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Discrete dynamical systems

Definition A DDS is a pair (X, F) where X is a topological
space and F : X → X is a continuous map.

Definition The orbit of x ∈ X is the sequence (Fn(x))
obtained by iterating F .

In this talk, X = SZ is endowed with the Cantor topology
(product of the discrete topology on S), and F is a
continuous map invariant by translation.
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Cantor topology

Definition The Cantor topology on SZ is the product
topology over Z of the discrete topology on S.

Remark The Cantor topology is metric and compact.

∀c, c′ ∈ SZ, d(c, c′) = 2−min
{
|p|

∣∣∣cp≠c′p}

0−6 3 4 6

c

c′

d(c, c′) = 1/8

Definition A subshift is a non-empty set both topologically
closed and closed by translation.
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The nilpotency problem (Nil)

Definition A DDS is nilpotent if
∃z ∈ X, ∀x ∈ X, ∃n ∈ N, Fn(x) = z.

Given a recursive encoding of the
DDS, can we decide nilpotency?

A DDS is uniformly nilpotent if
∃z ∈ X, ∃n ∈ N, ∀x ∈ X, Fn(x) = z.

Given a recursive encoding of the
DDS, can we bound recursively n?
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The periodicity problem (Per)

Definition A DDS is periodic if
∀x ∈ X, ∃n ∈ N, Fn(x) = x.

Given a recursive encoding of the
DDS, can we decide periodicity?

A DDS is uniformly periodic if
∃n ∈ N, ∀x ∈ X, Fn(x) = x.

Given a recursive encoding of the
DDS, can we bound recursively n?
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1. Cellular Automata



Cellular automata

Definition A CA is a triple (S, r , f ) where S is a finite set of
states, r ∈ N is the radius and f : S2r+1 → S is the local
rule of the cellular automaton.

A configuration c ∈ SZ is a coloring of Z by S.

The global map F : SZ → SZ applies f uniformly and locally:

∀c ∈ SZ,∀z ∈ Z, F(c)(z) = f(c(z − r), . . . , c(z + r)).

A space-time diagram ∆ ∈ SN×Z satisfies, for all t ∈ Z+,
∆(t + 1) = F(∆(t)).

1. Cellular Automata 5/44



Space-time diagram
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S = {0,1,2}, r = 1, f(x,y, z) = ⌊6450288690466/39x+3y+z⌋ (mod 3)
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Turing universality

Theorem There exists Turing-universal CA.

à la Smith III

...BBBBBabaabBBBBB...
s

s

(S ∪ Σ,2, f )

à la Cook (rule 110)
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Curtis-Hedlund-Lyndon’s theorem

[m] =
{
c ∈ SZ

∣∣∣∀p ∈ Z,
∣∣p∣∣ à r ⇒ c(p) =m(p)}

0−r r

Remark The clopen sets are finite unions of cylinders.

Therefore in this topology continuity means locality.

Theorem [Hedlund69] Cellular automata coincide with
continuous maps invariant by translation.
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Undecidability results

Theorem Both Nil and Per are recursively undecidable.

The proofs inject computation into dynamics.

Undecidability is not necessarily a negative result:
it is a hint of complexity.

Remark Due to universe configurations both nilpotency
and periodicity are uniform.

The bounds grow faster than any recursive function: there
exists simple nilpotent or periodic CA with huge bounds.
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2. Nilpotency and tilings



The Domino Problem (DP)
“Assume we are given a finite set of square plates of the
same size with edges colored, each in a different manner.
Suppose further there are infinitely many copies of each
plate (plate type). We are not permitted to rotate or reflect
a plate. The question is to find an effective procedure by
which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates
subject to the restriction that adjoining edges must have
the same color.”

(Wang, 1961)

a b c d
ab

a c

d

d
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Undecidability of DP

Theorem[Berger64] DP is recursively undecidable.

Remark To prove it one needs aperiodic tile sets.

Idea of the proof

Enforce an (aperiodic) self-similar
structure using local rules.

Insert a Turing machine
computation everywhere using the
structure.

