
Minimal Interval Completion
Through Graph Exploration

Karol Suchan12 and Ioan Todinca1

1 LIFO, Université d’Orléans, 45067 Orléans Cedex 2, France,
Karol.Suchan,Ioan.Todinca@univ-orleans.fr

2 Department of Discrete Mathematics, Faculty of Applied Mathematics,
AGH - University of Science and Technology, Cracow, Poland

June 27, 2006

Abstract. Given an arbitrary graph G = (V, E) and an interval graph H = (V, F) with E ⊆ F
we say that H is an interval completion of G. The graph H is called a minimal interval completion
of G if, for any sandwich graph H ′ = (V, F ′) with E ⊆ F ′ ⊂ F , H ′ is not an interval graph.
In this paper we give a O(nm) time algorithm computing a minimal interval completion of an
arbitrary graph. The output is an interval model of the completion.

1 Introduction

Various well-known graph parameters, like treewidth, minimum fill-in, pathwidth or bandwidth
are defined in terms of graph embeddings. The general framework consists in taking an arbi-
trary graph G = (V,E) and adding edges to G in order to obtain a graph H = (V,E ∪ E′)
belonging to a specified class H. For example, if H is chordal then it is called a triangulation
of G. The treewidth can be defined as min(ω(H)) − 1, where the minimum is taken over all
triangulations of G (here ω(H) denotes the maximum size of a clique in H). If, instead of
minimizing ω(H), we minimize |E′|, the number of added edges, we define the minimum fill-in
of G. If H = (V,E ∪ E′) is an interval graph, we say that H is an interval completion of G.
The pathwidth of G can be defined as min{ω(H)) − 1 | H is an interval completion of G}.
The minimum number of edges that we need to add for obtaining an interval completion is
called the profile of the graph.

For each of the parameters cited above, as well as for similar embedding problems into
other type of graph classes, the problem of computing the parameter is NP-hard. Obviously,
for all of them, the optimal solution can be found among the minimal embeddings. We say
that H = (V,E ∪ E′) is a minimal triangulation (minimal interval completion) if no proper
subgraph of H is a triangulation (interval completion) of G.

Computing minimal triangulations is a standard technique used in heuristics for the
treewidth or the minimum fill-in problem. The deep understanding of minimal triangula-
tions lead to many theoretical and practical results for the treewidth and the minimum fill-in.
We believe that, similarily, the study of other types of minimal completions might bring new
powerfull tools for the corresponding problems.
Related work. Much research has been devoted to the minimal triangulation problem. Tar-
jan and Leuker propose the first algorithm solving the problem in O(nm) time. Several authors
give different approaches for the same problem, with the same running time. Only recently
this O(nm) (in the worst case O(n3)) time complexity has been improved by the algorithms
of Kratsch and Spinrad ([13], running in O(n2.69) time) and Heggernes, Telle and Villanger
([12], running in O(nα log n) time where O(nα) is the time needed for the multiplication of two

n× n matrices). The latter algorithm is the fastest up to now for the minimal triangulation
problem.

A first polynomial algorithm solving the minimal interval completion problem is given
in [11], using an incremental approach. Recent results relate to minimal completions into
split and comparability graphs [9, 10].
Our result. We study the minimal interval completion problem. Our main result is an O(nm)
time algorithm computing a minimal interval completion of an arbitrary graph, faster and
simpler than the result of [11]. The latter result is based on characterization of interval graph
by existence of its clique path. Here, we use the characterization by a special ordering of
the vertex set, called interval ordering [17]. Its role is similar to the simplicial elimination
scheme for chordal graphs. We define a family of orderings such that the associated proper
interval graph is a minimal interval completion. Eventually, we give an O(nm) time algorithm
computing such an ordering. Our algorithm is based on a breadth-first search of the input
graphs, using special tie-break rules. In particular, we use the LexBFS algorithm for tie-breaks.
The ordering can be efficiently transformed into an interval model.

