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Abstract. The pathwidth of a graph G is the minimum clique number of H minus one, over
all interval supergraphs H of G. Although pathwidth is a well-known and well-studied graph
parameter, there are extremely few graph classes for which pathwidh is known to be tractable
in polynomial time. We give in this paper an O(n2)-time algorithm computing the pathwidth of
circular-arc graphs.

1 Introduction

A graph is an interval graph if it is the intersection graph of a finite set of intervals on a
line. The pathwidth of an arbitrary graph G is the minimum clique number of H, over all
interval supergraphs H of G, on the same vertex set. Pathwidth has been introduced in the
first article of Robertson and Seymour’s Graph Minor series [12]. It is a well-known and well
studied graph parameter, and not surprisingly NP-hard to compute. Note that the pathwidth
has been redefined and studied in different contexts under different names. The parameter
is also equal to the vertex separation number, and to the interval thickness or node search
number of the graph, minus one (see [1] for a survey).

The pathwidth problem is fixed parameter tractable. Indeed, since the class of graphs
of pathwidth at most k is minor-closed, using Roberston and Seymour’s results on graph
minors there exists an O(n2) algorithm for recognizing graphs of pathwidth at most k, for
any constant k; unfortunately this technique is not constructive. Bodlaender and Kloks [3]
give a constructive linear-time algorithm deciding, for any fixed k, if the pathwidth of an input
graph is at most k. Their algorithm first computes a tree decomposition of the input graph
of width at most k, using the fact that the treewidth of a graph is at most its pathwidth (see
Section 3 for definitions). Then this tree decomposition is used to decide if the pathwidth is
at most k. The best approximation algorithms for pathwidth are also based on approximation
algorithms for treewidth, combined with the fact that pwd(G) ≤ twd(G) · log n.

By [3], the pathwidth is polynomially tractable for all classes of graphs of bounded
treewidth. For trees and forests there exist several algorithms solving the problem inO(n log n)
time [11, 5]); only recently, Skodinis [13] gave a linear time algorithm. Even the unicyclic
graphs, obtained from a tree by adding one edge, require more complicated algorithms in
order to obtain an O(n log n) time bound [4]. There exist some other graph classes for which
the pathwidth problem is polynomial, e.g. permutation graphs, but this is mainly because for
these classes the pathwidth equals the treewidth. Roughly speaking, almost everything that
we know about computing pathwidth comes from its relationship with treewidth. More sur-
prisingly, even for classes of graphs of very small treewidth, like outerplanar or Halin graphs,
there are interesting approximation algorithms for pathwidth [2, 6]. Although in these cases
the parameter is polynomially tractable by the algorithm of [3], the running time is huge and



the dynamic programming technique of [3] could not be translated into simple, combinatorial
algorithms.

In this paper we give the first polynomial time algorithm computing the pathwidth of
circular-arc graphs. A graph is a circular-arc graph if it is the intersection graph of a finite
set of arcs on a circle. The pathwidth of these graphs can be easily approximated within
a factor of 2. Nevertheless, for circular-arc graphs the pathwidth is not necessarily equal
to the treewidth, and clearly this class is not of bounded treewidth, therefore we cannot
use the classical techniques for computing pathwidth. Our algorithm is based on a study
of interval completions of circular-arc graphs. An interval completion of a graph G is an
interval supergraph H, on the same vertex set. If no interval completion H ′ of G is a strict
subgraph of H, we say that H is a minimal interval completion of G. We study the minimal
interval completions of circular-arc graphs and we characterize a subclass of these minimal
interval completions, containing optimal solutions to the pathwidth problem. Based on this
combinatorial result, we give an O(n2) algorithm computing the pathwidth of circular-arc
graphs.

2 Definitions and basic results

Let G = (V,E) be a finite, undirected and simple graph. Moreover we only consider connected
graphs — in the non connected case each connected component can be treated separately.
Denote n = |V |, m = |E|. If G = (V,E) is a subgraph of G′ = (V ′, E′) (i.e. V ⊆ V ′ and
E ⊆ E′) we write G ⊆ G′. The neighborhood of a vertex v in G is NG(v) = {u | {u, v} ∈ E}.
Similarly, for a set A ⊆ V , NG(A) =

⋃
v∈A NG(v) \ A. As usual, the subscript is sometimes

omitted. For a set of vertices A ⊂ V , G[A] is the subgraph of G induced by A, that is the
graph (A,EA), where EA = {{x, y} | {x, y} ⊆ A and {x, y} ∈ E}.

