

## Undecidability of the nilpotency problem

A classical undecidability result concerning tilings is the undecidability of the **domino problem** (**DP**).

Theorem [Berger 1964] DP is undecidable.

Here we need a restriction on the set of tilings.

Theorem [Kari 1992] NW-deterministic DP is undecidable.

NW-deterministic **DP** reduces to **NP** for spreading CA.

Theorem [Kari 1992] NP is undecidable.

### Back to the periodicity problem

A periodic CA is **reversible**, which for CA is the same as **bijective** and even **injective**.

One can reduce the **periodicity problem** of **complete reversible Turing machines** to **PP**.

**Immortality** is the property of having at least one non-halting orbit.

One can reduce the **immortality problem** of reversible Turing machines without periodic orbit to the periodicity problem of complete reversible Turing machines.

## Undecidability of the periodicity problem

A classical undecidability result concerning Turing machines is the **immortality problem** (**IP**).

Theorem [Hooper 1966] IP is undecidable.

Here we need a restriction to reversible machines.

Theorem [Kari O 2008] Reversible IP is undecidable.

Reversible IP reduces to PP.

Theorem [Kari O 2008] PP is undecidable.

- For both **NP** and **PP**, we need a **stronger version** of a classical result, essentially a restriction on inputs.
- The difficult part of the proofs hides into this task.
- The **main difficulty** is to understand the dusty proofs.
- Hopefully, we tend to reuse this for other variants.
- Now, we will discuss the main ingredients for **PP**.

## 2. Immortality Problem (MFCS 2008)

#### The Immortality Problem (IP)

" $(T_2)$  To find an effective method, which for every Turing-machine M decides whether or not, for all tapes I (finite and infinite) and all states B, M will eventually halt if started in state B on tape I" (Büchi, 1962)

A **TM** is a triple  $(S, \Sigma, T)$  where *S* is a finite set of states,  $\Sigma$  a finite alphabet and  $T \subseteq (S \times \{\leftarrow, \rightarrow\} \times S) \cup (S \times \Sigma \times S \times \Sigma)$  is a set of instructions.

 $(s, \delta, t)$ : "in state *s* move according to  $\delta$  and enter state *t*." (s, a, t, b): "in state *s*, reading letter *a*, write letter *b* and enter state *t*."

Partial DDS  $(S \times \Sigma^{\mathbb{Z}}, G)$  where G is a partial continuous map.

A TM is **mortal** if all configurations are ultimately halting.

As  $S \times \Sigma^{\mathbb{Z}}$  is compact, *G* is continuous and the set of halting configurations is open, **mortality** implies **uniform mortality**.

Mortal TM are recursively enumerable.

TM with a periodic orbit are recursively enumerable.

Undecidability is to be found in **aperiodic TM**, TM whose infinite orbits are all aperiodic.

We investigate the **(un)decidability** of **dynamical properties** of three models of **reversible** computation.

We consider the behavior of the models starting from **arbitrary initial configurations**.

**Immortality** is the property of having at least one non-halting orbit.

**Periodicity** is the property of always eventually returning back to the starting configuration.

# Models of reversible computation

Counter Machines (CM)

Turing Machines (TM)

Cellular Automata (CA)

A machine is **deterministic** if there exists at most one transition from each configuration.

A machine is **reversible** if there exists **another machine** that can inverse **each step** of computation.



### The immortality problem (IP)

A configuration on which *F* is undefined is **halting**.

A configuration is **mortal** if its orbit is eventually halting.

**Halting Problem** Given  $S \in \mathcal{M}$ , is  $x_0 \in X$  mortal for *S*?

*S* is **mortal** if all its configurations are mortal.

S is **uniformly mortal** if a uniform bound n exists such that  $F^n$  is halting for all configuration.

**Immortality Problem** Given  $S \in \mathcal{M}$ , is S immortal?

When X is compact and the set of halting configurations is open, uniform mortality is the same as mortality.

## The periodicity problem (PP)

*S* is **complete** if *F* is total.

A configuration x is *n*-periodic if  $F^n(x) = x$ .