2 Definitions and basic results

Let G = (V,E) be a finite, undirected and simple graph. Moreover we only consider connected
graphs — in the non-connected case each connected component can be treated separately.
Denote n = |V |, m = |E|. If G′ = (V ′, E′) is a spanning subgraph of G = (V,E) (i.e. V ′ = V
and E ⊆ E′) we write G ⊆ G′ (and G ⊂ G′ if G ⊆ G′, G 6= G′). The neighborhood of a vertex
v in G is NG(v) = {u | {u, v} ∈ E}. Similarly, for a set A ⊆ V , NG(A) =

⋃
v∈A NG(v) \ A.

The closed neighborhood of A (of v) is NG[A] = A∪NG(A) (NG[v] = {v}∪NG(v)). As usual,
the subscript is sometimes omitted.

A graph G is an interval graph if continuous intervals can be assigned to each vertex of
G such that two vertices are neighbors if and only if their intervals intersect. The family of
intervals is called the interval model of the graph.

Theorem 1 ([5]). A graph G is interval if and only if there is a path P whose vertex set
is the set of all maximal cliques of G, such that the subgraph of P induced by the maximal
cliques of G containing vertex v is connected, for each vertex v of G.

Such a path will be called a clique path of G. Notice, that a clique path P gives an interval
model of G, with an interval (subpath) of maximal cliques assigned to each vertex. For our
purpose, we also use the caracterization of interval graphs in terms of vertex orderings (also
called layouts).

Definition 1 (interval ordering [17]). An interval ordering of the vertices of a graph
H = (V, F) is a linear ordering σ = (v1, v2, . . . , vn) of V such that, for any 1 ≤ i < j ≤ k ≤ n,
if {vi, vk} ∈ F then also {vi, vj} ∈ F .

Theorem 2 ([17]). A graph H = (V, F) is an interval graph if and only if there exists an
interval ordering of its vertex set.

Definition 2. Let G = (V,E) be an arbitrary graph and σ = (v1, . . . , vn) be an ordering of
V . The graph G(σ) = (V, F) is defined by

F = {{vi, vk} | there is j such that 1 ≤ i < k ≤ j ≤ n and {vi, vj} ∈ E}.

2

The following Lemma is a direct consequence of Theorem 2.

Lemma 1. G(σ) is an interval graph.

Remark 1. Let σ = (v1, v2 . . . , vn) be an interval ordering of an interval graph H. An interval
model of H can be obtained by associating to each vertex vi the interval [i, j], where j ≥ i is
the largest index such that {vi, vj} ∈ F .

Conversely, given an interval model of the graph H, we obtain an interval ordering by
ordering the vertices according to the left-end point of their intervals, from left to right. Ties
can be broken arbitrarily. For technical reasons, in this article, we decide to use the right-ends
as a tie-break, from left to right, too.

Given an interval model, a clique path can be obtained by traversing the model from
left to right and, at each point p where an interval finishes, adding the clique of intervals
intersecting p to the model if it is not included in the (maximal) clique added right before. If
H = G(σ), for some simple graph G, let P (G, σ) denote the clique path obtained in that way.

Theorem 3. Let G = (V,E) be an arbitrary graph and H = (V, F) be a minimal interval
completion of G. Then there is an ordering σ such that H = G(σ).

Proof. By Theorem 2, there is an ordering σ of V such that H = H(σ). As a straight
consequence of Definition 2, E(G(σ)) ⊆ E(H). By Lemma 1, G(σ) is also an interval graph.
Thus, by minimality of H, we deduce that E(G(σ)) = E(H). ut

Definition 3. An ordering σ = (v1, . . . , vn) is called nice if G(σ) is a minimal interval
completion of G. Any prefix (v1, . . . , vk), k ≤ n of a nice ordering is called a nice prefix.

Our goal will be to find a nice ordering σ of an arbitrary graph G. This will be achieved
through ordered partitions of the vertex set, which are to be refined into a linear ordering.

Definition 4. A tuple of disjoint subsets of V , OP = (V1, . . . , Vk) whose union is exactly V
is called an ordered partition of V . A refinement of OP is an ordered partition OP ′ obtained
by replacing each set Vi by an ordered partition of Vi.