The intersection graph of a family V of n sets is the graph G = (V,E), where the vertices
are the sets and the edges are the pairs of sets that intersect. Every graph is the intersection
graph of some family of sets [14]. A graph is an interval graph if it is the intersection graph
of a finite set of intervals on a line. A graph is a circular-arc graph if it is the intersection
graph of a finite set of arcs on a circle. A model of an interval graph or a circular-arc graph
G is a set of intervals or circular arcs that represent G in this way. Without loss of generality
we may assume that no two circular arcs of the model share a common end point.

Given a model MG of a circular-arc G = (V,E), we introduce some vocabulary concerning
the arcs. We identify a vertex v ∈ V with the corresponding arc in MG. We call the clockwise
endpoint of an arc v the left endpoint, denoted by l(v), and the counterclockwise endpoint
the right endpoint, denoted by r(v). Note that an interval graph is a special case of circular-
arc graphs - it is a circular-arc graph that can be modelled with arcs that do not cover the
entire circle. If G is a circular-arc graph with a model MG, and X is a subset of the vertices,
then MG[X] is the restriction of MG to X, namely, the result of removing from MG the arcs
corresponding to vertices not in MG. Clearly, MG[X] is a model of G[X].

Given a graph G, there exists a linear-time algorithm recognizing whether G is a circular-
arc graph [10]. The algorithm produces a circular-arc model if such a model exists. Therefore,
from now on we assume that our input is a circular arc-graph together with a model MG.

To each point p on the circle in MG we assign the set of arcs V (p) that intersect it. Clearly,
V (p) is a clique in G. In particular, we are interested in the ones maximal with respect to
inclusion. To analyze them, we need not consider all points. In fact, it is enough to take the
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set of right endpoints. Using only the right endpoints that have the corresponding set of arcs
maximal with respect to inclusion, we define the following structure describing G.

Definition 1. Given a circular-arc model MG of G = (V,E), a clique-cycle is the cycle
CCG,M = (X , C). The vertices are the right endpoints in MG with the corresponding sets of
circular-arcs maximal by inclusion among all endpoints in MG. The edges form a cycle, with
every vertex q ∈ X adjacent to Xl, Xr ∈ X , where Xl (Xr) is the element of X clockwise
(counterclockwise) closest to X in MG.

3 Connected decompositions

Definition 2. Let X = {X1, ..., Xk} be a set of subsets of V such that Xi, 1 ≤ i ≤ k, is a
clique in G = (V,E). If, for every {vi, vj} ∈ E, there is some Xp such that {vi, vj} ⊆ Xp,
then X is called an edge clique cover of G.

Definition 3. A connected decomposition of an arbitrary graph G = (V,E) is a graph D =
(X , A), where X is a family of subsets of V called bags and A is any set of edges on X , such
that the following three conditions are satisfied.

1. Each vertex v ∈ V appears in some bag.
2. For every edge vivj ∈ E there is a bag containing both vi and vj.
3. For every vertex v ∈ V , the bags containing v induce a connected subgraph of D.

D = (X , A), a connected decomposition of G, is a clique connected decomposition of G if X
is an edge clique cover of G.

A path decomposition ( tree decomposition) is a connected decomposition with D being
a path (tree). The width of a decomposition is the size of a largest bag, minus one. The
pathwidth ( treewidth) of a graph G, denoted by pwd(G) (twd(G)) is the minimum width
over all path decompositions (tree decompositions) of G.

Lemma 1 (see, e.g., [7]). A graph G is a chordal (interval) graph iff it has a clique tree
(path) decomposition.

Similarly, we can characterize circular-arc graphs through clique cycle decompositions. A
cycle decomposition is a connected decomposition with D being a cycle, and a clique cycle
decomposition is a cycle decomposition with all bags being cliques.

By Definition 1, we have:

Lemma 2. Given a circular-arc model MG of G = (V,E), CCG,M = (X , C) is a clique cycle
decomposition of G.

We easily deduce:

Theorem 1. A graph G is a circular-arc graph if and only if it has a clique cycle decompo-
sition.

Given a clique path decomposition of an interval graph, the intersection of two consecu-
tive cliques form a separator. Given a circular model MG of G = (V,E) and a clique cycle
decomposition CCG,M = (X , C), we say that the intersection of two consecutive cliques of
the cycle is a semi-separator.
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4 Folding

Given a path decomposition P of G, let PathFill(G, P ) be the graph obtained by adding
edges to G so that each bag of P becomes a clique. It is straight forward to verify that
PathFill(G, P ) is an interval supergraph of G, for every path decomposition P . Moreover P
is a clique path decomposition of PathFill(G, P ).

