
The Periodicity Problem
of Cellular Automata

Julien Cassaigne (I2M, CNRS, Marseille)

Anahí Gajardo (CMM, Univ. de Chile, Concepción, Chile)

Jarkko Kari (Univ. of Turku, Turku, Finland)

Nicolas Ollinger (LIFO, Univ. Orléans, France)

Rodrigo Torres (CMM, Univ. de Chile, Concepción, Chile)

MealyM, Paris — July 12th, 2017

x

a

a

b

b

⇢
x

(a)⇢
a

(b)

 !
ab

⇢
a

(b)

(X , X , ⇢, Id)
(X , f : (b, a) 7! ⇢a(b))

I

I

Discrete dynamical systems

Definition A DDS is a pair (X, F) where X is a topological
space and F : X → X is a continuous map.

Definition The orbit of x ∈ X is the sequence (Fn(x))
obtained by iterating F .

In this talk, X = SZ is endowed with the Cantor topology
(product of the discrete topology on S), and F is a
continuous map invariant by translation.

1/44

Cantor topology

Definition The Cantor topology on SZ is the product
topology over Z of the discrete topology on S.

Remark The Cantor topology is metric and compact.

∀c, c′ ∈ SZ, d(c, c′) = 2−min
{
|p|

∣∣∣cp≠c′p}

0−6 3 4 6

c

c′

d(c, c′) = 1/8

Definition A subshift is a non-empty set both topologically
closed and closed by translation.

2/44

The nilpotency problem (Nil)

Definition A DDS is nilpotent if
∃z ∈ X, ∀x ∈ X, ∃n ∈ N, Fn(x) = z.

Given a recursive encoding of the
DDS, can we decide nilpotency?

A DDS is uniformly nilpotent if
∃z ∈ X, ∃n ∈ N, ∀x ∈ X, Fn(x) = z.

Given a recursive encoding of the
DDS, can we bound recursively n?

3/44

The periodicity problem (Per)

Definition A DDS is periodic if
∀x ∈ X, ∃n ∈ N, Fn(x) = x.

Given a recursive encoding of the
DDS, can we decide periodicity?

A DDS is uniformly periodic if
∃n ∈ N, ∀x ∈ X, Fn(x) = x.

Given a recursive encoding of the
DDS, can we bound recursively n?

4/44

1. Cellular Automata

Cellular automata

Definition A CA is a triple (S, r , f) where S is a finite set of
states, r ∈ N is the radius and f : S2r+1 → S is the local
rule of the cellular automaton.

A configuration c ∈ SZ is a coloring of Z by S.

The global map F : SZ → SZ applies f uniformly and locally:

∀c ∈ SZ,∀z ∈ Z, F(c)(z) = f(c(z − r), . . . , c(z + r)).

A space-time diagram ∆ ∈ SN×Z satisfies, for all t ∈ Z+,
∆(t + 1) = F(∆(t)).

1. Cellular Automata 5/44

Space-time diagram

ti
m

e
g
o
es

u
p

S = {0,1,2}, r = 1, f(x,y, z) = ⌊6450288690466/39x+3y+z⌋ (mod 3)

1. Cellular Automata 6/44

Turing universality

Theorem There exists Turing-universal CA.

à la Smith III

...BBBBBabaabBBBBB...
s

s

(S ∪ Σ,2, f)

à la Cook (rule 110)

1. Cellular Automata 7/44

Curtis-Hedlund-Lyndon’s theorem

[m] =
{
c ∈ SZ

∣∣∣∀p ∈ Z,
∣∣p∣∣ à r ⇒ c(p) =m(p)}

0−r r

Remark The clopen sets are finite unions of cylinders.

Therefore in this topology continuity means locality.

Theorem [Hedlund69] Cellular automata coincide with
continuous maps invariant by translation.

1. Cellular Automata 8/44

Undecidability results

Theorem Both Nil and Per are recursively undecidable.

The proofs inject computation into dynamics.

Undecidability is not necessarily a negative result:
it is a hint of complexity.

Remark Due to universe configurations both nilpotency
and periodicity are uniform.

The bounds grow faster than any recursive function: there
exists simple nilpotent or periodic CA with huge bounds.