Definition 5. Given an ordered partition OP = (V1, . . . , Vk), any tuple OP ′ = (V1, . . . , Vj),
with 0 ≤ j ≤ k, is called a prefix of OP . We use V(OP ′) to denote

⋃
{Vi | 1 ≤ i ≤ j}.

In the particular case where OP = (V1), we simply write V1. Moreover if V1 is formed by
a single vertex x, we write x instead of {x}. Given two tuples OP ′ = (V1, . . . , Vk), OP ′′ =
(Vk+1, . . . , Vk+l), their concatenation OP = (V1, . . . , Vk, Vk+1, . . . , Vk+l) is denoted by OP ′ •
OP ′′.

Notice that an ordering σ = (v1, . . . , vn) of V is a special case of an ordered partition.

3 Nice orderings and nice prefixes

3.1 Choosing a first vertex

A module is a set of vertices M such that for any x, y ∈ M , N(x) \M = N(y) \M . A clique
module is a module inducing a clique. An inclusion-maximal clique module will be simply
called a maximal clique-module.

A minimal separator S is a set of vertices such that there exist two connected components
of G− S with vertex sets C and D satisfying N(C) = N(D) = S.

3

Lemma 2 (see e.g. [6]). Let P be a clique path of an interval graph H. For any minimal
separator S of H, there exist two maximal cliques of H, consecutive in P , whose intersection
is S.

Definition 6 ([1]). A moplex is a maximal clique module M , such that N(M) is a minimal
separator of G. The vertices of a moplex are called moplexian vertices.

The LexBFS (Lexicographic Breadth-First Search) algorithm, introduced by Rose, Leuker
and Tarjan [19], is a famous linear-time algorithm that numbers the vertices of an arbitrary
graph from n to 1. Initially designed to obtain a simplicial ordering for chordal graphs, we
use it here to obtain the first vertex of a nice ordering. LexBFS is a particular breadth-first
search algorithm (see Figure 1). Each vertex x has a label lab(x), which is a tuple of integers.
During the algorithm, each vertex x also receives a number. The algorithm may start the
exploration of the graph on any vertex.

Algorithm LexBFS

Input: G = (V, E) connected
Output: a numbering of the vertices from n to 1

// init
for each vertex x do

x is marked “unnumbered”
lab(x) := ∅

// main loop
for i := n downto 1 do

pick an unnumbered x with maximum label according to the lexicographic order
give the number i to x
for each unnumbered neighbour y of x do

add the number i at the end of lab(y)

Fig. 1. The LexBFS algorithm.

Theorem 4 ([1]). The algorithm LexBFS ends on a moplexian vertex.

A vertex v numbered 1 by some execution of LexBFS is called a LexBFS-terminal vertex.
A moplex M such that some execution of LexBFS terminates on a vertex of M is called
a LexBFS-terminal moplex.

Lemma 3 ([1, 2]). Let M be a LexBFS-terminal moplex and S = NG(M). Denote by
C1, C2, . . . , Ck, with Ck = M , the connected components of G − S in the order in which
the LexBFS execution encounters them. Then the following equation are satisfied:

N(C1) ⊆ N(C2) ⊆ · · · ⊆ N(Ck). (1)

∀i, j, x, y : 1 ≤ i < j ≤ k, x ∈ N(Ci), y ∈ N [Cj] \N(Ci)
⇒ {x, y} ∈ E(G).

(2)

4

Lemma 4. Consider a non-complete graph G = (V,E). Let v be a vertex of a moplex M and
S = NG(M). Let C1, C2, . . . , Ck, with Ck = M , the connected components of G − S, satisfy
Equations 1 and 2 of Lemma 3. Then there exists a minimal interval completion H of G such
that NG(v) = NH(v).

For any such H, there exists a clique path P of H such that M ∪ S is one of its end
cliques.

Proof. Let H ′ be the graph obtained from G by transforming NG[Ci] into a clique, from
each 1 ≤ i ≤ q. By Equation 1 (see Lemma 3), (NG[C1], . . . , NG[Ck]) is a clique path of
H ′, in particular H ′ is an interval graph. Consequently H ′ contains some minimal interval
completion H of G as required.