Definition 4 (see also [8]). Let X be an edge clique cover of an arbitrary graph G and let
Q = (Q1, ..., Qk) be a permutation of X . We say that (G,Q) is a folding of G by Q.

To any folding of G by an ordered edge clique cover Q we can naturally associate, by
Algorithm FillFolding of Figure 1, an interval supergraph H = FillFolding(G,Q) of G.
The algorithm also constructs a clique path decomposition of H.

Algorithm FillFolding

Input: Graph G = (V, E) and Q = (Q1, ..., Qk), a sequence of subsets of V ;
Output: A supergraph H of G;

P = Q;
for each vertex v of G do

s = min{i | x ∈ Qi};
t = max{i | x ∈ Qi};
for j = s + 1 to t− 1 do

Pj = Pj ∪ {v};
end-for
H = PathFill(G, P );

Fig. 1. The FillFolding algorithm.

Lemma 3. Given a folding (G,Q) of G, the graph H = FillFolding(G,Q) is an interval
completion of G.

Proof. Observe that after the for loops, P is a path decomposition of H, since every edge is
contained in some bag, and for every vertex the bags containing it induce a subpath of P .
Hence, since H = PathFill(G, P ), it is an interval completion of G. ut

We shall also say that the graph H = FillFolding(G,Q) is defined by the folding (G,Q).
The graph defined by a folding is not necessarily a minimal interval completion of G. Nev-
ertheless, we prove in Theorem 2 that every minimal interval completion of G is defined by
some folding.

Theorem 2. Let H be a minimal interval completion of a graph G with an edge clique
cover X . Then there exists a folding (G,Q), where Q is a permutation of X , such that
H = FillFolding(G,Q).

Proof. Let X = {Xi | 1 ≤ i ≤ p} and K = {Ωi | 1 ≤ i ≤ k} denote an enumeration of X and
the set of maximal cliques of H, respectively. Let P = (Ω1, . . . , Ωk) be a clique-path of H. It
defines a linear order on the set K. Let us use it to construct a linear order on X .

In a natural way, P defines a linear pre-order on X by

Xa ≤ Xb if ∃i, j such that Xa ⊆ Ωi, Xb ⊆ Ωj , where 1 ≤ i ≤ j ≤ k, 1 ≤ a, b ≤ p,
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where for a clique Xi that is contained in several maximal cliques of H, consider just the first
occurrence. Transform it into a linear order (sequence) Q by fixing any permutation inside
the equivalence classes.

Let us define H ′ = FillFolding(G,Q), and prove that H ′ = H. By Lemma 3, H ′ is an
interval completion of G. Moreover, E(H ′) ⊆ E(H), since xy ∈ E(H ′) only if the interval
between the first and the last element in Q that contains x intersects the one corresponding
to y. In this case, the corresponding intervals in P intersect as well, so there is xy ∈ E(H).
By minimality of H, there is H = H ′. ut

5 Folding of circular-arc graphs

Let (X , C) be the clique cycle of the circular-arc graph G = (V,E), obtained like in Defini-
tion 1. Consider a permutation Q of the set of bags X . In the case of the circular-arc graphs,
we study the permutation Q with respect to the circular ordering of the cliques on the cycle of
the decomposition. Therefore it is more convenient to think of a folding as a triple (X , C,Q).

A folding (X , C,Q) naturally defines an upper part and a lower part of the cycle (X , C).
Let QL, QR be the leftmost and rightmost element of the permutation Q. Let X down (X down)
denote the cliques counterclockwise (clockwise) between QL and QR on the cycle. LetQdown =
(QL = Ql1 , Ql2 , . . . , Qlr = QR) denote the restriction of Q to X down. Similarly let Qup =
(QL = Qu1 , Qu2 , . . . , Qut = QR) denote the restriction of Q to X up.

Definition 5. Given a clique cycle decomposition (X , C) of G and a permutation Q of X ,
we say that a clique X ∈ X is a pivot of the folding (X , C,Q) if its neighbors on the cycle
appear on the same side of X in Q. We extend this definition to any subset X ′ of X : X ∈ X ′

is a pivot w.r.t. X ′ if XL, XR ∈ X ′, its closest neighbors on the cycle among the elements of
X ′, are on the same side of X in Q.

Remark 1. Let (X , C,Q) be a folding of the circular-arc graph G. Consider the clique path
decomposition P produced by the algorithm FillFolding(G,Q). Observe that each bag of
P is the union of the clique Q ∈ Q which corresponds to the bag at the initialization step,
and some semi-separators of type Q′ ∩ Q′′, where Q′, Q′′ are two cliques consecutive on the
cycle, but separated by Q in Q. We say that the clique Q and the semi-separators have been
merged by the folding.

