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The Domino Problem (DP)

“Assume we are given a finite set of square plates of the
same size with edges colored, each in a different manner.
Suppose further there are infinitely many copies of each
plate (plate type). We are not permitted to rotate or reflect
a plate. The question is to find an effective procedure by
which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates
subject to the restriction that adjoining edges must have
the same color.”

(Wang, 1961)

2 [ c I |
ojojoin

1/35



Wang tiles
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A tile set T < =% is a tile set with colored edges.

The set of T-tilings X+ < TZ is the set of colorings of 72 by
T where colors match along edges.
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Periodic Tilings

Definition A tiling is periodic with period p if it is invariant
by a translation of vector p.

Lemma If a tile set admits a periodic tiling then it admits a
biperiodic tiling.

Lemma Tile sets tiling the plane biperiodically are re
(recursively enumerable).
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co-Tiling

Lemma Tile sets tiling the plane are co-re.

Sketch of the proof Consider tilings of larger and larger square
regions. If the set does not tile the plane, by compacity, there
exists a size of square it cannot cover with tiles.
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Aperiodicity

Definition A tiling is aperiodic if it admits no non-trivial
period.

Definition A tile set is aperiodic if it admits a tiling and all
its tilings are aperiodic.

Remark If there were no aperiodic tile set, the Domino
Problem would be decidable.
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Undecidability of DP

Theorem[Berger 1964] DP is undecidable.

Remark To prove it one needs aperiodic tile sets.

Seminal self-similarity based proofs (reduction from HP):
e Berger, 1964 (20426 tiles, a full PhD thesis)
e Robinson, 1971 (56 tiles, 17 pages, long case analysis)
e Durand et al, 2007 (Kleene’s fixpoint existence argument)

Tiling rows seen as transducer trace based proof:
Kari, 2007 (affine maps, reduction from IP)

And others!
e Mozes, 1990 (non-deterministic substitutions)

e Aanderaa and Lewis, 1980 (]-systems and 2-systems)
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In this talk

A simple original construction of an aperiodic tile set based
on two-by-two substitution systems. ..

...and its application to an old historical construction.

This work combines tools and ideas from:
[Berger 64] The Undecidability of the Domino Problem
[Robinson 71] undecidability and nonperiodicity for tilings of the plane
[Griinbaum Shephard 89] Tilings and Patterns, an introduction
[Durand Levin Shen 05] Local rules and global order, or aperiodic tilings
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Tiling with a fixed tile

No halting tile.
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Finite Tiling
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1. Two-by-two Substitution Systems

2. An Aperiodic Tile Set

3. Conclusion



Substitutions
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Two-by-two substitutions

ol =

A 2x2 substitution s : X — X® maps letters to squares of
letters on the same finite alphabet.

e

The substitution is extended as a global map S : 3Z° — 52°
on colorings of the plane:
VzeZ7?, Vkem, S(c)(2z+k)=s(c(z))(k)
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Limit set and history

SRR

The limit set As < 3Z° is the maximal attractor of S:

As= (5" (=7)),

teN

X,y E7?

The limit set is the set of colorings admitting an history
(¢i)ien Where ¢; = 0y, (S5(ci1)).

1. Two-by-two Substitution Systems
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Unambiguous substitutions

A substitution is aperiodic if its limit set A is aperiodic.

A substitution is unambiguous if, for every coloring ¢ from
its limit set Ag, there exists a unique coloring ¢’ and a unique
translation u € @ satisfying ¢ = 0, (S(c")).

Proposition Unambiguity implies aperiodicity.

Sketch of the proof. Consider a periodic coloring with
minimal period p, its preimage has period p/2. o

Idea. Construct a tile set whose tilings are in the limit set of
an unambiguous substitution system.
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Coding tile sets into tile sets

Definition A tile set T’ codes a tile set T, according to a
coding rulet: T — T’ if t is injective and

X7 ={ou(t(c))|c € Xr,u € B}

5 3 3 80

1. Two-by-two Substitution Systems 14/35



Unambiguous self-coding

Definition A tile set T codes a substitution s: T — T® if it
codes itself according to the coding rule s.

Proposition A tile set both admitting a tiling and coding an
unambiguous substitution is aperiodic.

Sketch of the proof. X; € A and X + J. %

Idea. Construct a tile set whose tilings are in the limit set of a
locally checkable unambiguous substitution embedding a
whole history.
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Is this self-encoding?

Iterating the coding rule one obtains 56 tiles.

|_-

coding rule

Unfortunately, this tile set is not self-coding.

