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Abstract. The pathwidth of a graphG is the minimum clique number ofH minus one, over all interval
supergraphsH of G. We prove in this paper that thePATHWIDTH problem is NP-hard for particular
subclasses of chordal graphs, and we deduce that the problemremains hard for weighted trees. We also
discuss subclasses of chordal graphs for which the problem is polynomial.

1 Introduction

Graph searching problems, already introduced in the 60’s [5], have become popular in computer science
with the seminal papers of Parsons [24, 23] and of Petrov [27]and have been widely studied since the late
70’s. In graph searching we are given a contaminated graph (all edges are contaminated) and we aim to
clean it using a minimum number of searchers. There are several variants of the problem, let us consider
here thenode searchingintroduced by Kirousis and Papadimitriou [16]. A search step consists in one of the
following operations: (1) place a searcher on a vertex, (2) remove a searcher from a vertex. A contaminated
edge becomes clear if both its endpoints contain a searcher.A clear edge is recontaminated at some step
if there exists a path from this edge and a contaminated edge,and no internal vertex of this path contains
a searcher. Thenode search numberof a graph is the minimum number of searchers required to clean
the whole graph, using a sequence of search steps. By the results of LaPaugh [19] and Bienstock and
Seymour [2], the node search game is monotone: there always exists a cleaning strategy, using a minimum
number of searchers, such that a clear edge will never be recontaminated during the search process.

Thevertex separation numberof a graph is defined as follows. Alayoutof a graphG is a total order-
ing (v1, v2, . . . , vn) on its vertex set. The separation number of a given layout is the maximum, over all
positionsi, 1 ≤ i ≤ n, of the number of vertices in{v1, . . . , vi} having neighbours in{vi+1, . . . , vn}. (In-
formally, one can think that at stepi, the part of the graph induced by the firsti vertices has been cleaned,
the rest is contaminated, and we need to guard all clean vertices having contaminated neighbours in order
to avoid recontamination.) Thevertex separation numberof a graphG is the minimum separation number
over all possible layouts ofG.

Pathwidthhas been introduced in the first article of Robertson and Seymour’s Graph Minor series [28].
The pathwidth of an arbitrary graphG is the minimum clique number ofH minus one, over all interval
supergraphsH of G, on the same vertex set.

Actually, the three graph parameters mentioned above are almost the same. For any graphG, its path-
width pwd(G) is exactly the vertex separation number, and is also equal tothe node search number minus
one, [15]. From now on we consider thePATHWIDTH problem, i.e. the problem of computing the pathwidth
of the input graph.

ThePATHWIDTH problem is NP-hard, even for co-bipartite graphs [32] and chordal graphs [11]. On the
positive side, it is fixed parameter tractable: Bodlaender and Kloks [3] proposed an algorithm that, given
an arbitrary graphG and a parameterk, the algorithm decides ifpwd(G) ≤ k in a running time which is
linear inn (the number of vertices of the graph) but, of course, exponential in k. By [3], PATHWIDTH is
polynomially tractable for all classes of graphs of boundedtreewidth. For trees and forests there exist sev-
eral algorithms solving the problem inO(n log n) time [20, 8]; recently, Skodinis [29] and Peng et al. [25]
gave a linear time algorithm. Even the unicyclic graphs, obtained from a tree by adding one edge, require
more complicated algorithms in order to obtain anO(n log n) time bound [7]. Chouet al. [6] extended
the techniques used on trees and obtain a polynomial algorithm solving the problem on block graphs, i.e.
graphs in which each 2-connected component induces a clique. There exist some other geometric graph



classes for which thePATHWIDTH problem is polynomial, for example permutation graphs [4].Based on
this result, Peng and Yang [26] solved the problem for biconvex bipartite graphs.

Suchan and Todinca [30] gave anO(n2) computing the pathwidth of circular-arc graphs; circular arc-
graphs are intersection graphs of a family of arcs of a cycle (see next section for more details on intersection
graphs). The technique used in [30] exploits the geometric structure of circular arc graphs and the fact that
such a graph can be naturally cut using some sets of scanlines(chords of the cycle). A similar approach
has been used before for computing the treewidth of circular-arc graphs [31] and the treewidth of circle
graphs [17]. Circle graphs are intersection graphs of a set of chords of a cycle, i.e. each vertex of the
graph corresponds to a chord and two vertices are adjacent ifthe corresponding chords intersect. The class
of circle graphs contains the class of distance-hereditarygraphs and in particular all the trees [10]. The
problem of computing pathwidth for distance heredetary (and thus circle graphs) was proved to be NP-
hard [18].

Our results. We prove in this paper thatPATHWIDTH remains NP-hard even when restricted to weighted
trees with polynomial weights. The weighted version of pathwidth is defined in the next section; roughly
speaking, in terms of search or vertex separation, when we guard a vertexv of weight w(v), we need
w(v) guards instead of one. Equivalently, the pathwidth of a weighted tree can be seen as the pathwidth
of the unweighed graph obtained by replacing each vertexv of the tree with a clique module of size
w(v). Since the latter graphs are distance-hereditary, this also implies the NP-hardness of pathwidth for
distance-hereditary and circle graphs. We also show thatMODIFIED CUTWIDTH is NP-hard to compute for
edge-weighted trees. Note that Monien and Sudborough [21] proved thatCUTWIDTH is NP-hard for edge-
weighted trees, and our reductions are inspired by their techniques. Eventually, we discuss some classes of
graphs for which thePATHWIDTH problem remains polynomial.