1. Cellular Automata 9/44

2. Nilpotency and tilings

The Domino Problem (DP)
“Assume we are given a finite set of square plates of the
same size with edges colored, each in a different manner.
Suppose further there are infinitely many copies of each
plate (plate type). We are not permitted to rotate or reflect
a plate. The question is to find an effective procedure by
which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates
subject to the restriction that adjoining edges must have
the same color.”

(Wang, 1961)

a b c d
ab

a c

d

d

2. Nilpotency and tilings 10/44

Undecidability of DP

Theorem[Berger64] DP is recursively undecidable.

Remark To prove it one needs aperiodic tile sets.

Idea of the proof

Enforce an (aperiodic) self-similar
structure using local rules.

Insert a Turing machine
computation everywhere using the
structure.

Remark Plenty of different proofs!

2. Nilpotency and tilings 11/44

“(. . .) In 1966 R. Berger discovered the first aperiodic tile
set. It contains 20,426 Wang tiles, (. . .)
Berger himself managed to reduce the number of tiles to
104 and he described these in his thesis, though they
were omitted from the published version (Berger [1966]).
(. . .)” [GrSh, p.584]

Nilpotency and limit set

Definition The limit set of a CA F is the non-empty subshift

ΛF =
⋂
n∈N

Fn
(
SZ
)

Remark ΛF is the set of configurations appearing in
biinfinite space-time diagrams ∆ ∈ SZ×Z such that
∀t ∈ Z, ∆(t + 1) = F(∆(t)).

Lemma A CA is nilpotent iff its limit set is a singleton.

2. Nilpotency and tilings 13/44

Reduction

A state ⊥ ∈ S is spreading if f(N) = ⊥ when ⊥ ∈ N.

A CA with a spreading state ⊥ is not nilpotent iff it admits a
biinfinite space-time diagram without ⊥.

A tiling problem Find a coloring ∆ ∈ (S \ {⊥})Z2
satisfying

the tiling constraints given by f .

≡

Theorem[Kari92] NW-DP àm Nil

2. Nilpotency and tilings 14/44

Revisiting DP

Theorem[Kari92] NW-DP is recursively undecidable.

Remark Reprove of undecidability of DP with the
additionnal determinism constraint!

Corollary Nil is recursively undecidable.

2. Nilpotency and tilings 15/44

3. Periodicity and mortality

The Immortality Problem (IP)
“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

Definition A TM is a triple (S,Σ, T) with S the set of states,
Σ the alphabet and T a set of instructions of two kinds:

(s, δ, t) : “in state s move in direction δ and enter state t.”
(s, a, t, b) : “in state s, reading letter a, write letter b and enter state t.”

A configuration c ∈ S × ΣZ is a pair (s, c) where s is the
state and the head points at position 0 of the tape c.

For deterministic TM, the global map G : S × ΣZ → S × ΣZ
which applies instructions is a partial continuous map.

3. Periodicity and mortality 16/44

Undecidability of IP

Definition A TM is mortal if all configurations are ultimately
halting.

Theorem[Hooper66] IP is recursively undecidable.

Remark To prove it one needs aperiodic TM.

Idea of the proof

Simulate 2-counters machines à la Minsky
(
s,@1mx2ny

)
Replace unbounded searches by recursive calls to initial
segments of the simulation.

3. Periodicity and mortality 17/44

Periodicity and reversibility

Definition A CA F is reversible if there exists a CA G such
that G = F−1.

Theorem A CA is reversible iff it is bijective.

Remark Periodicity implies reversibility.

Definition A TM (S,Σ, T) is reversible if (S,Σ, T−1) is
deterministic, where

(s, δ, t)−1 = (t, δ, s)
(s, a, t, b)−1 = (t, b, s, a)

3. Periodicity and mortality 18/44

Reduction

Theorem[KO2008] R-IP àm TM-Per àm Per

Idea for TM-Per àm Per

Let M= (S,Σ, T) be a complete RTM
Let (S′,2, f) be the RCA with set of states
Σ× (S × {+,−} ∪ {←,→}) simulating M on + and M−1 on −.
In case of local inconsistency, invert polarity.
The RCA is periodic iff M is periodic.

3. Periodicity and mortality 19/44

Revisiting IP

Theorem[KO2008] R-IP is recursively undecidable.

Remark Reprove of undecidability of IP with the additionnal
reversibility constraint!

Corollary TM-Per and Per are recursively undecidable.