Remark Plenty of different proofs!
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“(. . . ) In 1966 R. Berger discovered the first aperiodic tile
set. It contains 20,426 Wang tiles, (. . . )
Berger himself managed to reduce the number of tiles to
104 and he described these in his thesis, though they
were omitted from the published version (Berger [1966]).
(. . . )” [GrSh, p.584]













Nilpotency and limit set

Definition The limit set of a CA F is the non-empty subshift

ΛF =
⋂
n∈N

Fn
(
SZ
)

Remark ΛF is the set of configurations appearing in
biinfinite space-time diagrams ∆ ∈ SZ×Z such that
∀t ∈ Z, ∆(t + 1) = F(∆(t)).

Lemma A CA is nilpotent iff its limit set is a singleton.
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Reduction

A state ⊥ ∈ S is spreading if f(N) = ⊥ when ⊥ ∈ N.

A CA with a spreading state ⊥ is not nilpotent iff it admits a
biinfinite space-time diagram without ⊥.

A tiling problem Find a coloring ∆ ∈ (S \ {⊥})Z2
satisfying

the tiling constraints given by f .

≡

Theorem[Kari92] NW-DP àm Nil
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Revisiting DP

Theorem[Kari92] NW-DP is recursively undecidable.

Remark Reprove of undecidability of DP with the
additionnal determinism constraint!

Corollary Nil is recursively undecidable.
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3. Periodicity and mortality



The Immortality Problem (IP)
“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

Definition A TM is a triple (S,Σ, T ) with S the set of states,
Σ the alphabet and T a set of instructions of two kinds:

(s, δ, t) : “in state s move in direction δ and enter state t.”
(s, a, t, b) : “in state s, reading letter a, write letter b and enter state t.”

A configuration c ∈ S × ΣZ is a pair (s, c) where s is the
state and the head points at position 0 of the tape c.

For deterministic TM, the global map G : S × ΣZ → S × ΣZ
which applies instructions is a partial continuous map.
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Undecidability of IP

Definition A TM is mortal if all configurations are ultimately
halting.

Theorem[Hooper66] IP is recursively undecidable.

Remark To prove it one needs aperiodic TM.

Idea of the proof

Simulate 2-counters machines à la Minsky
(
s,@1mx2ny

)
Replace unbounded searches by recursive calls to initial
segments of the simulation.
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Periodicity and reversibility

Definition A CA F is reversible if there exists a CA G such
that G = F−1.

Theorem A CA is reversible iff it is bijective.

Remark Periodicity implies reversibility.

Definition A TM (S,Σ, T ) is reversible if (S,Σ, T−1) is
deterministic, where

(s, δ, t)−1 = (t, δ, s)
(s, a, t, b)−1 = (t, b, s, a)
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Reduction

Theorem[KO2008] R-IP àm TM-Per àm Per

Idea for TM-Per àm Per

Let M= (S,Σ, T ) be a complete RTM
Let (S′,2, f ) be the RCA with set of states
Σ× (S × {+,−} ∪ {←,→}) simulating M on + and M−1 on −.
In case of local inconsistency, invert polarity.
The RCA is periodic iff M is periodic.
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Revisiting IP

Theorem[KO2008] R-IP is recursively undecidable.

Remark Reprove of undecidability of IP with the additionnal
reversibility constraint!

Corollary TM-Per and Per are recursively undecidable.
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Immortality: a first attempt

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) ♦

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♦

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).
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Programming tips and tricks (1/2)

We designed a TM programming language called Gnirut:
http://github.com/nopid/gnirut

First ingredient use macros to avoid repetitions:

s ax|x
→

1|2

x|x

[s|search|a〉

d
t

x|x
←

2|1

x|x

〈d|search|t]

b c→ ←
a|b

b|a

1 def [s|search|t〉 :
2 s. x ` x,u
3 u. →, r
4 r. 1 ` 2,u | x ` x, t
5

6 [s|search|a〉
7 a. →,b
8 b. a ` b, c | b ` a, c
9 c. ←,d

10 〈d|search|t]
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Programming tips and tricks (2/2)

