# Indécidabilité, pavages et polyominos 

Nicolas Ollinger

LIF, Aix-Marseille Université, CNRS
GREYC, séminaire Algo - 5 avril 2011

## Polyominoes

Definition A polyomino is a simply connected tile obtained by gluing together rookwise connected unit squares.


Definition A tiling of a region by a set of polyominoes is a partition of the region into images of the tiles by isometries.


Definition A tiling by translation is a tiling where isometries are restricted to translations.

## Tiling finite regions

Remark The combinatorics of tilings of finite regions is challenging, polyominoes make great puzzles.

Can you tile with dominoes a $2 m \times 2 n$ rectangle with two opposite corners cut?
[Golomb 1965]


Can you tile with L-tiles a $2^{n} \times 2^{n}$ square with one cut unit square?
[Golomb 1965]


## Tiling the plane

We consider tilings of the whole Euclidian plane by finite sets of polyominoes.

Definition A tiling is discrete if all the unit squares composing images of the polyominoes are aligned on the grid $\mathbb{Z}^{2}$.

Lemma A tile set admits a tiling iff it admits a discrete tiling.
Sketch of the proof Non-discrete tilings have countably many infinite parallel fracture lines. By shifting along fracture lines, one constructs a discrete tiling from any non-discrete tiling.



## The $k$-Polyomino Problem

We consider the complexity of the following two problems:

Polyomino Problem Given a finite set of polyominoes, decide if it can tile the plane.
$k$-Polyomino Problem Given a set of $k$ polyominoes, decide if it can tile the plane.

## 1. Complexity of tiling

2. The Polyomino Problem


## Periodic Tilings

Definition A tiling is periodic with period $p$ if it is invariant by a translation of vector $p$.


Lemma If a finite set of polyominoes admits a periodic tiling then it admits a biperiodic tiling.


Lemma Finite sets of polyominoes tiling the plane biperiodically are re (recursively enumerable).

## co-Tiling

Lemma Finite sets of polyominoes tiling the plane are co-re.

Sketch of the proof Consider tilings of finite regions covering larger and larger squares. If the set does not tile the plane, by compacity, there exists a size of square it cannot cover with tiles.


## Aperiodicity

Definition A tiling is aperiodic if it admits no non-trivial period.


Definition A set of polyominoes is aperiodic if it admits a tiling and all its tilings are aperiodic.

Remark When there is no aperiodic set of tiles, the ( $k$-)Polyomino Problem is decidable.

## One polyomino by translation

Theorem[Wijshoff and van Leeuwen 1984] A single polyomino that tiles the plane by translation tiles it biperiodically. The problem is decidable.

Theorem[Beauquier and Nivat 1991] A single polyomino tiles the plane by translation iff it is a pseudo-hexagon.

[Gambini and Vuillon 2007] This can be tested in $O\left(n^{2}\right)$.

## 2. The Polyomino Problem



## The Domino Problem (DP)

"Assume we are given a finite set of square plates of the same size with edges colored, each in a different manner. Suppose further there are infinitely many copies of each plate (plate type). We are not permitted to rotate or reflect a plate. The question is to find an effective procedure by which we can decide, for each given finite set of plates, whether we can cover up the whole plane (or, equivalently, an infinite quadrant thereof) with copies of the plates subject to the restriction that adjoining edges must have the same color."
(Wang, 1961)


## Wang tiles



## Undecidability of DP

Theorem[Berger 1964] DP is recursively undecidable.

Remark To prove it one needs aperiodic tile sets.
Idea of the proof
Enforce an (aperiodic) self-similar structure using local rules.

Insert a Turing machine computation everywhere using the structure.

Remark Plenty of different proofs!


## The Polyomino Problem is undecidable

Wang tiles are oriented unit squares with colors.
Colors can be encoded by bumps and dents.
A Wang tile can be encoded as a big pseudo-square polyomino with bumps and dents in place of colors.


Theorem[Golomb 1970] The Polyomino Problem is recursively undecidable.


## Fixed number of polyominoes

Remark The reduction of Golomb encodes $N$ Wang tiles into $N$ polyominoes.

What about the $k$-Polyomino Problem?
(1) either it is decidable for all $k$ and the family of algorithms is not itself recursive (eg. set of Wang tiles with $k$ colors);
(2) either there exists a frontier between decidable and undecidable cases (eg. Post Correspondence Problem).

We will show that (2) holds.

## Dented polyominoes

Computing with polyominoes relies on several levels of encoding. To lever the complexity of the tiles, we use dented polyominoes.

Definition A dented polyomino is a polyomino with edges labeled by a dent shape and an orientation. When considering tilings, dents and bumps have to match.

Lemma Every set of $k$ dented polyominoes can be encoded as a set of $k$ polyominoes, preserving the set of tilings.

Sketch of the proof Scale each polyomino by a factor far larger than bumps, then add bumps and dents along edges.

## 5 tiles



| shape | blank | bit | marker厄 | inside |
| :---: | :---: | :---: | :---: | :---: |
| bump dent |  | wire, tooth meat | meat, filler jaw | tooth, filler jaw |

## Encoding Wang tiles

A meat is placed in between two jaws to select a tile. The gaps inside the jaws are filled by fillers and teeth.
Wires connect Wang tiles.


## Encoding a tiling by Wang tiles

Wang tiles are encoded and placed on a regular grid. Tiles of a same diagonal are placed on a horizontal line sharing jaws.


## Every tiling is coding

It remains to show to difficult part of the proof.
Why does every tiling codes a tiling by Wang tiles?
(1) The polyominoes locally enforce Wang tiles coding;
(2) Details on the encoding of colors enforce a same orientation for all Wang tiles in the plane.

Theorem[O 2009] The 5-Polyomino Problem is undecidable.

## Tiling by translation

Previous encoding uses:
1 meat, 1 jaw, 1 filler, 4 wires, 4 teeth.
Theorem[O 2009] The 11-Polyomino Translation Problem is undecidable.

The problem is decidable for a single polyomino and undecidable for 11 polyominoes. What about $2 \leqslant k \leqslant 10$ ?

Even for $k=2$, it seems that it is not trivial...

4. Conclusion

## Nonrecursive tilings

Patch Extension Problem Given a finite patch of tiles decide if it can be extended to a tiling.

Theorem[Myers 1974] There exists sets of Wang tiles for which the Patch Extension Problem is undecidable.

Remark The proof is constructive and gives an explicit aperiodic set of tiles.

Corollary There exists sets of 5 polyominoes for which the Patch Extension Problem is undecidable.

## Aperiodic sets of polyominoes

Remark If all tiling sets of polyominoes admit a biperiodic tiling for a given $k$, the $k$-Polyomino Problem is decidable.


Theorem[Goodman-Strauss 1999] There exists an aperiodic set of 2 polyominoes. (as interpreted by Jolivet)

Theorem[Ammann et al 1992] There exists an aperiodic set of 8 polyominoes for tiling by translation.

## Open problem



The following (old) problem is still open...
Open Problem Does there exists an aperiodic polyomino?