Now let H be any minimal interval completion of G such that NH(v) = NG(v). We first
show that S induces a clique in H. Let D be a component of G− S, different from M , such
that NG(D) = S. Note that S is a v, u-minimal separator of G, for some u ∈ D. Let T be
a minimal v, u separator of H such that T ⊆ NH(v). Clearly T exists because u and v are
non-adjacent in H. We claim that S ⊆ T . For each vertex s ∈ S, there is a u, v path of G
contained in D ∪ {v, s}. This path intersects NG(v) only in s, so also in the graph H the
only possible intersection between T and the path is s. It follows that s ∈ T , so S ⊆ T . The
minimal separator T induces a clique in H by Lemma 2. Hence S also induces a clique in H.
Note that, by definition of a moplex, M ∪ S also induces a clique in H.

For each i, 1 ≤ i ≤ k let Hi = H[NG[Ci]]. Let H ′′ be the graph with vertex set V and
edge set E(H1) ∪ E(H2) ∪ · · · ∪ E(Hk). Therefore G ⊆ H ′′ ⊆ H. We will construct a clique
path P of H ′′, showing that H ′′ is an interval graph. By minimality of H, this implies that
H ′′ = H. Moreover, the clique path P will have M ∪ S = NG[M] as one of its end cliques.

Let Si = NG(Ci). By Equation 2, the vertices of Si−1 are adjacent to all vertices of
Ci − Si−1 in the graph G, so also in Hi. Combined with the fact that Si−1 ⊆ S induces a
clique in H we have that Si−1 is contained in each maximal clique of Hi. We claim that for
each i, 1 ≤ i < k, there exists a clique path of Hi such that Si is contained in the rightmost
clique of Pi. Indeed, the graph H+

i = H[Ci ∪S ∪M] is an interval graph and M ∪S is one of
its maximal cliques. Take any clique path P+

i of H+
i , we prove that M ∪ S is an end clique.

By contradiction, let x (resp y) be a vertex appearing in the clique left (resp. right) to S∪M ,
but not appearing in S ∪M . By the properties of a clique path, S ∪M must separate x and y
in H+

i . This contradicts the fact that x, y ∈ Ci and there exists an x, y-path in G[Ci]. So the
only possibility is that S ∪M is at an end of P+

i . Since Si ⊆ S and every vertex of S has a
neighbour in M , Si is contained in the clique next to S ∪M in P+

i . The clique path Pi of Hi

obtained by removing S∪M from P+
i has the required property. Eventually, by concatenating

the clique paths P1, P2, . . . , Pk, it is easy to check that we obtain a clique path P of H ′′. Indeed
if a vertex x appears in the subpaths Pi and Pj with i < j, then x ∈ NG[Ci] ∩NG[Cj] = Si

(see Equation 1). By Equation 2, x appears in every clique of Pk, for each k, i < k ≤ j. Since
Hk is the complete graph with vertex set NG[M] = S ∪M , the clique path P has S ∪M as
rightmost clique. ut

Theorem 5. Let G be a non-complete graph and v be a LexBFS-terminal moplexian vertex
of G. For any minimal interval completion H of G such that NG(v) = NH(v), there is an
interval ordering of H starting with v.

Proof. By Lemma 4, there exists a clique path of H such that the left-most clique is M ∪ S,
where S = N(M). We can reverse this path so that S ∪ M becomes the leftmost clique of

5

the clique path P . By construction, H has no fill edges incident to v, in particular the v only
appears in the left-most clique of P . By Remark 1, there is an interval ordering of H starting
with v. ut

3.2 A family of nice orderings

Notation 1 We denote by ρ = (v1, . . . , vk) a prefix, and R = V \ V(ρ). Let Nxt be a non-
empty subset of R, such that Nxt = NG(vi) ∩ R for some vi ∈ V(ρ) and Nxt is inclusion-
minimal for this property. We denote R \Nxt by Rst.

Lemma 5. Let σ be a refinement of ρ • Nxt •Rst and σ′ be a refinement of ρ • R such that
G(σ′) ⊆ G(σ). Then σ′ also is a refinement of ρ •Nxt •Rst.