Second ingredient use recursive calls:

s

c d

t→
0|1

←

1|1 1|0

[s|incr|t〉

b
@2|#

a
#|@2

1|@1 @1|1

1 fun [s|incr|t〉 :
2 s. →, r
3 r. 0 ` 1,b | 1 ` 1, c
4 call [c|incr|d〉 from 1 ⇐ call 1

5 d. 1 ` 0,b
6 b. ←, t
7

8 call [a|incr|b〉 from # ⇐ call 2
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Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Periodicity and mortality 25/44



Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Periodicity and mortality 25/44



Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Periodicity and mortality 25/44



Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Periodicity and mortality 25/44



Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Periodicity and mortality 25/44



Program it!
1 def [s|search1|t0, t1, t2〉 :
2 s. @α ` @α, l
3 l.→,u
4 u. x ` x, t0

5 | 1x ` 1x, t1

6 | 11x ` 11x, t2

7 | 111 ` 111, c
8 call [c

∣∣check1

∣∣p
〉

from 1
9 p. 111 ` 111, l

10

11 def [s|search2|t0, t1, t2〉 :
12 s. x ` x, l
13 l.→,u
14 u. y ` y, t0

15 | 2y ` 2y, t1

16 | 22y ` 22y, t2

17 | 222 ` 222, c
18 call [c

∣∣check2

∣∣p
〉

from 2
19 p. 222 ` 222, l
20

21 def [s
∣∣test1

∣∣z,p
〉

:
22 s. @αx ` @αx, z
23 | @α1 ` @α1,p
24

25 def [s
∣∣endtest2

∣∣z,p
〉

:
26 s. xy ` xy, z
27 | x2 ` x2,p
28

29 def [s
∣∣test2

∣∣z,p
〉

:
30 [s|search1|t0, t1, t2〉
31

[
t0

∣∣endtest2
∣∣z0,p0

〉
32

[
t1

∣∣endtest2
∣∣z1,p1

〉
33

[
t2

∣∣endtest2
∣∣z2,p2

〉
34 〈z0, z1, z2|search1|z]
35

〈
p0,p1,p2

∣∣search1

∣∣p
]

36

37 def [s|mark1|t, co〉 :
38 s. y1 ` 2y, t
39 | yx ` yx, co
40

41 def [s|endinc1|t, co〉 :
42 [s|search2|r0, r1, r2〉
43 [r0|mark1|t0, co0〉
44 [r1|mark1|t1, co1〉
45 [r2|mark1|t2, co2〉
46 〈t2, t0, t1|search2|t]
47 〈co0, co1, co2|search2|co]
48

49 def [s|inc21|t, co〉 :
50 [s|search1|r0, r1, r2〉
51 [r0|endinc1|t0, co0〉
52 [r1|endinc1|t1, co1〉
53 [r2|endinc1|t2, co2〉
54 〈t0, t1, t2|search1|t]
55 〈co0, co1, co2|search1|co]
56

57 def [s|dec21|t〉 :
58 〈s, co|inc21|t]
59

60 def [s|mark2|t, co〉 :
61 s. y2 ` 2y, t
62 | yx ` yx, co
63

64 def [s|endinc2|t, co〉 :
65 [s|search2|r0, r1, r2〉
66 [r0|mark2|t0, co0〉
67 [r1|mark2|t1, co1〉
68 [r2|mark2|t2, co2〉
69 〈t2, t0, t1|search2|t]
70 〈co0, co1, co2|search2|co]
71

72 def [s|inc22|t, co〉 :
73 [s|search1|r0, r1, r2〉
74 [r0|endinc2|t0, co0〉
75 [r1|endinc2|t1, co1〉
76 [r2|endinc2|t2, co2〉
77 〈t0, t1, t2|search1|t]
78 〈co0, co1, co2|search1|co]
79

80 def [s|dec22|t〉 :
81 〈s, co|inc22|t]
82

83 def
[
s
∣∣pushinc1

∣∣t, co
〉

:
84 s. x2 ` 1x, c
85 | xy1 ` 1xy,pt
86 | xyx ` 1yx,pco
87 [c

∣∣endinc1

∣∣pt0,pco0
〉

88 pt0.→, t0
89 t0. 2 ` 2,pt
90 pt.←, t
91 pco0. x ` 2,pco
92 pco.←, zco
93 zco. 1 ` x, co
94

