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Discrete dynamical systems

Definition A DDS is a pair (X, F) where X is a topological
space and F : X → X is a continuous map.

Definition The orbit of x ∈ X is the sequence (Fn(x))
obtained by iterating F .

In this talk, X = SZ is endowed with the Cantor topology
(product of the discrete topology on S), and F is a
continuous map invariant by translation.
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Cantor topology

Definition The Cantor topology on SZ is the product
topology over Z of the discrete topology on S.

Remark The Cantor topology is metric and compact.

∀c, c′ ∈ SZ, d(c, c′) = 2−min
{
|p|

∣∣∣cp≠c′p}

0−6 3 4 6

c

c′

d(c, c′) = 1/8

Definition A subshift is a non-empty set both topologically
closed and closed by translation.
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The nilpotency problem (Nil)

Definition A DDS is nilpotent if
∃z ∈ X, ∀x ∈ X, ∃n ∈ N, Fn(x) = z.

Given a recursive encoding of the
DDS, can we decide nilpotency?

A DDS is uniformly nilpotent if
∃z ∈ X, ∃n ∈ N, ∀x ∈ X, Fn(x) = z.

Given a recursive encoding of the
DDS, can we bound recursively n?
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The periodicity problem (Per)

Definition A DDS is periodic if
∀x ∈ X, ∃n ∈ N, Fn(x) = x.

Given a recursive encoding of the
DDS, can we decide periodicity?

A DDS is uniformly periodic if
∃n ∈ N, ∀x ∈ X, Fn(x) = x.

Given a recursive encoding of the
DDS, can we bound recursively n?
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Cellular automata

Definition A CA is a triple (S, r , f ) where S is a finite set of
states, r ∈ N is the radius and f : S2r+1 → S is the local
rule of the cellular automaton.

A configuration c ∈ SZ is a coloring of Z by S.

The global map F : SZ → SZ applies f uniformly and locally:

∀c ∈ SZ,∀z ∈ Z, F(c)(z) = f(c(z − r), . . . , c(z + r)).

A space-time diagram ∆ ∈ SN×Z satisfies, for all t ∈ Z+,
∆(t + 1) = F(∆(t)).
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Space-time diagram
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S = {0,1,2}, r = 1, f(x,y, z) =
⌊
6450288690466/39x+3y+z⌋ (mod 3)
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Turing universality

Theorem There exists Turing-universal CA.

à la Smith III

...BBBBBabaabBBBBB...
s

s

(S ∪ Σ,2, f )

à la Cook (rule 110)
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Curtis-Hedlund-Lyndon’s theorem

[m] =
{
c ∈ SZ

∣∣∣∀p ∈ Z,∣∣p∣∣ à r ⇒ c(p) =m(p)}

0−r r

Remark The clopen sets are finite unions of cylinders.

Therefore in this topology continuity means locality.

Theorem [Hedlund69] Cellular automata coincide with
continuous maps invariant by translation.
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Undecidability results

Theorem Both Nil and Per are recursively undecidable.

The proofs inject computation into dynamics.

Undecidability is not necessarily a negative result:
it is a hint of complexity.

Remark Due to universe configurations both nilpotency
and periodicity are uniform.

The bounds grow faster than any recursive function: there
exists simple nilpotent or periodic CA with huge bounds.
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The Domino Problem (DP)
“Assume we are given a finite set of square plates of the
same size with edges colored, each in a different manner.
Suppose further there are infinitely many copies of each
plate (plate type). We are not permitted to rotate or reflect
a plate. The question is to find an effective procedure by
which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates
subject to the restriction that adjoining edges must have
the same color.”

(Wang, 1961)

a b c d
ab

a c

d

d
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Undecidability of DP

Theorem[Berger64] DP is recursively undecidable.

Remark To prove it one needs aperiodic tile sets.

Idea of the proof

Enforce an (aperiodic) self-similar
structure using local rules.

Insert a Turing machine
computation everywhere using the
structure.

Remark Plenty of different proofs!
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Nilpotency and limit set

Definition The limit set of a CA F is the non-empty subshift

ΛF =
⋂
n∈N

Fn
(
SZ
)

Remark ΛF is the set of configurations appearing in
biinfinite space-time diagrams ∆ ∈ SZ×Z such that
∀t ∈ Z, ∆(t + 1) = F(∆(t)).

Lemma A CA is nilpotent iff its limit set is a singleton.
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Reduction

A state ⊥ ∈ S is spreading if f(N) = ⊥ when ⊥ ∈ N.

A CA with a spreading state ⊥ is not nilpotent iff it admits a
biinfinite space-time diagram without ⊥.