*S* is **periodic** if all its configurations are periodic.

S is **uniformly periodic** if a uniform bound n exists such that  $F^n$  is the identity map.

**Periodicity Problem** Given  $S \in \mathcal{M}$ , is *S* periodic?

When X is compact and the set of n-periodic configurations is open, uniform periodicity is the same as periodicity.



→ denotes many-one reductions.

J. Kari and NO. *Periodicity and Immortality in Reversible Computing*. Proceedings of **MFCS 2008**, LNCS 5162, pp. 419-430, 2008.

Longer version under revision at JCSS.



#### **Reversible Counter Machines**

A *k*-CM is a triple (S, k, T) where *S* is a finite set of states and  $T \subseteq S \times \mathbb{Z}_k \times (\{Z, P\} \cup \{-, 0, +\}) \times S$  is a set of instructions.

 $(s, u, i, t) \in T$ : "in state s with counter i with value u, enter state t."

 $(s, \phi, i, t) \in T$ : "in state s, apply  $\phi$  to counter i and enter state t."

DDS  $(S \times \mathbb{N}^k, G)$  where  $G(\mathfrak{c})$  is the unique  $\mathfrak{c}'$  such that  $\mathfrak{c} \vdash \mathfrak{c}'$ .



**[Hooper66] IP** is undecidable for 2-DCM. *Idea for new proof Enforce infinite orbits to go through unbounded initial segments of an orbit from*  $x_0$  *to reduce* **HP**.  $\diamond$ 

**[Hooper66] IP** is undecidable for 2-DCM. *Idea for new proof Enforce infinite orbits to go through unbounded initial segments of an orbit from*  $x_0$  *to reduce* **HP**.  $\diamond$ 

[Morita96] Every *k*-DCM is **simulated** by a 2-RCM. *Idea* Encode a stack with two counters to keep an history of simulated instructions.

 $\Diamond$ 

**[Hooper66] IP** is undecidable for 2-DCM. *Idea for new proof Enforce infinite orbits to go through unbounded initial segments of an orbit from*  $x_0$  *to reduce* **HP**.  $\diamond$ 

[Morita96] Every *k*-DCM is **simulated** by a 2-RCM. Idea Encode a stack with two counters to keep an history of simulated instructions.

**Theorem 1 IP** is undecidable for 2-RCM. *Idea* Morita's simulation preserves immortality.  $\Diamond$ 

 $\Diamond$ 



**Theorem 3 PP** is undecidable for 2-RCM.

- Idea Reduce IP to PP:
- (1) **IP** is still undecidable for 2-RCM with **mortal reverse** (add a constantly incremented counter to the *k*-DCM)



Theorem 3 PP is undecidable for 2-RCM.

- Idea Reduce IP to PP:
- (1) **IP** is still undecidable for 2-RCM with **mortal reverse** (add a constantly incremented counter to the *k*-DCM)
- (2) Let M = (S, 2, T) be a 2-RCM with mortal reverse.
  M admits no periodic orbit.
  Let M' be the 2-RCM with set of states S × {+, -}
  simulating M on + and M<sup>-1</sup> on and inversing polarity on halting states.



Theorem 3 PP is undecidable for 2-RCM.

- Idea Reduce IP to PP:
  - (1) **IP** is still undecidable for 2-RCM with **mortal reverse** (add a constantly incremented counter to the *k*-DCM)
  - (2) Let M = (S, 2, T) be a 2-RCM with mortal reverse.
    M admits no periodic orbit.
    Let M' be the 2-RCM with set of states S × {+, -} simulating M on + and M<sup>-1</sup> on and inversing polarity on halting states.
  - (3)  $\mathcal{M}'$  is periodic iff  $\mathcal{M}$  is mortal.

 $\diamond$ 



#### **Reversible Turing Machines**

A **TM** is a triple  $(S, \Sigma, T)$  where *S* is a finite set of states,  $\Sigma$  a finite alphabet and  $T \subseteq (S \times \{\leftarrow, \rightarrow\} \times S) \cup (S \times \Sigma \times S \times \Sigma)$  is a set of instructions.