3. Periodicity and mortality 20/44

Immortality: a first attempt

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) ♦

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♦

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.

3. Periodicity and mortality 21/44

Immortality: a first attempt

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) ♦

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♦

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.

3. Periodicity and mortality 21/44

Immortality: a first attempt

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) ♦

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♦

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.

3. Periodicity and mortality 21/44

Immortality: a first attempt

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) ♦

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♦

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.

3. Periodicity and mortality 21/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@
s
1111111111111x2222y search x →

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@1
s′1
111111111111x2222y bounded search 1

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@11
s′2
11111111111x2222y bounded search 2

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111
s′3
1111111111x2222y bounded search 3

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@@s
s0
xy1111111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@@s11111x22222y
sc
x2222y ultimately in case of collision...

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@@s
sb
xy1111111111x2222y ...revert to clean

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@1111
s′1
111111111x2222y pop and continue bounded search 1

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@11111
s′2
11111111x2222y bounded search 2

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111111
s′3
1111111x2222y bounded search 3

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111@s
s0
xy1111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111@s
s0
xy1111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)
Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111@s
s0
xy1111111x2222y recursive call

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).

3. Periodicity and mortality 22/44

Programming tips and tricks (1/2)

We designed a TM programming language called Gnirut:
http://github.com/nopid/gnirut

First ingredient use macros to avoid repetitions:

s ax|x
→

1|2

x|x

[s|search|a〉

d
t

x|x
←

2|1

x|x

〈d|search|t]

b c→ ←
a|b

b|a

1 def [s|search|t〉 :
2 s. x ` x,u
3 u. →, r
4 r. 1 ` 2,u | x ` x, t
5

6 [s|search|a〉
7 a. →,b
8 b. a ` b, c | b ` a, c
9 c. ←,d

10 〈d|search|t]

3. Periodicity and mortality 23/44

http://github.com/nopid/gnirut

Programming tips and tricks (2/2)

Second ingredient use recursive calls:

s

c d

t→
0|1

←

1|1 1|0

[s|incr|t〉

b
@2|#

a
#|@2

1|@1 @1|1

1 fun [s|incr|t〉 :
2 s. →, r
3 r. 0 ` 1,b | 1 ` 1, c
4 call [c|incr|d〉 from 1 ⇐ call 1

5 d. 1 ` 0,b
6 b. ←, t
7

8 call [a|incr|b〉 from # ⇐ call 2

3. Periodicity and mortality 24/44

Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Periodicity and mortality 25/44

Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Periodicity and mortality 25/44

Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Periodicity and mortality 25/44

Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Periodicity and mortality 25/44

Immortality: skeleton

[s|check1|t〉 satisfies s. @α1mx ` @α1mx, t or s. @α1ω ↑ or halt.

[s|search1|t0, t1, t2〉 satisfies s. @α1mx ` @α1mx, tm[3] or . . .

RCM ingredients:
testing counters [s

∣∣test1
∣∣z,p

〉
and [s

∣∣test2
∣∣z,p

〉
increment counter [s|inc1|t, co〉 and [s|inc2|t, co〉
decrement counter [s|dec1|t, co〉 and [s|dec2|t, co〉

Simulator [s|RCMα|co1, co2, . . .〉 initialize then compute

[s|checkα|t〉 = [s|RCMα|co1, co2, . . .〉 + 〈co1, co2, . . .|RCMα|s]

3. Periodicity and mortality 25/44

Program it!
1 def [s|search1|t0, t1, t2〉 :
2 s. @α ` @α, l
3 l.→,u
4 u. x ` x, t0

5 | 1x ` 1x, t1

6 | 11x ` 11x, t2

7 | 111 ` 111, c
8 call [c

∣∣check1

∣∣p
〉

from 1
9 p. 111 ` 111, l

10

11 def [s|search2|t0, t1, t2〉 :
12 s. x ` x, l
13 l.→,u
14 u. y ` y, t0

15 | 2y ` 2y, t1

16 | 22y ` 22y, t2

17 | 222 ` 222, c
18 call [c

∣∣check2

∣∣p
〉

from 2
19 p. 222 ` 222, l
20

21 def [s
∣∣test1

∣∣z,p
〉

:
22 s. @αx ` @αx, z
23 | @α1 ` @α1,p
24

25 def [s
∣∣endtest2

∣∣z,p
〉

:
26 s. xy ` xy, z
27 | x2 ` x2,p
28

29 def [s
∣∣test2

∣∣z,p
〉

:
30 [s|search1|t0, t1, t2〉
31

[
t0

∣∣endtest2
∣∣z0,p0

〉
32

[
t1

∣∣endtest2
∣∣z1,p1

〉
33

[
t2

∣∣endtest2
∣∣z2,p2

〉
34 〈z0, z1, z2|search1|z]
35

〈
p0,p1,p2

∣∣search1

∣∣p
]