Definition 6. Let (X , C) be a clique cycle decomposition of G = (V,E). A permutation Q
of a subset X ′ ⊆ X, is k-monotone if it contains exactly k pivots. The monotonicity of Q is
the minimum k such that Q is k-monotone.

The main combinatorial result of the paper consists in proving that there exists a 2-
monotone folding (X , C,Q) such that H = FillFolding(G,Q) is an interval completion of G
satisfying pwd(H) = pwd(G). Therefore, the optimum interval completion for the pathwidth
problem can be found among the completions defined by 2-monotone foldings. In a two-
monotone folding, the only pivots are the first and last element of Q. Moreover, Qup (Qdown)
is clockwise (counterclockwise) consecutive on the cycle (X , C).

The following lemma is straightforward.

Lemma 4. Let (X , C,Q) be a 2-monotone folding and let P be the clique path decomposition
produced by FillFolding(G,Q). Every bag of P is the union of a clique Q ∈ Q and of a
unique semi-separator corresponding to the edge {Q′, Q′′} of the cycle, such that Q separates
Q′ and Q′′ in the permutation Q.
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Fig. 2. Reduction of A (top) to A′ : one way (middle) or the other (bottom)

Definition 7. Let (X , C) be a clique cycle decomposition of G = (V,E) and let (X , C,Q) be
a 4-monotone folding. Let QL, QR be the end cliques (pivots) of Q. Let B1, P be the other
pivots, ordered as in Q. Assume w.l.o.g. that B1, P belong to Qup. The consecutive part of the
cycle that appears counterclockwise, starting right after B1, passing through P , continuing as
long as it stays after B1 in Q is called the anomaly (see the top part of Figure 2).

Notice that for a 4-monotone folding Q, the restriction of Q to X \ A is 2-monotone.
One of our main tools (Theorem 3) shows that if (X , C,Q) is a 4-monotone folding which

defines H = FillFolding(G,Q), then there exists a 2-monotone folding (X , C,Q′) defining
an interval graph H ′ = FillFolding(G,Q′) of pathwidth smaller or equal the pathwidth of
H. Here is an informal sketch of the main idea. Consider an anomaly A of the 4-monotone
folding (X , C,Q). Suppose that the anomaly is in the upper part of the cycle, as on Figure 2.

Notice that when we restrict (X , C) to the cliques that are not in the anomaly (just remove
every X ∈ A, making the former neighbors of X adjacent), then we obtain a clique cycle of
G = G[

⋃
(X \ A)], an induced subgraph of G. Moreover, we obtain (X , C,Q), a folding of G,

where Q is the restriction of sequence Q to the cliques not in the anomaly X = X \ A. It
defines an interval completion H = FillFolding(G,Q).

Definition 8. Let (X , C) be a clique cycle decomposition of G = (V,E) and let (X , C,Q)
be a 4-monotone folding with the anomaly A. The A-width of (X , C,Q) is the pathwidth of
H = FillFolding(G,Q), where G is the intersection graph defined by the clique cycle (X , C)
restricted to X = X \ A and Q is the sequence Q restricted to X .

One step of the procedure is to slightly modify the folding (X , C,Q) to obtain (X , C,Q′)
with a strictly smaller anomaly A′, ensuring that the A′-width of (X , C,Q′) is not bigger than
the pathwidth of H. Continue until the anomaly is empty. Eventually, this yields a folding
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(X , C,Q′′) which is 2-monotone. Its anomaly A′′ being empty, the A′′-width of this folding is
equal to the pathwidth of H ′′ = FillFolding(G,Q′′), and it is not bigger than the pathwidth
of H.

Let us give in more detail the construction of (X , C,Q′) based on (X , C,Q). Consider
the pivots of (X , C,Q) that are not end-cliques of Q. Let P be the one that belongs to the
anomaly A, and let B1 be the other one. Let Bk+1 be the neighbor of B1 on the cycle that
belongs to the anomaly. Let B2, . . . , Bk be the cliques, which do not belong to the anomaly,
that follow B1 clockwise on the cycle and appear before Bk+1 in Q. Let S1, . . . , Sk+1 be the
semi-separators on the lower part of the cycle, such that Si is merged with the corresponding
Bi in FillFolding(G,Q). In this setting, we choose a semi-separator Sl and permute Q
in order to put all Bk+1, B1, . . . , Bl−1 (in this order) between Q and Q′, where Q,Q′ are
the consecutive cliques in the lower part of the cycle such that Sl = Q ∩ Q′. We choose
Sl such that the new folding (X , C,Q′) has the desired property. We say that in such a
situation we put Bk+1, B1, . . . , Bl−1 on the semi-separator Sl. This construction is illustrated
in Figure 2. Informally, the bags Bk+1, B1, . . . , Bl−1 slide (without jumping) along the cycle,
in the clockwise sense, and they stop above the edge of the cycle corresponding to Sl.