95 def [s|inc11|t, co〉 :
96 [s|search1|r0, r1, r2〉
97

[
r0

∣∣pushinc1

∣∣t0, co0
〉

98
[
r1

∣∣pushinc1

∣∣t1, co1
〉

99
[
r2

∣∣pushinc1

∣∣t2, co2
〉

100 〈t2, t0, t1|search1|t]
101 〈co0, co1, co2|search1|co]
102

103 def [s|dec11|t〉 :
104 〈s, co|inc11|t]
105

106 def
[
s
∣∣pushinc2

∣∣t, co
〉

:
107 s. x2 ` 1x, c
108 | xy2 ` 1xy,pt
109 | xyy ` 1yy,pco
110 [c

∣∣endinc2

∣∣pt0,pco0
〉

111 pt0.→, t0
112 t0. 2 ` 2,pt
113 pt.←, t
114 pco0. x ` 2,pco
115 pco.←, zco
116 zco. 1 ` x, co
117

118 def [s|inc12|t, co〉 :
119 [s|search1|r0, r1, r2〉
120

[
r0

∣∣pushinc2

∣∣t0, co0
〉

121
[
r1

∣∣pushinc2

∣∣t1, co1
〉

122
[
r2

∣∣pushinc2

∣∣t2, co2
〉

123 〈t2, t0, t1|search1|t]
124 〈co0, co1, co2|search1|co]

125

126 def [s|dec12|t〉 :
127 〈s, co|inc12|t]
128

129 def [s|init1|r〉 :
130 s.→,u
131 u. 11 ` xy, e
132 e.←, r
133

134 def [s|RCM1|co1, co2〉 :
135 [s|init1|s0〉
136 [s0|test1|s1z,n〉
137 [s1|inc11|s2, co1〉
138 [s2|inc21|s3, co2〉
139

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
140

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
141

142 def [s|init2|r〉 :
143 s.→,u
144 u. 22 ` xy, e
145 e.←, r
146

147 def [s|RCM2|co1, co2〉 :
148 [s|init2|s0〉
149 [s0|test1|s1z,n〉
150 [s1|inc12|s2, co1〉
151 [s2|inc22|s3, co2〉
152

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
153

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
154

155 fun [s|check1|t〉 :
156 [s|RCM1|co1, co2, . . .〉
157 〈co1, co2, . . .|RCM1|t]
158

159 fun [s|check2|t〉 :
160 [s|RCM2|co1, co2, . . .〉
161 〈co1, co2, . . .|RCM2|t]
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Going further

What is the equivalent of an aperiodic tileset for RTM?

· · ·
2

2 3

Theorem To find if a given complete reversible Turing
machine admits a periodic orbit is Σ1-complete.
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Turing machines (quintuples)

We go back to more classical TM.

Definition A Turing machine is a triple (Q,Σ, δ) where Q is
the finite set of states, Σ is the finite set of tape symbols and
δ : Q× Σ→ Q× Σ× {ð,ñ} is the transition function.

Transition δ(s, a) = (t, b, d) means:

“in state s, when reading the symbol a on the tape,
replace it by b move the head in direction d and enter state t.”

Remark We do not care about blank symbol or initial and
final states, we see Turing machines as dynamical systems.
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Reversible Turing machines

Intuitively, a TM is reversible if there exists another TM to
compute backwards: “T2 = T−1

1 ”. Forget technical details. . .

Definition A TM is reversible if δ can be decomposed as:

δ(s, a) = (t, b, ρ(t)) where (t, b) = σ(s,a)
ρ : Q → {ð,ñ}
σ ∈ SQ×Σ

Remark δ−1(t, b) = (s, a,	(ρ(s)))
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Moving head vs moving tape dynamics

TMH

Xh ⊂ (Q∪ Σ)Z
Th : Xh → Xh

· · ·000000b000000000· · ·
· · ·0000001d00000000· · ·
· · ·000000b110000000· · ·
· · ·0000001p10000000· · ·
· · ·00000010d0000000· · ·
· · ·0000001b01000000· · ·
· · ·00000011d1000000· · ·
· · ·0000001q11000000· · ·
· · ·000000b101000000· · ·
· · ·0000001p01000000· · ·

...