36

37 def [s|mark1|t, co〉 :
38 s. y1 ` 2y, t
39 | yx ` yx, co
40

41 def [s|endinc1|t, co〉 :
42 [s|search2|r0, r1, r2〉
43 [r0|mark1|t0, co0〉
44 [r1|mark1|t1, co1〉
45 [r2|mark1|t2, co2〉
46 〈t2, t0, t1|search2|t]
47 〈co0, co1, co2|search2|co]
48

49 def [s|inc21|t, co〉 :
50 [s|search1|r0, r1, r2〉
51 [r0|endinc1|t0, co0〉
52 [r1|endinc1|t1, co1〉
53 [r2|endinc1|t2, co2〉
54 〈t0, t1, t2|search1|t]
55 〈co0, co1, co2|search1|co]
56

57 def [s|dec21|t〉 :
58 〈s, co|inc21|t]
59

60 def [s|mark2|t, co〉 :
61 s. y2 ` 2y, t
62 | yx ` yx, co
63

64 def [s|endinc2|t, co〉 :
65 [s|search2|r0, r1, r2〉
66 [r0|mark2|t0, co0〉
67 [r1|mark2|t1, co1〉
68 [r2|mark2|t2, co2〉
69 〈t2, t0, t1|search2|t]
70 〈co0, co1, co2|search2|co]
71

72 def [s|inc22|t, co〉 :
73 [s|search1|r0, r1, r2〉
74 [r0|endinc2|t0, co0〉
75 [r1|endinc2|t1, co1〉
76 [r2|endinc2|t2, co2〉
77 〈t0, t1, t2|search1|t]
78 〈co0, co1, co2|search1|co]
79

80 def [s|dec22|t〉 :
81 〈s, co|inc22|t]
82

83 def
[
s
∣∣pushinc1

∣∣t, co
〉

:
84 s. x2 ` 1x, c
85 | xy1 ` 1xy,pt
86 | xyx ` 1yx,pco
87 [c

∣∣endinc1

∣∣pt0,pco0
〉

88 pt0.→, t0
89 t0. 2 ` 2,pt
90 pt.←, t
91 pco0. x ` 2,pco
92 pco.←, zco
93 zco. 1 ` x, co
94

95 def [s|inc11|t, co〉 :
96 [s|search1|r0, r1, r2〉
97

[
r0

∣∣pushinc1

∣∣t0, co0
〉

98
[
r1

∣∣pushinc1

∣∣t1, co1
〉

99
[
r2

∣∣pushinc1

∣∣t2, co2
〉

100 〈t2, t0, t1|search1|t]
101 〈co0, co1, co2|search1|co]
102

103 def [s|dec11|t〉 :
104 〈s, co|inc11|t]
105

106 def
[
s
∣∣pushinc2

∣∣t, co
〉

:
107 s. x2 ` 1x, c
108 | xy2 ` 1xy,pt
109 | xyy ` 1yy,pco
110 [c

∣∣endinc2

∣∣pt0,pco0
〉

111 pt0.→, t0
112 t0. 2 ` 2,pt
113 pt.←, t
114 pco0. x ` 2,pco
115 pco.←, zco
116 zco. 1 ` x, co
117

118 def [s|inc12|t, co〉 :
119 [s|search1|r0, r1, r2〉
120

[
r0

∣∣pushinc2

∣∣t0, co0
〉

121
[
r1

∣∣pushinc2

∣∣t1, co1
〉

122
[
r2

∣∣pushinc2

∣∣t2, co2
〉

123 〈t2, t0, t1|search1|t]
124 〈co0, co1, co2|search1|co]