Proof. Let vi ∈ V(ρ) such that Nxt = R ∩ NG(vi). Suppose that σ′ is not a refinement of
ρ•Nxt •Rst, so there is some vertex u ∈ Rst and a vertex w ∈ Nxt such that u appears before
w in σ′. Since u appears in σ after all vertices of Nxt, vi and u are not adjacent in G(σ). Now
in σ′, u appears after vi and before w. Since Nxt ⊆ NG(vi), vi and w are adjacent in G and
therefore vi and u are adjacent in G(σ′) – a contradiction. ut

Lemma 6. Consider two vertex orderings σ and σ′ of G that are refinements of ρ•Nxt •σRst,
where σRst is an ordering of Rst. That is to say, σ and σ′ differ only by a permutation of Nxt.
Let u, v be two vertices adjacent in G(σ′) but non-adjacent in G(σ). Then both u, v ∈ Nxt.

Proof. By construction of G(σ) and G(σ′), at least one of the vertices u, v are in Nxt. By
contradiction, suppose that the other is not in Nxt.

First we consider the case when u ∈ V(ρ) and v ∈ Nxt. Suppose that u has a neighbour
u′ ∈ Rst. In both G(σ) and G(σ′) all vertices of Nxt are adjacent to u as they appear after
u and before u′ in the corresponding ordering – a contradiction. So NG(u) ∩ R ⊆ Nxt. By
definition (minimality) of Nxt, either Nxt ⊆ NG(u) or Nxt∩NG(u) = ∅. Clearly, in the first
case Nxt is contained in the neighborhood of u in both G(σ) and G(σ′). In the second, for
both G(σ) and G(σ′) the vertex u has no neighbours in Nxt – a contradiction.

It remains to consider the situation when u ∈ Nxt and v ∈ Rst. Since u and v are adjacent
in G(σ′), there is a neighbour v′ of u in G, appearing after v in σ′. But u, v, u′ appear in the
same order in σ, so u and v are adjacent in G(σ) – a contradiction. ut

3.3 Nice orderings : a sufficient condition

Notation 2 Let σ be a vertex ordering of G and let ρ be a prefix of σ. We denote by T the
set of vertices of Nxt having neighbours in Rst. GNxt denotes the graph obtained from G[Nxt]
by adding a dummy vertex d1, adjacent to each vertex of T , and a dummy vertex d2 adjacent
only to d1. The graph G+

Nxt is obtained from GNxt by completing T into a clique. Given a
clique path P of H, let P [Nxt] denote the clique path of H[Nxt] obtained by restricting all the
bags of P to their intersections with Nxt and then removing the redundant ones (leaving only
unique maximal cliques of H[Nxt]).

Theorem 6. Let σ be a vertex ordering of G with the following properties:

1. σ starts with a LexBFS-terminal vertex v1.
2. For any non-empty prefix ρ = (v1, . . . , vi)

6

– σ respects ρ, i.e. σ is a refinement of ρ •Nxt •Rst,
– the next vertex in σ is a LexBFS-terminal vertex of G+

Nxt obtained by running LexBFS
starting from d2.

Then σ is a nice ordering.

Proof. Suppose that σ = (v1, . . . , vn) is not nice and let σ′ be an ordering such that H ′ = G(σ′)
is a minimal interval completion of G strictly contained in H = G(σ). Take σ′ such that the
maximal common prefix ρ of σ and σ′ is the longest possible.

Claim. ρ is not empty.

The first vertex v1 of σ is LexBFS-terminal. NG(v1) = NG(σ)(v1), since σ respects the prefix
(v1) and thus the neighbours of v1 in G appear right after v1 in σ. So the Claim follows by
Theorem 5.

Let v (resp. u) be the vertex right after ρ in σ (resp. in σ′). By Lemma 5, we have:

Claim (1). σ′ is a refinement of ρ •Nxt •Rst, in particular u ∈ Nxt.

Claim (2). Let σ′′ be any refinement of ρ • Nxt •Rst and H ′′ = G(σ′′). Let P
′′

= P (G, σ′′)
(see Remark 1). Then H ′′[Nxt] is an interval completion of G[Nxt], where the clique path
P ′′[Nxt] has the set T = NG(Rst) ∩Nxt contained in one of the end-cliques. In particular, T
is a clique in H ′′.