 $(s, \delta, t)$ : "in state *s* move according to  $\delta$  and enter state *t*." (s, a, t, b): "in state *s*, reading letter *a*, write letter *b* and enter state *t*."

DDS  $(S \times \Sigma^{\mathbb{Z}}, G)$  where  $G(\mathfrak{c})$  is the unique  $\mathfrak{c}'$  such that  $\mathfrak{c} \vdash \mathfrak{c}'$ .



" $(T_2)$  To find an effective method, which for every Turing-machine M decides whether or not, for all tapes I (finite and infinite) and all states B, M will eventually halt if started in state B on tape I" (Büchi, 1962)



 $\diamond$ 

" $(T_2)$  To find an effective method, which for every Turing-machine M decides whether or not, for all tapes I (finite and infinite) and all states B, M will eventually halt if started in state B on tape I" (Büchi, 1962)

[Hooper66] IP is undecidable for DTM. Idea TM with recursive calls! (we will discuss this)



 $\diamond$ 

 $\diamond$ 

" $(T_2)$  To find an effective method, which for every Turing-machine M decides whether or not, for all tapes I (finite and infinite) and all states B, M will eventually halt if started in state B on tape I" (Büchi, 1962)

[Hooper66] IP is undecidable for DTM. Idea TM with recursive calls! (we will discuss this)

**[Lecerf63]** Every DTM is **simulated** by a RTM. *Idea Keep history on a stack encoded on the tape.*


 $\diamond$ 

 $\diamond$ 

" $(T_2)$  To find an effective method, which for every Turing-machine M decides whether or not, for all tapes I (finite and infinite) and all states B, M will eventually halt if started in state B on tape I" (Büchi, 1962)

[Hooper66] IP is undecidable for DTM. Idea TM with recursive calls! (we will discuss this)

**[Lecerf63]** Every DTM is **simulated** by a RTM. *Idea* Keep history on a stack encoded on the tape.

**Problem** The simulation **does not** preserve immortality due to **unbounded searches**. We need to rewrite Hooper's proof for reversible machines.



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

 $\frac{@11111111111111x2222y}{5}$  search  $x \rightarrow$ 



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@1<u>1</u>11111111111x2222y bounded search 2 \$\verts\_2\$



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@1111111111111112222y bounded search 3 \$\vert{S}\_3'
\$\vert\$



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@@<sub>s</sub>xy1111111111x2222y recursive call



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@@<sub>s</sub>11111x22222y S<sub>c</sub> ultimately in case of collision...



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@@<sub>s</sub>xy1111111111x2222y ...revert to clean



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

 $\underset{s_{1}}{\overset{@1111}{111111111111111122222}}$ 

pop and continue bounded search 1



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@1111<u>1</u>11111111x2222y bounded search 2 <u>s</u><sub>2</sub>



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@11111<u>1</u>1111111x2222y bounded search 3 <u>S</u><sub>3</sub>



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@111<mark>@<sub>s</sub>xy</mark>1111111x2222y recursive call <mark>
\$0</mark>



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@111<mark>@<sub>s</sub>xy</mark>1111111x2222y recursive call <mark>
\$0</mark>



**Reduction** reduce **HP** for 2-RCM  $(s, \underline{@}1^m x 2^n y)$ 

**Problem** unbounded searches produce immortality. *Idea* by compacity, extract infinite failure sequence

**Hooper's trick** use bounded searches with **recursive calls** to initial segments of the simulation of increasing sizes:

@111<mark>@<sub>s</sub>xy</mark>1111111x2222y recursive call **S**0

The RTM is immortal iff the 2-RCM is mortal on  $(s_0, (0, 0))$ .