125

126 def [s|dec12|t〉 :
127 〈s, co|inc12|t]
128

129 def [s|init1|r〉 :
130 s.→,u
131 u. 11 ` xy, e
132 e.←, r
133

134 def [s|RCM1|co1, co2〉 :
135 [s|init1|s0〉
136 [s0|test1|s1z,n〉
137 [s1|inc11|s2, co1〉
138 [s2|inc21|s3, co2〉
139

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
140

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
141

142 def [s|init2|r〉 :
143 s.→,u
144 u. 22 ` xy, e
145 e.←, r
146

147 def [s|RCM2|co1, co2〉 :
148 [s|init2|s0〉
149 [s0|test1|s1z,n〉
150 [s1|inc12|s2, co1〉
151 [s2|inc22|s3, co2〉
152

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
153

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
154

155 fun [s|check1|t〉 :
156 [s|RCM1|co1, co2, . . .〉
157 〈co1, co2, . . .|RCM1|t]
158

159 fun [s|check2|t〉 :
160 [s|RCM2|co1, co2, . . .〉
161 〈co1, co2, . . .|RCM2|t]

3. Periodicity and mortality 26/44

Going further

What is the equivalent of an aperiodic tileset for RTM?

· · ·
2

2 3

Theorem To find if a given complete reversible Turing
machine admits a periodic orbit is Σ1-complete.

3. Periodicity and mortality 27/44

p

b

d

q

0|1ñ

1|1ñ
2|2ñ

0|1ð

1|1ð
2|2ð

2|0ð

0|2ñ
1|0ñ

2|0ñ

0|2ð
1|0ð

4. Dynamics of Turing machines

Turing machines (quintuples)

We go back to more classical TM.

Definition A Turing machine is a triple (Q,Σ, δ) where Q is
the finite set of states, Σ is the finite set of tape symbols and
δ : Q× Σ→ Q× Σ× {ð,ñ} is the transition function.

Transition δ(s, a) = (t, b, d) means:

“in state s, when reading the symbol a on the tape,
replace it by b move the head in direction d and enter state t.”

Remark We do not care about blank symbol or initial and
final states, we see Turing machines as dynamical systems.

4. Dynamics of Turing machines 28/44

Reversible Turing machines

Intuitively, a TM is reversible if there exists another TM to
compute backwards: “T2 = T−1

1 ”. Forget technical details. . .

Definition A TM is reversible if δ can be decomposed as:

δ(s, a) = (t, b, ρ(t)) where (t, b) = σ(s,a)
ρ : Q → {ð,ñ}
σ ∈ SQ×Σ

Remark δ−1(t, b) = (s, a,	(ρ(s)))

4. Dynamics of Turing machines 29/44

Moving head vs moving tape dynamics

TMH

Xh ⊂ (Q∪ Σ)Z
Th : Xh → Xh

· · ·000000b000000000· · ·
· · ·0000001d00000000· · ·
· · ·000000b110000000· · ·
· · ·0000001p10000000· · ·
· · ·00000010d0000000· · ·
· · ·0000001b01000000· · ·
· · ·00000011d1000000· · ·
· · ·0000001q11000000· · ·
· · ·000000b101000000· · ·
· · ·0000001p01000000· · ·

...

TMT

Xt = ωΣ×Q× Σω
Tt : Xt → Xt

· · ·0000000b00000000· · ·
· · ·0000001d00000000· · ·
· · ·0000000b11000000· · ·
· · ·0000001p10000000· · ·
· · ·0000010d00000000· · ·
· · ·0000001b01000000· · ·
· · ·0000011d10000000· · ·
· · ·0000001q11000000· · ·
· · ·0000000b10100000· · ·
· · ·0000001p01000000· · ·

...

4. Dynamics of Turing machines 30/44

Trace-shift dynamics

ST

ST ⊆ (Q× Σ)ω

σ : ST → ST

The column shift of TMT

0
b
0
d
1
b
1
p
0
d
0
b
1
d
1
q
1
b
0
p · · ·

TMT

Xt = ωΣ×Q× Σω
Tt : Xt → Xt

· · ·0000000b00000000· · ·
· · ·0000001d00000000· · ·
· · ·0000000b11000000· · ·
· · ·0000001p10000000· · ·
· · ·0000010d00000000· · ·
· · ·0000001b01000000· · ·
· · ·0000011d10000000· · ·
· · ·0000001q11000000· · ·
· · ·0000000b10100000· · ·
· · ·0000001p01000000· · ·

...