Theorem 3. Let (X , C) be a clique cycle decomposition of G = (V,E). Let (X , C,Q) be
a 4-monotone folding and H = FillFolding(G,Q). Then there is a 2-monotone folding
(X , C,Q′) such that the pathwidth of H ′ = FillFolding(G,Q′) is not bigger than the path-
width of H. Moreover, we can assume that (X , C,Q′) is such that X ′up = X up and X ′down =
X down.

Proof. Let (X , C,Q′) be a ≤ 4-monotone folding with the anomaly A′, such that X ′up = X up

and X ′down = X down, which satisfies the following Properties:

1. A′ ⊆ A;
2. for any clique Q of A′, the semi-separator S of the lower part of the cycle that is merged

to Q in H ′ is the same as in H;
3. the A′-width of Q′ is not bigger than the pathwidth of H,
4. the anomaly A′ is inclusion minimal among all such foldings.

Let us show that A′ is in fact empty, thus the pathwidth of H ′ is not bigger than the pathwidth
of H. Suppose A′ is not empty.

We use the notations introduced in the informal description above. Let us use Y and SY

as shorthands for Bk+1 and Sk+1. By Property 2, we have

|Y ∪ SY | ≤ pwd(H) + 1. (1)

The semi-separators Si, 1 ≤ i ≤ k + 1, can be partitioned as follows:

Si = N j
i ∪Bj

i ∪ Y j
i ∪ Ij

i , for any 1 ≤ j ≤ k , where
N j

i = Si \ (Bj ∪ Y ), Bj
i = Si ∩Bj \ Y, Y j

i = Si ∩ Y \Bj , I
j
i = Si ∩Bj ∩ Y.

(2)

Claim. For any 1 ≤ i ≤ k, 1 ≤ p ≤ q ≤ k + 1, one of the following holds:

|Bi ∪ Sp| ≥ |Bi ∪ Sq| or |Y ∪ Sq| ≥ |Y ∪ Sp| (3)
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Proof. Suppose it is not true. By Equation 2, we have:

|Bi ∪N i
p ∪ Y i

p | < |Bi ∪N i
q ∪ Y i

q | and |Y ∪N i
q ∪Bi

q| < |Y ∪N i
p ∪Bi

p|,

which yields a contradiction: |N i
p| < |N i

q| and |N i
q| < |N i

p|, since for any j, p, q, 1 ≤ j ≤ k,
1 ≤ p ≤ q ≤ k + 1 there is Y j

q ⊆ Y j
p and Bj

p ⊆ Bj
q , by properties of the clique cycle. ut

Claim. Let l be the biggest integer such that |Y ∪ SY | < |Y ∪ Si|, for 1 ≤ i ≤ l − 1. Then

|Y ∪ SY | ≥ |Y ∪ Sl|, (4)

|Bi ∪ Si| ≥ |Bi ∪ Sl|, for any 1 ≤ i ≤ l, (5)

so we can put Y and all Bi, for 1 ≤ i ≤ l − 1, on the semi-separator Sl without augmenting
the A′-width.

Proof. The first equation is clear from the construction. Since |Y ∪ Sl| ≤ |Y ∪ SY | and
|Y ∪ SY | < |Y ∪ Si|, for any 1 ≤ i ≤ l − 1, there is |Y ∪ Sl| < |Y ∪ Si|, for any 1 ≤ i ≤ l − 1.
Now, by Equation 3, for any 1 ≤ i ≤ l−1, we get |Bi∪Si| ≥ |Bi∪Sl|, for any 1 ≤ i ≤ l−1. ut

Therefore, by putting Y and all Bi, for 1 ≤ i ≤ l − 1, on Sl, we create a new folding
(X , C,Q′′) with a strictly smaller anomaly A′′. Indeed, there is Y ∈ A′ \A′′. Notice there may
be other cliques in A′ \ A′′ as well.