Clearly, P
′′
[Nxt] is a clique path of H

′′
[Nxt]. The last clique contains T , since the correspond-

ing intervals in the model intersect the interval of a vertex in Rst.

Claim (3). H ′[Nxt] is an interval completion of G[Nxt], minimal with respect to the property
expressed in the previous claim.

Since σ′ defines a minimal interval completion H ′ of G, σ′ has to yield H ′[Nxt] minimal with
this property. Suppose it is not minimal, and let H

′′′
[Nxt] be the corresponding completion

strictly included in H
′
[Nxt]. Then we can take the corresponding clique path P

′′′
[Nxt] to

create an interval order σ
′′′
Nxt of H

′′′
[Nxt] (see Remark 1). By Lemma 6, σ

′′′
= ρ • σ

′′′
Nxt • σ

′
Rst

yields H
′′′

= G(σ
′′′

) strictly contained in H
′
. A contradiction with minimality of H

′
.

Following Notation 2, let H ′
Nxt be obtained from H ′[Nxt] by adding a dummy vertex d1

adjacent to the vertices of T and a vertex d2 adjacent to d1.

Claim (4). H ′
Nxt is a minimal interval completion of G+

Nxt.

Let P ′
Nxt denote the clique path of H ′

Nxt, obtained from P ′[Nxt] by ading two bags q1 = T∪{d1}
and q2 = {d1, d2} after the clique containing T (see Claim 2). It is a clique path indeed, so
H ′

Nxt is an interval completion of G+
Nxt. Suppose it is not minimal. So there is a minimal one

H
′′
Nxt strictly included in H ′

Nxt. Notice that this graph has a clique path P
′′
Nxt, that also has

− − q1 − −q2 at an end. Indeed, the moplex M = d2 satisfies the conditions of Lemma 4
in H

′′
Nxt, so there is a clique path of H

′′
Nxt with {d1, d2} as one of the end-cliques. Therefore

P
′′
[Nxt], obtained by removing − − q1 − −q2 from P

′′
Nxt, is a clique path of H

′′
[Nxt] with

T contained in one of the end-cliques. Which contradicts Claim 3, since H
′′
[Nxt] is a strict

subgraph of H ′[Nxt].

Claim (5). There is an interval ordering of H ′
Nxt starting with v.

7

Let us prove that NH′
Nxt

(v) = NG+
Nxt

(v). Indeed if v ∈ T , since v is the last vertex encountered

by LexBFS launched on G+
Nxt from d2, we have T = Nxt. In this case the neighborhood of v

in both graphs is T \ {v} ∪ {d1}, and the equality follows.
Now if v 6∈ T then NG(v) ∩ R ⊂ Nxt. By second condition of the theorem, σ respects

ρ • v, so NG(v) ∩ Nxt is put before R \ NG(v) in σ and NH[Nxt](v) = NG[Nxt](v). Therefore
NH′

Nxt
(v) = NG+

Nxt
(v), since

NG+
Nxt

(v) ⊆ NH′
Nxt

(v) ⊆ NHNxt
(v) = NGNxt

(v) ⊆ NG+
Nxt

(v).

The claim follows from Theorem 5 and Claim 4.

Claim (6). There is an ordering σ
′′
, with G(σ

′′
) = G(σ′), sharing a longer prefix with σ – a

contradiction.

We restrict the ordering from the previous claim to Nxt and obtain σ
′′
Nxt. Let σ

′′
= ρ • σ

′′
Nxt •

σ
′
Rst. By Lemma 6, G(σ

′′
) = G(σ′). So σ

′′
defines the same completion and shares a longer

prefix. Which contradicts the choice of σ
′
.

This achieves the proof of our theorem. ut

4 The algorithm

Theorem 7. There is an O(nm)-time algorithm computing a minimal interval completion
of an arbitrary graph.

Proof. We prove that the algorithm MIC Ordering of Figure 2 computes in O(nm) time a
vertex ordering satisfying the conditions of Theorem 6.