# Programming tips and tricks (1/2)

We designed a TM programming language called Gnirut: http://www.lif.univ-mrs.fr/~nollinge/rec/gnirut/

First ingredient use macros to avoid repetitions:



## Programming tips and tricks (2/2)



#### Second ingredient use recursive calls:



```
1 fun [s|\operatorname{incr}|t\rangle:

2 s. \rightarrow, r

3 r. 0 \vdash 1, b \mid 1 \vdash 1, c

4 call [c|\operatorname{incr}|d\rangle from 1 \leftarrow \text{call } 1

5 d. 1 \vdash 0, b

6 b. \leftarrow, t

7
```



 $[s|\operatorname{check}_1|t\rangle$  satisfies  $s. \underline{\mathfrak{Q}}_{\alpha} \mathbf{1}^m \mathbf{x} \vdash \underline{\mathfrak{Q}}_{\alpha} \mathbf{1}^m \mathbf{x}, t$  or  $s. \underline{\mathfrak{Q}}_{\alpha} \mathbf{1}^{\omega} \uparrow$  or halt.



 $[s|\operatorname{check}_1|t\rangle$  satisfies  $s. \underline{@}_{\alpha} 1^m \mathbf{x} \vdash \underline{@}_{\alpha} 1^m \mathbf{x}, t$  or  $s. \underline{@}_{\alpha} 1^{\omega} \uparrow$  or halt.  $[s|\operatorname{search}_1|t_0, t_1, t_2\rangle$  satisfies  $s. \underline{@}_{\alpha} 1^m \mathbf{x} \vdash \underline{@}_{\alpha} 1^m \underline{\mathbf{x}}, t_{m[3]}$  or ...



 $[s|\operatorname{check}_{1}|t\rangle \text{ satisfies } s. \underline{@}_{\alpha} 1^{m} \mathbf{x} \vdash \underline{@}_{\alpha} 1^{m} \mathbf{x}, t \text{ or } s. \underline{@}_{\alpha} 1^{\omega} \uparrow \text{ or halt.}$   $[s|\operatorname{search}_{1}|t_{0}, t_{1}, t_{2}\rangle \text{ satisfies } s. \underline{@}_{\alpha} 1^{m} \mathbf{x} \vdash \underline{@}_{\alpha} 1^{m} \underline{\mathbf{x}}, t_{m[3]} \text{ or } \dots$   $\mathbf{RCM} \text{ ingredients:}$   $\operatorname{testing counters} \quad [s|\operatorname{test1}|z, p\rangle \text{ and } [s|\operatorname{test2}|z, p\rangle$   $\operatorname{increment counter} \quad [s|\operatorname{inc1}|t, co\rangle \text{ and } [s|\operatorname{inc2}|t, co\rangle$   $[s|\operatorname{dec1}|t, co\rangle \text{ and } [s|\operatorname{dec2}|t, co\rangle$ 



- $[s|\operatorname{check}_1|t\rangle$  satisfies  $s. \underline{\mathfrak{Q}}_{\alpha} \mathbf{1}^m \mathbf{x} \vdash \underline{\mathfrak{Q}}_{\alpha} \mathbf{1}^m \mathbf{x}, t$  or  $s. \underline{\mathfrak{Q}}_{\alpha} \mathbf{1}^{\omega} \uparrow$  or halt.
- $[s|search_1|t_0, t_1, t_2)$  satisfies  $s. \underline{@}_{\alpha} 1^m \mathbf{x} \vdash @_{\alpha} 1^m \underline{\mathbf{x}}, t_{m[3]}$  or ...

RCM ingredients: testing counters increment counter decrement counter

 $[s | \text{test1} | z, p \rangle$  and  $[s | \text{test2} | z, p \rangle$  $[s | \text{inc1} | t, co \rangle$  and  $[s | \text{inc2} | t, co \rangle$  $[s | \text{dec1} | t, co \rangle$  and  $[s | \text{dec2} | t, co \rangle$ 

Simulator [s|RCM $_{\alpha}$ | $co_1, co_2, ...$  initialize then compute



- $[s|\operatorname{check}_1|t\rangle$  satisfies  $s. \underline{\mathscr{Q}}_{\alpha} 1^m \mathbf{x} \vdash \underline{\mathscr{Q}}_{\alpha} 1^m \mathbf{x}, t$  or  $s. \underline{\mathscr{Q}}_{\alpha} 1^{\omega} \uparrow$  or halt.
- $[s|search_1|t_0, t_1, t_2)$  satisfies  $s. \underline{@}_{\alpha} 1^m \mathbf{x} \vdash @_{\alpha} 1^m \underline{\mathbf{x}}, t_{m[3]}$  or ...
- RCM ingredients: testing counters increment counter decrement counter