4. Dynamics of Turing machines 31/44

Searching for a reduction

We want to prove the following:

Theorem To find if a given complete reversible Turing
machine admits a periodic orbit is Σ1-complete.

In the partial case we use the following tool:

Prop[KO08] To find if a given (aperiodic) RTM can reach a
given state t from a given state s is Σ1-complete.

4. Dynamics of Turing machines 32/44

The partial case

Principle of the reduction Associate to an (aperiodic) RTM
M with given s and t a new machine with a periodic orbit if
and only if t is reachable from s.

M M−1s t s

We need to find a way to complete the constructed machine.
We will embed it into a complete aperiodic RTM.

4. Dynamics of Turing machines 33/44

p

b

d

q

0|1ñ

1|1ñ
2|2ñ

0|1ð

1|1ð
2|2ð

2|0ð

0|2ñ
1|0ñ

2|0ñ

0|2ð
1|0ð

5. a SMART machine

The SMART machine C

Conj[Kůrka97] Every complete TM has a periodic point.

Thm[BCN02] No, here is an aperiodic complete TM.

Rk It relies on the bounded search technique [Hooper66].

In 2008, I asked J. Cassaigne if he had a reversible version of
the BCN construction. . .

. . . he answered with a small machine C which is a reversible
and (drastic) simplification of the BCN machine.

5. a SMART machine 34/44

p

b

d

q

0|1ñ

1|1ñ
2|2ñ

0|1ð

1|1ð
2|2ð

2|0ð

0|2ñ
1|0ñ

2|0ñ

0|2ð
1|0ð

C

The SMART machine C

A 4-state 3-symbols TM with nice properties:

complete no halting configuration

reversible reversed by a TM. . .

time-symetric . . . essentially itself (up to details)

aperiodic no time periodic orbit

substitutive substitution-generated trace-shift language

TMT-minimal every orbit is dense with moving tape

How does it work?

5. a SMART machine 37/44

PINGñ PONGñ
∗|∗ ð

0|0 ñ 0|0 ð

0|� ñ �|0∆

PINGñ PONGñ

PONGð PINGð

∗|∗ ð
0|0 ñ 0|0 ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð

PINGñ PONGñ

PONGð PINGð

∗|∗ ð
0|0 ñ 0|0 ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ

PINGñ PONGñ

PONGð PINGð

∗|∗ ð
0|0 ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ

PINGñ PONGñ

PONGð PINGð

∗|∗ ð
0|0 ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ

0|2 ð

2|0 ð

PINGñ PONGñ

PONGð PINGð

∗|∗ ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ

0|2 ð

2|0 ð

PINGñ PONGñ

PONGð PINGð

∗|∗ ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ

0|2 ð

2|0 ð

0|1 ñ
1|0 ð

0|2 ñ

2|0 ñ

PINGñ PONGñ

PONGð PINGð

∗|∗ ð

0|� ñ �|0∆

∗|∗ ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ

0|2 ð

2|0 ð

0|1 ñ
1|0 ð

0|2 ñ

2|0 ñ

PINGñ PONGñ

PONGð PINGð

∗|∗ ð

∗|∗ ñ

0|1 ð
1|0 ñ

0|2 ð

2|0 ð

0|1 ñ
1|0 ð

0|2 ñ

2|0 ñ

d q

p b

∗|∗ ð

∗|∗ ñ

0|1 ð
1|0 ñ

0|2 ð

2|0 ð

0|1 ñ
1|0 ð

0|2 ñ

2|0 ñ

Recursive behavior

PINGñ(n):
for i=1 to n:

d. 0|1, b ð
PINGð(i− 1)

d. x|x, q ð
for i=n downto 1:

q. 0|2, b ð
PINGð(i− 1)

q. y |0, α(y) τ(y)

PINGð(n):
for i=1 to n:

b. 0|1, d ñ
PINGñ(i− 1)

b. x|x, p ñ
for i=n downto 1:

p. 0|2, d ñ
PINGñ(i− 1)

p. y |0, α′(y) τ′(y)f(0) = 2

f(n+ 1) = 3f(n)