Clearly the first vertex v1 is a LexBFS-terminal vertex, implying the first condition of
Theorem 6. The initialization of the ordered partition ensures that all neighbours of v1 in G
appear contiguously and right after v1 in σ. Therefore σ is a refinement of v1 •NG(v1) • V \
NG[v1].

The algorithm maintains an ordered partition of the vertex set of G. At each step i the set
Nxt corresponds like in Notation 1 to the prefix ρ = (v1, . . . , vi) as required. By contradiction
suppose there exists j < i such that N(vj) is strictly contained in Nxt. Then at step j, the
class C of the ordered partition containing Nxt has been split in C ∩NG(vj) and C \NG(vj)
– contradicting the fact that Nxt is a class of the ordered partition at the step i.

Unlike the Theorem 6, our algorithm computes the vertex vi by launching LexBFX from
d2 on the graph GNxt and not G+

Nxt. The reason is related to the running time. Indeed GNxt

has O(n + m) edges, while if we compute G+
Nxt, the number of edges of G+

Nxt might be up to
Ω(n2). Nevertheless we prove that vi is also a LexBFS-terminal vertex obtained by using G+

Nxt

instead of GNxt. Let n′ be the number of vertices of GNxt. When the vertex d1 is numbered
(with number n′ − 1) by LexBFS on GNxt, all vertices of T are labeled (n − 1). Then all
vertices of T are numbered before the vertices of Nxt \T . The same would have happened by
running LexBFS on G+

Nxt. Moreover, in G+
Nxt any numbering of T is valid in this case. So the

LexBFS numbering on GNxt is also a LexBFS numbering on G+
Nxt.

Together with the way that algorithm maintains an ordered partition, it implies the second
condition of Theorem 6.

Each iteration of the for loop must be performed in O(m) time. The update of the order
partition (the last three lines of the loop) can be easily done in O(n) time. (We point out

8

that, using more envolved techniques for partition refinement [7, 8], this step could even be
done in O(|NG(vi)| time.) The choice of the vertex vi is made by running LexBFS on the
graph GNxt. Since this graph is of size O(n + m). The O(nm)-time for computing σ follows.

The function IntervalModel constructs an interval model of G(σ) based on the ordering
σ like in Remark 1. A single pass along σ = (v1, . . . , vn) is enough to assign to every vertex
vi the interval [i : j], where j is the biggest index such that vivj ∈ E(G). This can be done
in O(degG(v))-time per vertex v, where degG(v) is the degree of v in G. In total, it gives
O(n + m)-time for computing the interval model. ut

Algorithm MIC Ordering

Input: G = (V, E) connected
Output: a nice ordering σ and the corresponding interval model
let v1 be the last vertex encountered by LexBFS(G)

ρ := (v1)
Nxt = NG(v1); Rst := V \NG[v1]
OP := v1 •Nxt •Rst
for i := 2 to n do

let Nxt be the class appearing after ρ in OP
let vi be the last vertex encouneterd by LexBFS

launched on GNxt starting from d2 (see Theorem 6)
ρ = ρ • vi

if |Nxt | ≥ 2 then
replace Nxt in OP by vi • (Nxt \{vi})

let C be the last class of OP such that NG(vi) ∩ C 6= ∅
if C \NG(vi) 6= ∅ then

replace C in OP by (C ∩NG(vi)) • (C \NG(vi))
σ := OP
IntervalModel(σ)

Fig. 2. Algorithm MIC Ordering

5 Conclusion

We give in this paper an O(nm) time algorithm computing a minimal interval completion
of an arbitrary input graph. The algorithm is based on the notion of nice orderings, which
characterize a minimal interval completion, and on Theorem 6 which gives a sufficient condi-
tion for a nice ordering. We point out that there are nice orderings satisfying the conditions
of Theorem 6, which cannot be produced by the algorithm. Such examples can be easily ob-
tained when the input graph is a cycle. In particular an ordering produced by our algorithm
is always a breadth-first search ordering, which is not required by the theorem.