Let us check that the A′′-width of the folding (X , C,Q′′) is at most pwd(H). For each
clique X of Q′′ \ A′′, let SX be the (unique) semi-separator of the lower part of the cycle
to which X is merged in FillFolding(G, Q′′). The A′′-width of (X , C,Q′′) is the maximum,
over all cliques X, of |X ∪ SX | − 1. If X is also in Q′ \ A′, this quantity is upper bounded by
the A′-width of (X , C,Q′) and the conclusion follows by Property 3. If X = Y , then SX = Sl

and the conclusion follows from Equations 4 and 1. If X is one of the Bi’s, 1 ≤ i ≤ l − 1, it
follows from Equation 5 and Property 3. Finally, if X is one of the cliques of A′ \A′′, different
from Y , the conclusion follows from Property 2.

The new folding (X , C,Q′′) also respects Property 2, since in the permutation Q′′ the
cliques of A′′ have the same position w.r.t. the lower part of the cycle as before.

The construction of Q′′ contradicts Property 4 of Q′. So A′ must be empty. ut

Theorem 4. Let (X , C) be a clique cycle decomposition of G = (V,E). There is a fold-
ing (X , C,Q), with Q being a permutation of X , such that Q is 2-monotone and H =
FillFolding(G,Q) is an interval completion of G of pathwidth equal the pathwidth of G.

Proof. Let (X , C,Q) be a folding of minimum monotonicity such that the pathwidth of H =
FillFolding(G,Q) is not bigger that the pathwidth of G. We will prove that it is 2-monotone.

Suppose it is not. Assume w.l.o.g. that X up contains some pivots other than QL, QR. Let
B1 be the leftmost pivot in Qup. Let P be the rightmost in Qup among the pivots which
are between QL and B1 clockwise on the cycle (X , C). Let Qup

L denote the subsequence
of Qup induced by cliques clockwise between QL and P (included) on the cycle. Let Qup

C

denote the subsequence of Qup induced by cliques between P and B1 (included), and Qup
R

denote the subsequence of Qup induced by cliques between B1 and QR (included). Let Gup
L

be the graph defined by the folding Qup
L , restricted to the corresponding set of bags: Gup

L =
FillFolding(G[

⋃
Qup

L ],Qup
L ). We denote by P up

L the clique path decomposition produced by
the folding algorithm. Similarly, we define Gup

C , Gup
R and Gdown, with the corresponding clique
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path decompositions. Let G̃ be the union of these four graphs. Note that G̃ is a circular-
arc graph. A clique cycle decomposition (X̃ , C̃) of G̃ is obtained by gluing into a cycle the
paths P up

L , the reverse of P up
C , P up

R , and to the reverse of P down. The gluing is performed by
identifying the bags P , then B1, QR and finally QL.

Moreover, this procedure yields a folding (X̃ , C̃, Q̃) of G̃. The bags of X̃ are in one-to-one
correspondence to the bags of X , so the permutation Q of X is translated into a permutation
Q̃ of X̃ . Notice that (X̃ , C̃, Q̃) is a 4-monotone folding, since QL, B1, P, QR are the only pivots
left. Also FillFolding(G̃, Q̃) = H = FillFolding(G,Q).

By Theorem 3 on (X̃ , C̃, Q̃) there is a 2-folding (X̃ , C̃, Q̃′) such that the pathwidth of
H ′ = FillFolding(G̃, Q̃′) is not bigger than the pathwidth of H, thus not bigger than the
pathwidth of G.

Since Q̃′ is 2-monotone and X̃ ′up = X̃ up, the only pivots of Q̃′ are QL and QR. Notice
that there is : Q̃′up equals P up

L glued to the reverse of P up
C glued to P up

R , and Q̃′down equals
P down.

Because of the one-to-one correspondence between the elements of X and X̃ , we construct
the folding (X , C,Q′) directly from (X̃ , C̃, Q̃′), by just replacing the elements of X̃ with the
corresponding elements of X . Clearly, B1 and P are not pivots of Q′, whereas all the other
pivots of Q′ are also pivots of Q. Moreover, it is easy to verify that FillFolding(G,Q′) =
FillFolding(G̃, Q̃′). Therefore, (X , C,Q′) is a folding of strictly smaller monotonicity than
(X , C,Q′), which also defines a completion of pathwidth not bigger that the pathwidth of G.
A contradiction.

ut

6 The algorithm

The algorithm for computing the pathwidth of circular-arc graphs is very similar to the
algorithm computing the minimum fill-in for the same class of graphs [9].