TMT

Xt = ωΣ×Q× Σω
Tt : Xt → Xt

· · ·0000000b00000000· · ·
· · ·0000001d00000000· · ·
· · ·0000000b11000000· · ·
· · ·0000001p10000000· · ·
· · ·0000010d00000000· · ·
· · ·0000001b01000000· · ·
· · ·0000011d10000000· · ·
· · ·0000001q11000000· · ·
· · ·0000000b10100000· · ·
· · ·0000001p01000000· · ·

...
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Trace-shift dynamics

ST

ST ⊆ (Q× Σ)ω

σ : ST → ST

The column shift of TMT

0
b
0
d
1
b
1
p
0
d
0
b
1
d
1
q
1
b
0
p · · ·

TMT

Xt = ωΣ×Q× Σω
Tt : Xt → Xt

· · ·0000000b00000000· · ·
· · ·0000001d00000000· · ·
· · ·0000000b11000000· · ·
· · ·0000001p10000000· · ·
· · ·0000010d00000000· · ·
· · ·0000001b01000000· · ·
· · ·0000011d10000000· · ·
· · ·0000001q11000000· · ·
· · ·0000000b10100000· · ·
· · ·0000001p01000000· · ·

...
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Searching for a reduction

We want to prove the following:

Theorem To find if a given complete reversible Turing
machine admits a periodic orbit is Σ1-complete.

In the partial case we use the following tool:

Prop[KO08] To find if a given (aperiodic) RTM can reach a
given state t from a given state s is Σ1-complete.
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The partial case

Principle of the reduction Associate to an (aperiodic) RTM
M with given s and t a new machine with a periodic orbit if
and only if t is reachable from s.

M M−1s t s

We need to find a way to complete the constructed machine.
We will embed it into a complete aperiodic RTM.
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The SMART machine C

Conj[Kůrka97] Every complete TM has a periodic point.

Thm[BCN02] No, here is an aperiodic complete TM.

Rk It relies on the bounded search technique [Hooper66].

In 2008, I asked J. Cassaigne if he had a reversible version of
the BCN construction. . .

. . . he answered with a small machine C which is a reversible
and (drastic) simplification of the BCN machine.
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C





The SMART machine C

A 4-state 3-symbols TM with nice properties:

complete no halting configuration

reversible reversed by a TM. . .

time-symetric . . . essentially itself (up to details)

aperiodic no time periodic orbit

substitutive substitution-generated trace-shift language

TMT-minimal every orbit is dense with moving tape

How does it work?
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Recursive behavior

PINGñ(n):
for i=1 to n:

d. 0|1, b ð
PINGð(i− 1)

d. x|x, q ð
for i=n downto 1:

q. 0|2, b ð
PINGð(i− 1)

q. y |0, α(y) τ(y)

PINGð(n):
for i=1 to n:

b. 0|1, d ñ
PINGñ(i− 1)

b. x|x, p ñ
for i=n downto 1:

p. 0|2, d ñ
PINGñ(i− 1)

p. y |0, α′(y) τ′(y)f(0) = 2

f(n+ 1) = 3f(n)
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Substitutive trace subshift
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SMART is transitive in TMH, TMT and ST

Proposition
(
ω2 . 2 2ω

p

)
is a transitive point.

Proof
(Forward) For all k á 0:(

ω2 . 2 2ω
p

)
`∗

(
ω2 2 0k . 0 0k 2ω
q

)
.

(Backward) For every partial configuration ( u . v← α → ), there
exist w,w′ ∈ {0,1,2}∗ and k > 0 big enough such that(

ω2 2 0k . 0 0k 2ω
q

)
`∗

(
ω2 w u . v w′ 2ω← α →

)
.

�
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Typical use

Combining the SMART machine with a generic Embedding
technique provides new undecidability results.

Theorem Transitivity is Π0
1-hard in TMH, TMT and ST.

Theorem Minimality is Σ0
1-hard in TMT and ST.
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