 $\begin{array}{c} [s|\text{test1}|z,p\rangle \text{ and } [s|\text{test2}|z,p\rangle \\ [s|\text{inc1}|t,co\rangle \text{ and } [s|\text{inc2}|t,co\rangle \\ [s|\text{dec1}|t,co\rangle \text{ and } [s|\text{dec2}|t,co\rangle \end{array}$ 

Simulator [s|RCM $_{\alpha}$ | $co_1, co_2, ...$  initialize then compute

 $[s|\text{check}_{\alpha}|t\rangle = [s|\text{RCM}_{\alpha}|co_1, co_2, \ldots\rangle + \langle co_1, co_2, \ldots|\text{RCM}_{\alpha}|s]$ 

### Program it!

def  $[s|search_1|t_0, t_1, t_2)$ : s.  $@_{\alpha} \vdash @_{\alpha}$ , I 1. -. u  $u. x \vdash x, t_0$  $|1x \vdash 1x, t|$  $| 11x \vdash 11x, t_2$ 6 |111 + 111.ccall [c|check1 | p) from 1 8 9  $p. 111 \vdash 111, I$ 10 def  $[s|search_2|t_0, t_1, t_2\rangle$ :  $s. x \vdash x.I$ 1. →. u  $u. y \vdash y, t_0$ 14 2v ⊢ 2v. ti 16  $|22y \vdash \overline{2}2y, t_2|$ 222 - 222. c call [c|check2 | p) from 2 18 p. 222 - 222.1 19 20 def  $[s | test1 | z, p \rangle$ : 22  $s, @_{\alpha}x \vdash @_{\alpha}x, z$  $|\overline{@_{\alpha}1} \vdash \overline{@_{\alpha}1}, p$ 24 def  $[s| endtest2 | z, p \rangle$ : 26  $s, xy \vdash xy, z$ x2 ⊢ x2. p 28 29 def  $[s | \text{test}_2 | z, p \rangle$ :  $[s|search_1|t_0, t_1, t_2\rangle$ 30  $t_0$  endtest  $(z_0, p_0)$ 31 32  $\begin{bmatrix} t_1 & \text{endtest2} & z_1, p_1 \end{bmatrix}$ 33  $[t_2 | endtest_2 | z_2, n_2)$  $(z_0, z_1, z_2)$  search |z|34  $\langle p_0, p_1, p_2 | \text{search}_1 | p \rangle$ 36 def [s|mark1|t, co>: 38 s.  $v1 \vdash 2v. t$  $| yx \vdash yx, co$ 39 40

```
def [s|endinc_1|t, co\rangle:
         [s|search_2|r_0, r_1, r_2)
         [r_0|mark_1|t_0, co_0)
         [r_1 | mark_1 | t_1, co_1 \rangle
         [r_2 | mark_1 | t_2, co_2)
         \langle t_2, t_0, t_1 | \text{search}_2 | t ]
         (con, co1, co2 | search2 | co1
49
     def [s|inc2_1|t, co\rangle:
         [s|search_1|r_0, r_1, r_2)
         [r_0|\text{endinc}_1|t_0, co_0\rangle
         [r_1 | endinc_1 | t_1, co_1)
         [r_2|endinc_1|t_2, co_2)
         (t_0, t_1, t_2 | search_1 | t]
         (con, co1, co) search1 [co]
     def [s|dec2_1|t\rangle:
         (s, co|inc21|t]
     def [s|mark2|t.co):
         s. y_2 \vdash 2y, t
         | vx \vdash vx. co
     def [s|endinc<sub>2</sub>|t, co):
         [s|search_2|r_0, r_1, r_2\rangle
         [r_0|mark_2|t_0, co_0)
         [r_1 | mark_2 | t_1, co_1)
         [r_2|mark_2|t_2, co_2)
         (t_2, t_0, t_1 | search_2 | t]
         (co0, co1, co2 | search2 | co]
72
     def [s|inc2_2|t, co\rangle:
         [s|search_1|r_0, r_1, r_2)
         [r_0|endinc_2|t_0, co_0\rangle
         [r_1|endinc_2|t_1, co_1\rangle
         [r_2|endinc_2|t_2, co_2\rangle
         \langle t_0, t_1, t_2 | \text{search}_1 | t ]
         (co_0, co_1, co_2 | search_1 | co]
     def [s|dec22|t):
         (s. co|inc2>|t]
```