5. a SMART machine 39/44

Substitutive trace subshift

ϕ
(
0

b

)
= 0

b
0

d
1

b
1

p

ϕ
(
x

b

)
= x

b

ϕ
(
0

p

)
= 0

p
0

d
2

b
1

p

ϕ
(
x

p

)
= 0

p
x

d
2

q
x

p

ϕ
(
0

d

)
= 0

d
0

b
1

d
1

q

ϕ
(
x

d

)
= x

d

ϕ
(
0

q

)
= 0

q
0

b
2

d
1

q

ϕ
(
x

q

)
= 0

q
x

b
2

p
x

q

5. a SMART machine 40/44

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

ex
p
o
n
en

ti
al

ti
m

e

fo
rw

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)

t = 0

t = 36

t = 76

ex
p
o
n
en

ti
al

ti
m

e

fo
rw

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)
PINGñ(4)

PONGñ(4)

t = 0

t = 36

t = 76
t = 77

t = 198

ex
p
o
n
en

ti
al

ti
m

e

fo
rw

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)
PINGñ(4)

PONGñ(4)

PONGð(5)

t = 0

t = 36

t = 76
t = 77

t = 198

t = 319

ex
p
o
n
en

ti
al

ti
m

e

fo
rw

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)
PINGñ(4)

PONGñ(4)

PONGð(5)

PONGñ(9)

t = 0

t = 36

t = 76
t = 77

t = 198

t = 319

t = 683

ex
p
o
n
en

ti
al

ti
m

e

fo
rw

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)
PINGñ(4)

PONGñ(4)

PONGð(5)

PONGñ(9)

PINGð(10)

PONGð(10)

t = 0

t = 36

t = 76
t = 77

t = 198

t = 319

t = 683
t = 684

t = 89257

ex
p
o
n
en

ti
al

ti
m

e

fo
rw

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)
PINGñ(4)

PONGñ(4)

PONGð(5)

PONGñ(9)

PINGð(10)

PONGð(10)

0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
q

t = 0

t = 36

t = 76
t = 77

t = 198

t = 319

t = 683
t = 684

t = 89257

ex
p
o
n
en

ti
al

ti
m

e

fo
rw

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)
PINGñ(4)

PONGñ(4)

ex
p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

ex
p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)
PINGñ(4)

PONGñ(4)

PINGð(3)

ex
p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

ex
p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)
PINGñ(4)

PONGñ(4)

PINGð(3)

PINGñ(4)

ex
p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

ex
p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)
PINGñ(4)

PONGñ(4)

PINGð(3)

PINGñ(4)

PONGð(5)

PINGð(5)

ex
p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

ex
p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)
PINGñ(4)

PONGñ(4)

PINGð(3)

PINGñ(4)

PONGð(5)

PINGð(5)

PONGñ(9)

PINGñ(9)
ex

p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

ex
p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

0 1 0 0 2 1 2 0 0 0 1 2 0 0 0 2 0
b

PINGð(3)

PONGð(3)
PINGñ(4)

PONGñ(4)

PINGð(3)

PINGñ(4)

PONGð(5)

PINGð(5)

PONGñ(9)

PINGñ(9)

0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0
d

ex
p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

ex
p
o
n
en

ti
al

ti
m

e

b
ac

k
w

ar
d

p
re

d
ic

ti
o
n

SMART is transitive in TMH, TMT and ST

Proposition
(
ω2 . 2 2ω

p

)
is a transitive point.

Proof
(Forward) For all k á 0:(

ω2 . 2 2ω
p

)
`∗

(
ω2 2 0k . 0 0k 2ω
q

)
.

(Backward) For every partial configuration (u . v← α →), there
exist w,w′ ∈ {0,1,2}∗ and k > 0 big enough such that(

ω2 2 0k . 0 0k 2ω
q

)
`∗

(
ω2 w u . v w′ 2ω← α →

)
.

�

5. a SMART machine 43/44

Typical use

Combining the SMART machine with a generic Embedding
technique provides new undecidability results.

Theorem Transitivity is Π0
1-hard in TMH, TMT and ST.

Theorem Minimality is Σ0
1-hard in TMT and ST.

5. a SMART machine 44/44

Table of contents

1. Cellular Automata

2. Nilpotency and tilings

3. Periodicity and mortality

4. Dynamics of Turing machines

5. a SMART machine

	Cellular Automata
	Nilpotency and tilings
	Periodicity and mortality
	Dynamics of Turing machines
	a SMART machine