Consider a clique cycle CCG,M = (X , C) of the input graph G, obtained from a circular-arc
model like in Definition 1. Subdivide each edge of the cycle by adding a new bag containing the
semi-separator corresponding to the edge. We obtain a clique-semi-separator cycle alternating
original clique bags and semi-separator bags. We should also see this cycle as a (regular)
polygon of scanpoints PG, following the terminology of [9]; the scanpoints are the clique and
semi-separator bags of the cycle. Therefore we associate to each scanpoint s the set of vertices
V (s), corresponding to the clique or semi-separator represented by the scanpoint. For each
triangle T formed by three scanpoints s1, s2, s3 , define the width w(T ) of the triangle as the
cardinality of the union V (s1) ∪ V (s2) ∪ V (s3).

Definition 9. A linear (planar) triangulation LP of the polygon of scanpoints PG is a planar
triangulation such that every triangle contains at most two diagonals. The width w(LT ) of
the linear triangulation is the maximum width of its faces (triangles).

First, we show that the pathwidth of G equals the minimum width of a linear planar
triangulation, minus one. Eventually we give an algorithm computing a linear triangulation
of minimum width.

Lemma 5. Let LT be a linear planar triangulation of the polygon of scanpoints PG. There
is a path decomposition of G, of width w(LT )− 1.
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Proof. Consider a graph whose vertex set is the set of triangles of LT , and such that two
vertices are adjacent if and only if the corresponding triangles share a diagonal. This graph
is called the inner dual of LT . Since LT is a linear triangulation, the maximum degree of the
inner dual is 2. Clearly this graph is connected and contains no cycle, so it is a path P . The
path decomposition of G is constructed using the path P . For each node T of P , let s1, s2, s3

be the three corresponding scanpoints. The bag associated to T is V (s1) ∪ V (s2) ∪ V (s3). It
remains to show that P and its bags form indeed a path decomposition of G. By contradiction,
suppose that a vertex x of G appears in the bags corresponding to some nodes T , T ′ of P
but not in the bag of T ′′, on the T, T ′-subpath of P . Let D be an edge of T ′′, corresponding
to a diagonal of PG. Since x is in the bags T and T ′, the circular arc corresponding to x
intersects both sides of the cycle, with respect to the diagonal D. Hence at least one end-
point of the diagonal D is on the circular-arc x – a contradiction. Clearly, the width of this
path decomposition is w(LT )− 1. ut

Lemma 6. Let (G,Q) be a 2-monotone folding of G. There exists a linear planar triangula-
tion LT (Q) of PG such that the width of LT (Q) is equal to the pathwidth of FillFolding(G,Q),
plus one.

Proof. The folding being 2-monotone, both Qup and Qdown are increasing subsequences of
Q. For every couple (Q′, Q′′) of consecutive cliques of Qdown, let (Qui , Qui+1 , . . . , Quj ) be
the subsequence of Qup appearing strictly between Q′ and Q′′ in Q. Add, in PG, a diagonal
between

– The scanpoint s corresponding to the semi-separator of the edge {Q′, Q′′} and every scan-
point corresponding to a clique of (Qui , Qui+1 , . . . , Quj ).

– The scan-point s and every scanpoint on some edge of the cycle incident to a clique of
(Qui , Qui+1 , . . . , Quj ), including the edge preceding Qui and the edge after Quj .

The symmetric operation is performed by permuting the role of Qup and Qdown.
It is not hard to check that by adding this set of diagonals we obtain indeed a linear

triangulation LT (Q) of the polygon of scanpoints. Each triangle T of LT (Q) has exactly
two semi-separator scanpoints and a clique-scanpoint. More precisely, for each triangle T the
clique scan-point QT is incident to one of the semi-separator scanpoints. The other scanpoint
is either incident to QT (if QT is the first or last clique of Q) or it corresponds to an edge
QaQb of the clique cycle, such that QT is between Qa and Qb in Q. Note that QT ∪ (Qa ∩Qb)
is also a clique of the graph H = FillFolding(G, Q), by the construction of the graph H.
It follows that w(LT (Q)) ≤ pwd(H) + 1. Conversely, consider any three cliques Qa, Qb, QT

such that QT is between Qa and Qb in Q and {Qa, Qb} is an edge of the clique cycle. Then
LT (Q) contains a diagonal D such that one of its end-points corresponds to QT and the
other is the semi-separator scanpoint corresponding to the edge {Qa, Qb}. It follows that
QT ∪ (Qa ∩ Qb) ≤ w(LT (Q)). By Lemma 4, every bag of the path decomposition of H,
obtained by the folding algorithm, is of type QT ∪ (Qa ∩Qb) – and the conclusion follows. ut

Theorem 5. For any circular-arc graph G, its pathwidth is the minimum, over all linear
planar triangulations LT of PG, of w(LT )− 1.