42

44

45

46

47

48

50

52

54

55

56

58

59

61

62

64

65

66

67

68

69

70

73

74

75

76

77

78

79

80

81

def  $[s | pushinc_1 | t, co \rangle$ ; 83 125 84 s.  $\underline{x}2 \vdash \underline{1}\underline{x}, c$ 126  $|xv1 \vdash 1xv. pt$ 85 86  $| xyx \vdash 1yx, pco$ [c] endinc1 | pt0, pco0) 87 88  $nt0. \rightarrow t0$ 89 t0. 2 ⊢ 2. pt pt. -. t an 91  $nco0, x \vdash 2, nco$ 92 pco. --. zco 93  $zco, 1 \vdash x, co$ 94 95 def  $[s|inc1_1|t, co\rangle$ : 96  $[s|search_1|r_0, r_1, r_2)$  $r_0$  pushinc,  $|t_0, co_0\rangle$ 97 98  $r_1 | \text{pushinc}_1 | t_1, co_1 \rangle$ r pushinc t, co) 99 100  $\langle t_2, t_0, t_1 | \text{search}_1 | t ]$ (co., co., co.) search, [co] 101 102 def [s|dec1 $|t\rangle$ : (s. co|inc11|t] 104 def [s pushinc, t.co): 106 107 s. x2 ⊢ 1x, c 108  $|xv2 \vdash 1xv. pt$ ×vv ⊢ 1vv. pco 109  $[c | endinc_2 | pt0, pco0 \rangle$ pt0. -. t0  $t0.2 \vdash 2, pt$ 113 pt. -. t 114 pco0.  $x \vdash 2$ , pco nco. --. zco zco. 1 ⊢ x. co 116 def [s|inc12]t.co): 118 |s|search<sub>1</sub> $|r_0, r_1, r_2\rangle$  $r_0$  | pushinc<sub>2</sub> |  $t_0, co_0$  ) 120  $r_1$  | pushinc<sub>2</sub> |  $t_1$ ,  $co_1$  )  $|r_2|$  pushinc<sub>2</sub>  $|t_2, co_2\rangle$ (t2, t0, t1 |search1 |t] 123 (co0, co1, co2 | search1 | co] 124

def [s|dec12|t): (s. colinc12|t] 127 128 def  $[s|init_1|r\rangle$ : 129 130 s. →. µ 131  $u. 11 \vdash xy. e$ 132 e. -. r 133 134 def [s|RCM1|co1, co2); 135  $[s|init_1|s_0\rangle$ 136  $[s_0 | \text{test} 1 | s_1, n \rangle$  $[s_1|inc1_1|s_2, co_1\rangle$ 138  $[s_2|inc2_1|s_3, co_2)$  $|s_3|$  test1  $|n', s_{1n}\rangle$ 139  $\langle s_{17}, s_{1n} |$  test1  $| s_1 |$ 140 141 def  $[s|init_2|r\rangle$ : 142 s. →, u 143 u. 22 ⊢ xv. e 144 e - r145 146 def [s|RCM2|co1, co2); 147 [slinitalso) 148  $[s_0|\text{test}1|s_{17}, n\rangle$ 149  $[s_1|inc1_2|s_2, co_1\rangle$ 150 151  $[s_2 | inc_2 | s_2, co_2)$  $|s_3|$  test1  $|n', s_{1v}\rangle$ 152 (s17, s1n test1 s1 153 154 155 fun  $[s|check_1|t\rangle$ :  $[s|RCM_1|co_1,co_2,...,\rangle$ 156 157 (co1, co2,..., RCM1 | t] 158 159 fun [s|check<sub>2</sub>|t): [s|RCM<sub>2</sub>|co<sub>1</sub>, co<sub>2</sub>,...) 160 (co1, co2,... |RCM2|t] 161



Idea Reduce IP to PP:

(1) **IP** is still undecidable for RTM without periodic orbit.