2 Preliminaries

2.1 Basic definitions

We work with simple and undirected graphsG = (V, E), with vertex setV (G) = V and edge setE(G) =
E, and we letn = |V |, m = |E|. The set ofneighborsof a vertexx is denoted byN(x) = {y | xy ∈ E}. A
vertex setC is acliqueif every two vertices inC are adjacent, and amaximal cliqueif no superset ofC is a
clique. We denote byω(G) the maximum clique size of the graph. A set of verticesM of G forms amodule
if, for any vertexx ∈ V \ M , eitherx is adjacent to all vertices ofM or to none of them. The subgraph
of G induced by a vertex setA ⊆ V is denoted byG[A]. A path is a sequencev1, v2, ..., vp of distinct
vertices ofG, wherevivi+1 ∈ E for 1 ≤ i < p, in which case we say that this is a pathbetweenv1 and
vp. A pathv1, v2, ..., vp is called acycleif v1vp ∈ E. A chordof a cycle (path) is an edge connecting two
non-consecutive vertices of the cycle (path). A vertex setS ⊂ V is aseparatorif G[V \S] is disconnected.
Given two verticesu andv, S is au, v-separatorif u andv belong to different connected components of
G[V \ S], andS is then said toseparateu andv. A u, v-separatorS is minimal if no proper subset ofS
separatesu andv. In general,S is aminimal separatorof G if there exist two verticesu andv in G such
thatS is a minimalu, v-separator.

A graph ischordalif every cycle of length at least 4 has a chord. Given a familyF of sets, the intersec-
tion graph of the family is defined as follows. The vertices ofthe graph are in one-to-one correspondence
with the sets ofF , and two vertices are adjacent if and only if the corresponding sets intersect. Every graph
is the intersection graphs of some familyF , but by restricting these families we obtain interesting graph
classes.

An interval graphis the intersection graph of a family of intervals of the realline. A graph iscircle
graphif it is the intersection graph of chords in a circle.

Definition 1. A path decompositionof an arbitrary graphG = (V, E) is a pathP = (X , A), where the
nodesX are subsets ofV (also calledbags), such that the following three conditions are satisfied.

1. Each vertexv ∈ V appears in some bag.
2. For every edge{v, w} ∈ E there is a bag containing bothv andw.
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3. For every vertexv ∈ V , the bags containingv induce a connected subpath ofP .

The width of the path decompositionP = (X , A) is max{|X | − 1 | X ∈ X} (the size of the largest bag,
minus one). Thepathwidthof G, denotedpwd(G), is the minimum width over all path decompositions of
the graphs.

We extend the definition of pathwidth to weighted graphsG = (V, E, w : V → N), where the weights
are assigned to the vertices. The weight of a path decompositionP = (X , A) is max{w(X)−1 | X ∈ X},
wherew(X) is the weight of the bag, i.e. the sum of the weights of its nodes. The (weighted) pathwidth is
again the minimum weight over all path decompositions of thegraph.

Observation 1 The weighted pathwidth of a graphG = (V, E, w) equals the (unweighted) pathwidth of
the graphH , obtained fromG by replacing each vertexv by a clique moduleMv of sizew(v). That is,
we replace each vertexv by set of verticesMv, of sizew(v) and inducing a clique inH , and two vertices
v′ ∈ Mv andu′ ∈ Mu are adjacent inH if and only ifv andu are adjacent inG.

Path decompositions are strongly related to interval graph. Given a graphG, a clique pathof G is a
path decomposition whose set of bags is exactly the set of maximal cliques ofG. It is well known that a
graphG is an interval graph if and only of it has a clique path. Simillarilly, a clique treeof a graphG is
a tree whose nodes correspond to the maximal cliques ofG, and such that for any vertex of the graph, the
nodes containing this vertex form a connected subtree of theclique tree. Clique trees characterize chordal
graphs:

Lemma 1 (see, e.g., [9]).A graphG is an interval graph if and only of it has a clique path. A graphG is
chordal if and only if it has a clique tree.

Clearly, clique paths are particular cases of clique trees,in particular interval graphs are also chordal.
An interval completion of an arbitrary graphG = (V, E) is an interval supergraphH = (V, F ) of G,

with the same vertex set andE ⊆ F . Moreover, if no strict subgraphH ′ of H is an interval completion
of G, we say thatH is aminimal interval completionof G. By the previous lemma, the pathwidth of an
(unweighted) interval graph is its clique size minus one, and the pathwidth of an arbitrary unweighted
graph is the maximum, over all interval completionsH of G, of ω(H) − 1. Moreover, when searching for
interval completions realizing this minimum we can clearlyrestrict to minimal interval completions.