Proof. By Lemma 5, we have that pwd(G) ≤ minw(LT ) − 1. By Theorem 4, there is a 2-
monotone folding (G, Q) of G such that pwd(FillFolding(G, Q)) = pwd(G). The conclusion
follows by Lemma 6. ut
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The algorithm for computing a linear triangulation of PG of minimum width is very similar
to the one of [9]. Due to space restrictions, its description is given in Appendix A.

Theorem 6. The pathwidth of circular-arc graphs can be computed in O(n2) time.
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A Proof of Theorem: 6

It remains to give an algorithm computing a linear planar triangulation LT of PG, of min-
imum width. The algorithm is practically the same as in [9], except that in their case the
planar triangulation is not necessarily linear and that the width function is slightly different.
Therefore we only give a short description of the algorithm.

Observe that, for computing linear planar triangulations, we only need O(n2) triangles. In-
deed, for each triangle corresponding to a face, two endpoints are consecutive on the polygon.
Assume first that we are given the widths of all the triangles of this type. Let s0, s1, · · · , sp−1

be the scanpoints of PG, ordered by the counter-clockwise orientation of the polygon. Let
w(i, j) the optimum width, over all linear triangulations LT (i, j) of the polygon formed by
the points si, si+1 . . . , sj (indices are considered modulo p). We point out that, if (si, sj) is
a diagonal of PG, then it is also considered as a diagonal of the restricted polygon, meaning
that LT (i, j) is not allowed to have a face with (si, sj) and two other diagonals as edges.

If j = i + 2, then w(i, j) is the width of the triangle (si, si+1, sj). If j > i + 2, for using
the diagonal (si, sj) we must also use one of the diagonals (si+1, sj) or (si, sj−1). Therefore:

w(i, j) = min (w(si, si+1, sj) + w(i + 1, j), w(si, sj−1, sj) + w(i, j − 1))

11



The optimum width of a linear triangulation is

w(PG) = min
0≤i,j<p,j≥i+2

max(w(i, j), w(j, i))

All these equations are easily transformed into an O(n2) dynamic programming algorithm for
computing the linear planar triangulation of optimum width. Within the same time bounds,
we can equally obtain, like in Lemma 5, an optimum path decomposition of the input graph.

The widths of the triangles can be computed in O(n3), so the pathwidth of G can be
computed in O(n3). Following the principles of [9], we can improve this running time by
computing the widths of the needed triangles in O(n2). Each triangle T of a linear planar
triangulation is of the type (si, si+1, sj), with two consecutive scanpoints. One of the two, say
si, is a clique scanpoint. Hence the width of T is |V (sj)∪V (si)|. Thus we only need to compute,
for every couple 0 ≤ j < i < p the cardinality of V (sj) ∪ V (si). During a preprocessing step
we explore the clique-semiseparator cycle (in counter-clockwise order). For each scanpoint
si, we distinguish two situations, depending whether si corresponds to a semi-separator or a
clique. In the first case, si is a clique bag. We compute the arcs of V (si) \ V (si−1). Moreover,
for each j, 1 ≤ j < p let Add(i, j) be the number of circular-arcs x of V (si) \ V (si−1) such
that the right-end point r(x) is between i and j − 1 according to the cyclic order. Using a
bucket sort, these quantities can be computed in O(n) for each i. In a similar way, if i is a
semi-separator scanpoint we take into account the vertices of V (si−1) \ V (si). Let Sub(i, j)
the number of arcs x ∈ V (si−1) \ V (si) such that the left-end point l(x) is between j + 1
and i in the cyclic order. Fix a value j, 0 ≤ j < p. Consider each i, from j + 1 to j − 1
in cyclic order. The value |V (sj) ∪ V (sj+1)| is computed directly. Now observe that if si

is a clique scanpoint, we have |V (sj) ∪ V (si)| = |V (sj) ∪ V (si−1)| + Add(i, j). Indeed, the
only arcs of V (sj) ∪ (V (si) \ V (si−1)) ar the arcs of V (si) \ V (si−1) whose right endpoint is
strictly smaller that j in the cyclic order. Similarly, if si is a semi-separator scanpoint then
|V (sj) ∪ V (si)| = |V (sj) ∪ V (si−1)| − Sub(i, j). Thus we need a constant time to compute
|V (sj) ∪ V (si)|, and O(n2) to compute the weights of the useful triangles.
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