Idea Reduce IP to PP:

(1) **IP** is still undecidable for RTM without periodic orbit.

(2) Let  $\mathcal{M} = (S, \Sigma, T)$  be a RTM without periodic orbit Let  $\mathcal{M}'$  be the complete RTM with set of states  $S \times \{+, -\}$ simulating  $\mathcal{M}$  on + and  $\mathcal{M}^{-1}$  on - and inversing polarity on halting states.



Idea Reduce IP to PP:

(1) **IP** is still undecidable for RTM without periodic orbit.

- (2) Let  $\mathcal{M} = (S, \Sigma, T)$  be a RTM without periodic orbit Let  $\mathcal{M}'$  be the complete RTM with set of states  $S \times \{+, -\}$ simulating  $\mathcal{M}$  on + and  $\mathcal{M}^{-1}$  on - and inversing polarity on halting states.
- (3)  $\mathcal{M}'$  is periodic iff  $\mathcal{M}$  is mortal.

 $\Diamond$ 



#### **Reversible Cellular Automata**

A CA is a triple (S, r, f) where S is a finite set of states, r the radius and  $f: S^{2r+1} \rightarrow S$  the local rule.

DDS  $(S^{\mathbb{Z}}, G)$  where  $\forall z \in \mathbb{Z}$ ,  $G(c)(z) = f(c(z-r), \dots, c(z+r))$ 



Idea Reduce PP for RTM to PP for RCA:

(1) **PP** is still undecidable for **complete** RTM.



Idea Reduce PP for RTM to PP for RCA:

- (1) **PP** is still undecidable for **complete** RTM.
- (2) Let  $\mathcal{M} = (S, \Sigma, T)$  be a complete RTM Let (S', 2, f) be the RCA with set of states  $\Sigma \times (S \times \{+, -\} \cup \{\leftarrow, \rightarrow\})$  simulating  $\mathcal{M}$  on + and  $\mathcal{M}^{-1}$ on - on two levels.



Idea Reduce PP for RTM to PP for RCA:

- (1) **PP** is still undecidable for **complete** RTM.
- (2) Let  $\mathcal{M} = (S, \Sigma, T)$  be a complete RTM Let (S', 2, f) be the RCA with set of states  $\Sigma \times (S \times \{+, -\} \cup \{\leftarrow, \rightarrow\})$  simulating  $\mathcal{M}$  on + and  $\mathcal{M}^{-1}$ on - on two levels.
- (3) In case of local inconsistency, invert polarity.



Idea Reduce PP for RTM to PP for RCA:

- (1) **PP** is still undecidable for **complete** RTM.
- (2) Let  $\mathcal{M} = (S, \Sigma, T)$  be a complete RTM Let (S', 2, f) be the RCA with set of states  $\Sigma \times (S \times \{+, -\} \cup \{\leftarrow, \rightarrow\})$  simulating  $\mathcal{M}$  on + and  $\mathcal{M}^{-1}$ on - on two levels.
- (3) In case of local inconsistency, invert polarity.
- (4) The RCA is periodic iff  ${\mathcal M}$  is periodic.

 $\Diamond$ 

#### **Open Problems with conjectures**

**Conjecture 1** It is undecidable whether a given complete 2-**RCM** admits a periodic configuration. (*proven if you remove complete or replace* 2 *by* 3)

**Conjecture 2** There exists a complete **RTM** without a periodic configuration. (*known for DTM* [*BCN02*])

 $\rightarrow$  solved by J. Cassaigne

**Conjecture 3** It is undecidable whether a given complete **RTM** admits a periodic configuration. *(known for DTM [BCN02])*