Idea Add a synchronizing substitution as a third layer.
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d la Robinson
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Proposition The associated tile set of 104 tiles admits a
tiling and codes an unambiguous substitution.
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d la Robinson

Proposition The associated tile set of 104 tiles admits a
tiling and codes an unambiguous substitution.
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Aperiodicity: sketch of the proof

1. The tile set admits a tiling:
Generate a valid tiling by iterating the substitution rule:
Xt NAg + .

2. The substitution is unambiguous:
It is injective and the projectors have disjoined images.

3. The tile set codes the substitution:

(a) each tiling is an image of the canonical substitution
Consider any tiling, level by level, short case analysis.
(b) the preimage of a tiling is a tiling
Straightforward by construction (preimage remove
constraints).
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“Robert Berger (born 1938) is known for inventing the first ape-
riodic tiling using a set of 20,426 distinct tile shapes.”
[Robert Berger Wikipedia entry]



“(...) In 1966 R. Berger discovered the first aperiodic tile set.
It contains 20,426 Wang tiles, (...)

Berger himself managed to reduce the number of tiles to 104
and he described these in his thesis, though they were omitted
from the published version (Berger [1966]). (...)" [GrSh, p.584]



THE UNDECIDABILITY OF THE DOMINO PROBLEM

A thesis presented
by
Robert Berger
to
The Division of Engineering and Applied Physics
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
in the subject of

Applied Mathematics

Harvard University
Cambridge, Massachusetts
July 1964

Copyright 1964 by W 6‘0\?‘"’

All rights reserved

APPENDIX I

A SIMPLER SOLVABLE DOMINO SET WITH NO TORUS

The skeleton set, K, analyzed in PART 3, is a solvable domino set
with no torus. Since it is designed to serve also as a base set for model-
ing of Turing machines, it is not surprising that simpler solvable, torus-
less domino sets exist. One such set, call it Q, is specified by Tables
9-12. The first three tables show the base, skeleton, and parity proto-
types of Q. Although these tables show symbols in the center of domino
edges, the base, skeleton, and parity channels should be thought of as
distinct. Table 12 serves the same function for Q as did Table 4 for K,
namely that of specifying which products of prototypes are permitted.
However, since Q is a fairly small set, it is not too cumbersome to
enumerate only those dominoes which are actually used in solutions of Q,
104 in all. (No concerted attempt has been made to find the smallest
solvable torus-less domino set.)

Figure 24 shows, separately, skeleton signals and parity signals in
the same portion of a solution of Q. If Figure 24 is rotated one-eighth
turn clockwise, its skeleton signals bear a strong resemblance to the
CD-signals of K.

A person who understands the skeleton set should have no trouble
convincing himself of the likelihood that all solutions of Q look line exten~

sions of Figure 24. The following hints will help.
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Berger’s skeleton substitution

2. An Aperiodic Tile Set
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Berger’s forgotten aperiodic tile set

Proposition The associated tile set of 103 tiles admits a
tiling and codes an unambiguous substitution.

Remark The number of tiles does not grow monotonically
in the number of letters of the synchronizing layer.

5 letters — 104 tiles
11 letters — 103 tiles

2. An Aperiodic Tile Set 29/35



1. Two-by-two Substitution Systems

2. An Aperiodic Tile Set

3. Conclusion



To continue...

Theorem The limit set of a 2x2 substitution is sofic.

Idea To encode A; via local matching rules, decorate s into
a locally checkable s* embedding a whole history.

Corollary[Berger 1964] DP is undecidable.

Idea Construct a 2x2 substitution whose limit set contains
everywhere squares of larger and larger size, insert Turing
computation inside those squares.
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Enforcing substitutions via tilings

Let 71 map every tile of T(s")
to s’(a)(u) where a and u are
the letter and the value of ®
on layer 1.

Proposition. Let s’ be any
substitution system. The tile
set T(s’) enforces s’;

T (X—,—(S/)) = AS/.

Idea. Every tiling of T(s’)
codes an history of s’ and
every history of s’ can be
encoded into a tiling of T(s’).

3. Conclusion
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Mozes 1990

Theorem[Mozes 1990] The limit set of a non-deterministic
rectangular substitution (+ some hypothesis) is sofic.
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Goodman-Strauss 1998

Theorem[Goodman-Strauss 1998] The limit set of
homothetic substitution (+ some hypothesis) is sofic.
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combinatorial substitution (+ some hypothesis) is sofic.

Theorem[Fernique-O 2010] The limit set of a

3. Conclusion
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