There are two very natural directions for further research. One is to obtain a faster al-
gorithm for the minimal interval completion problem. In our algorithm, each time when we
choose a new vertex, we need LexBFS as the tie-break rule. A faster choice would improve the
running time of the algorithm: just maintaining the ordered partition can be done in linear
time [7, 8]. A naive technique would consist of doing only one sweep of LexBFS and then
choosing, at each step, the vertex of Nxt with minimum LexBFS number. Unfortunately this
approach does not produce a minimal interval completion.

9

The second important question is to characterize all nice orderings. For the minimal
triangulation problem, the perfect elimination orderings (which play the same role as the nice
orderings here) have been completely characterized. In our case, we have examples of nice
orderings that do not satisfy the conditions of Theorem 6.

References

1. A. Berry, J. P. Bordat, Separability Generalizes Dirac’s Theorem. Discrete Applied Mathematics,
84(1-3): 43-53, 1998.

2. A. Berry, J. P. Bordat, Local LexBFS Properties in an Arbitrary Graph. Proceedings of Journes
Informatiques Messines, 2000. http://www.isima.fr/berry/lexbfs.ps.

3. H. L. Bodlaender, A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth.
SIAM Journal on Computing, 25(6):1305-1317, 1996.

4. L. Cai, Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties. Infor-
mation Processing Letters, 58(4):171-176, 1996.

5. P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and of interval graphs.
Canadian Journal of Mathematics, 16:539-548, 1964.

6. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.
7. M. Habib, C. Paul, L. Viennot, Partition Refinement Techniques: An Interesting Algorithmic Tool

Kit. International Journal of Foundations of Computer Science, 10(2): 147-170, 1999.
8. M. Habib, R. M. McConnell, C. Paul, L. Viennot, Lex-BFS and partition refinement, with applica-

tions to transitive orientation, interval graph recognition and ones testing. Theoretical Computer Science,
234(1-2): 59-84, 2000.

9. P. Heggernes, F. Mancini, Minimal Split Completions of Graphs. Proceedings of LATIN 2006, Lecture
Notes in Computer Science, 3887:592-604, 2006.

10. P. Heggernes, F. Mancini, C. Papadopoulos Minimal Comparability Completions. Tech. Report,
University of Bergen, 2006, http://www.ii.uib.no/publikasjoner/texrap/pdf/2006-317.pdf

11. P. Heggernes, K. Suchan, I. Todinca,Y. Villanger, Minimal Interval Completions. Proceedings of
the 13th Annual European Symposium on Algorithms - ESA 2005, Lecture Notes in Computer Science,
3669:403-414, 2005.

12. P. Heggernes, J. A. Telle, Y. Villanger, Computing minimal triangulations in time O(nαlogn) =
o(n2.376). Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms - SODA 2005,
SIAM, 907-916, 2005.

13. D. Kratsch, J. Spinrad, Minimal fill in O(n2.69) time. To appear in Discrete Applied Mathematics.
14. H. Kaplan, R. Shamir, Pathwidth, Bandwidth, and Completion Problems to Proper Interval Graphs

with Small Cliques. SIAM Journal on Computing, 25(3): 540-561, 1996.
15. H. Kaplan, R. Shamir, R. E. Tarjan, Tractability of Parameterized Completion Problems on Chordal,

Strongly Chordal, and Proper Interval Graphs. SIAM Journal on Computing, 28(5): 1906-1922, 1999.
16. B. Monien, The bandwidth minimization problem for caterpillars with hair length 3 in NP-complete.

SIAM Journal on Algebraic and Discrete Methods, 7:505-512, 1986.
17. S. Olariu, An optimal greedy heuristic to color interval graphs. Information Processing Letters, 37(1):

21–25, 1991.
18. I. Rappaport, K. Suchan, I. Todinca, Minimal proper interval completions. To appear in Pro-

ceedings of the 32nd Workshop on Graph-Theoretic Concepts in Computer Science (WG’06), 2006.
http.//www.univ-orleans.fr/SCIENCES/LIFO/prodsci/rapports/RR2006.htm.en.

19. D. Rose, R.E. Tarjan, and G. Lueker, Algorithmic aspects of vertex elimination on graphs. SIAM
J. Comput., 5:146–160, 1976.

10