A tiling problem Find a coloring ∆ ∈ (S \ {⊥})Z2
satisfying

the tiling constraints given by f .

≡

Theorem[Kari92] NW-DP àm Nil
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Revisiting DP

Theorem[Kari92] NW-DP is recursively undecidable.

Remark Reprove of undecidability of DP with the
additionnal determinism constraint!

Corollary Nil is recursively undecidable.
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The Immortality Problem (IP)
“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

Definition A TM is a triple (S,Σ, T ) with S the set of states,
Σ the alphabet and T a set of instructions of two kinds:

(s, δ, t) : “in state s move in direction δ and enter state t.”
(s, a, t, b) : “in state s, reading letter a, write letter b and enter state t.”

A configuration c ∈ S × ΣZ is a pair (s, c) where s is the
state and the head points at position 0 of the tape c.

For deterministic TM, the global map G : S × ΣZ → S × ΣZ
which applies instructions is a partial continuous map.
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Undecidability of IP

Definition A TM is mortal if all configurations are ultimately
halting.

Theorem[Hooper66] IP is recursively undecidable.

Remark To prove it one needs aperiodic TM.

Idea of the proof

Simulate 2-counters machines à la Minsky
(
s,@1mx2ny

)
Replace unbounded searches by recursive calls to initial
segments of the simulation.
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Periodicity and reversibility

Definition A CA F is reversible if there exists a CA G such
that G = F−1.

Theorem A CA is reversible iff it is bijective.

Remark Periodicity implies reversibility.

Definition A TM (S,Σ, T ) is reversible if (S,Σ, T−1) is
deterministic, where

(s, δ, t)−1 = (t, δ, s)
(s, a, t, b)−1 = (t, b, s, a)
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Reduction

Theorem[KO2008] R-IP àm TM-Per àm Per

Idea for TM-Per àm Per

Let M= (S,Σ, T ) be a complete RTM
Let (S′,2, f ) be the RCA with set of states
Σ× (S × {+,−} ∪ {←,→}) simulating M on + and M−1 on −.
In case of local inconsistency, invert polarity.
The RCA is periodic iff M is periodic.
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Revisiting IP

Theorem[KO2008] R-IP is recursively undecidable.

Remark Reprove of undecidability of IP with the additionnal
reversibility constraint!

Corollary TM-Per and Per are recursively undecidable.
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Program it!
1 def [s|search1|t0, t1, t2〉 :
2 s. @α ` @α, l
3 l.→,u
4 u. x ` x, t0

5 | 1x ` 1x, t1

6 | 11x ` 11x, t2

7 | 111 ` 111, c
8 call [c

∣∣check1

∣∣p
〉

from 1
9 p. 111 ` 111, l

10

11 def [s|search2|t0, t1, t2〉 :
12 s. x ` x, l
13 l.→,u
14 u. y ` y, t0

15 | 2y ` 2y, t1

16 | 22y ` 22y, t2

17 | 222 ` 222, c
18 call [c

∣∣check2

∣∣p
〉

from 2
19 p. 222 ` 222, l
20

21 def [s
∣∣test1

∣∣z,p
〉

:
22 s. @αx ` @αx, z
23 | @α1 ` @α1,p
24

25 def [s
∣∣endtest2

∣∣z,p
〉

:
26 s. xy ` xy, z
27 | x2 ` x2,p
28

29 def [s
∣∣test2

∣∣z,p
〉

:
30 [s|search1|t0, t1, t2〉
31

[
t0

∣∣endtest2
∣∣z0,p0

〉
32

[
t1

∣∣endtest2
∣∣z1,p1

〉
33

[
t2

∣∣endtest2
∣∣z2,p2

〉
34 〈z0, z1, z2|search1|z]
35

〈
p0,p1,p2

∣∣search1

∣∣p
]

36

37 def [s|mark1|t, co〉 :
38 s. y1 ` 2y, t
39 | yx ` yx, co
40

41 def [s|endinc1|t, co〉 :
42 [s|search2|r0, r1, r2〉
43 [r0|mark1|t0, co0〉
44 [r1|mark1|t1, co1〉
45 [r2|mark1|t2, co2〉
46 〈t2, t0, t1|search2|t]
47 〈co0, co1, co2|search2|co]
48

49 def [s|inc21|t, co〉 :
50 [s|search1|r0, r1, r2〉
51 [r0|endinc1|t0, co0〉
52 [r1|endinc1|t1, co1〉
53 [r2|endinc1|t2, co2〉
54 〈t0, t1, t2|search1|t]
55 〈co0, co1, co2|search1|co]
56

57 def [s|dec21|t〉 :
58 〈s, co|inc21|t]
59

60 def [s|mark2|t, co〉 :
61 s. y2 ` 2y, t
62 | yx ` yx, co
63

64 def [s|endinc2|t, co〉 :
65 [s|search2|r0, r1, r2〉
66 [r0|mark2|t0, co0〉
67 [r1|mark2|t1, co1〉
68 [r2|mark2|t2, co2〉
69 〈t2, t0, t1|search2|t]
70 〈co0, co1, co2|search2|co]
71

72 def [s|inc22|t, co〉 :
73 [s|search1|r0, r1, r2〉
74 [r0|endinc2|t0, co0〉
75 [r1|endinc2|t1, co1〉
76 [r2|endinc2|t2, co2〉
77 〈t0, t1, t2|search1|t]
78 〈co0, co1, co2|search1|co]
79

80 def [s|dec22|t〉 :
81 〈s, co|inc22|t]
82

83 def
[
s
∣∣pushinc1

∣∣t, co
〉

:
84 s. x2 ` 1x, c
85 | xy1 ` 1xy,pt
86 | xyx ` 1yx,pco
87 [c

∣∣endinc1

∣∣pt0,pco0
〉

88 pt0.→, t0
89 t0. 2 ` 2,pt
90 pt.←, t
91 pco0. x ` 2,pco
92 pco.←, zco
93 zco. 1 ` x, co
94

95 def [s|inc11|t, co〉 :
96 [s|search1|r0, r1, r2〉
97

[
r0

∣∣pushinc1

∣∣t0, co0
〉

98
[
r1

∣∣pushinc1

∣∣t1, co1
〉

99
[
r2

∣∣pushinc1

∣∣t2, co2
〉

100 〈t2, t0, t1|search1|t]
101 〈co0, co1, co2|search1|co]
102

103 def [s|dec11|t〉 :
104 〈s, co|inc11|t]
105

106 def
[
s
∣∣pushinc2

∣∣t, co
〉

:
107 s. x2 ` 1x, c
108 | xy2 ` 1xy,pt
109 | xyy ` 1yy,pco
110 [c

∣∣endinc2

∣∣pt0,pco0
〉

111 pt0.→, t0
112 t0. 2 ` 2,pt
113 pt.←, t
114 pco0. x ` 2,pco
115 pco.←, zco
116 zco. 1 ` x, co
117

118 def [s|inc12|t, co〉 :
119 [s|search1|r0, r1, r2〉
120

[
r0

∣∣pushinc2

∣∣t0, co0
〉

121
[
r1

∣∣pushinc2

∣∣t1, co1
〉

122
[
r2

∣∣pushinc2

∣∣t2, co2
〉

123 〈t2, t0, t1|search1|t]
124 〈co0, co1, co2|search1|co]

125

126 def [s|dec12|t〉 :
127 〈s, co|inc12|t]
128

129 def [s|init1|r〉 :
130 s.→,u
131 u. 11 ` xy, e
132 e.←, r
133

134 def [s|RCM1|co1, co2〉 :
135 [s|init1|s0〉
136 [s0|test1|s1z,n〉
137 [s1|inc11|s2, co1〉
138 [s2|inc21|s3, co2〉
139

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
140

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
141

142 def [s|init2|r〉 :
143 s.→,u
144 u. 22 ` xy, e
145 e.←, r
146

147 def [s|RCM2|co1, co2〉 :
148 [s|init2|s0〉
149 [s0|test1|s1z,n〉
150 [s1|inc12|s2, co1〉
151 [s2|inc22|s3, co2〉
152

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
153

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
154

155 fun [s|check1|t〉 :
156 [s|RCM1|co1, co2, . . .〉
157 〈co1, co2, . . .|RCM1|t]
158

159 fun [s|check2|t〉 :
160 [s|RCM2|co1, co2, . . .〉
161 〈co1, co2, . . .|RCM2|t]
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???Conclusion

We have proven the undecidability of dynamical properties.

The results extend to larger families of dynamical properties.

We consider the behaviour of the model starting from
arbitrary initial configurations.

We use variations of two problems (DP and IP) introduced by
Büchi and Wang to solve the ∀∃∀ class of the classical
decision problem and later proven undecidable by Berger
and Hooper, two PhD students of Wang.
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???Open Problem

Definition A CA F is positively expansive if

∃ε > 0, ∀x ≠ y, ∃n á 0, d
(
Fn(x), Fn(y)

)
á ε

ε

Question Is positive expansivity decidable?
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