2.2 Foldings

Given a path decompositionP of G, let PathFill(G,P) be the graph obtained by adding edges toG so
that each bag ofP becomes a clique. It is straight forward to verify thatPathFill(G,P) is an interval
supergraph ofG, for every path decompositionP . MoreoverP is a path decomposition ofPathFill(G,P),
and if we remove the bags which are not maximal by inclusion weobtain a clique path.

Definition 2. Let X = {X1, ..., Xk} be a set of subsets ofV such thatXi, 1 ≤ i ≤ k, is a clique in
G = (V, E). If, for every edgevivj ∈ E, there is someXp such that{vi, vj} ⊆ Xp, thenX is called an
edge clique coverof G.

Definition 3 ([13, 30]).LetX be an edge clique cover of an arbitrary graphG and letQ = (Q1, ..., Qk)
be a permutation ofX . We say that(G,Q) is a folding of G byQ.

To any folding ofG by an ordered edge clique coverQ we can naturally associate, by Algorithm
FillFolding of Figure 1, an interval supergraphH = FillFolding(G,Q) of G. The algorithm also con-
structs a clique path decomposition ofH .

Lemma 2 ([30]).Given a folding(G,Q) of G, the graphH = FillFolding(G,Q) is an interval comple-
tion ofG.

We also say that the graphH = FillFolding(G,Q) is definedby the folding(G,Q). It is not hard to
prove (see [30]) that every minimal interval completion ofG is defined by some folding.

3



Algorithm FillFolding
Input: GraphG = (V, E) andQ = (Q1, ..., Qk), a sequence of subsets ofV

forming an edge-clique cover;
Output: A supergraphH of G;

P = Q;
for each vertexv of G do

s = min{i | x ∈ Qi};
t = max{i | x ∈ Qi};
for j = s + 1 to t − 1 do

Pj = Pj ∪ {v};
end-for
H = PathFill(G,P);

Fig. 1. TheFillFolding algorithm.

Theorem 1 ([30]).Let H be a minimal interval completion of a graphG with an edge clique coverX .
Then there exists a folding(G,QH), whereQH is a permutation ofX , such thatH = FillFolding(G,QH).
In particular, there exists a foldingQ such that the pathwidth ofFillFolding(G,Q) is exactly the pathwidth
of G.

For any chordal graphG, the setK of its maximal cliques form an edge-clique cover the graph, thus
we will construct foldings ofG by choosing permutations ofK. The next two lemmas give a better under-
standing of such a folding.

Lemma 3 (see, e.g., [9]).Let G be a chordal graph and fix a clique tree ofG. A vertex subsetS of G is
a minimal separator if and only if there exist two maximal cliquesK andK ′ of G, adjacent in the clique
tree, such thatS = K ∩ K ′.

Lemma 4. Let G be a chordal graph,K be the set of its maximal cliques and letQ be a permuta-
tion of K. Let T be a clique tree ofG. Consider the path decompositionP produced by the algorithm
FillFolding(G,Q) (see Figure 1). Each bagB of P is the union the cliqueQ ∈ Q which corresponds to
the bagB at the initialization step and of the minimal separators of typeQ′ ∩ Q′′, whereQ′, Q′′ are the
pairs of cliques adjacent in the clique tree, but separated by Q in Q. We say that the cliqueQ and the
separators have beenmergedby the folding.

Proof. Clearly if Q separatesQ′ andQ′′ in the permutationQ, by construction ofFillFolding(G,Q), we
add to bagB every vertex inQ′ ∩ Q′′.

Conversely, letB be the bag corresponding toQ ∈ Q in FillFolding(G,Q) and letx be a vertex of
B \Q. We have to prove there exist two maximal cliques ofG, adjacent in the clique tree, containingx and
separated byQ in the permutationQ. By definition of a clique tree, the nodes ofT containingx induce a
connected subtreeTx. Let Ql, Qr be maximal cliques containingx, situated to the left and to the right of
Q in Q (they exist by the fact thatx has been added to bagB). ThusQl andQr are nodes ofTx, and on
the unique path fromQl to Qr in Tx there exists an edgeQ′Q′′ such thatQ′ is to the left andQ′′ is to the
right of Q in the permutationQ. ⊓⊔

3 Octopus graphs

3.1 Octopus graphs and 0,1-linear equations

An octopus treeis a tree formed by several disjoint paths, plus a node, called the head of the octopus,
adjacent to one endpoint of each path. An emphoctopus graph is a chordal graph having a clique-tree
which is an octopus tree, and such that any vertex of the graphappears in at most two maximal cliques. The
last condition implies, by Lemma 3, that the minimal separators of an octopus graph are pairwise disjoint.

Consider the following problem, called the solvability problem for linear integer equations:
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– Input: A rectangular matrixA and a column vectorb, both of nonnegative integers.
– Output: Does there exist a 0-1 column vectorx satisfyingAx = b?

We will use a restricted version of this problem, that we callthe BALANCED SYSTEM OF 0,1-LINEAR

EQUATIONS, satisfying the following conditions:

1. for all rowsi of matrixA, the sum of the elements in the row is exactly2bi,
2. for all rowsi, all values in rowi are larger than all values in rowi + 1 .

Note that when matrixA has only one row we obtain the 2-partition problem. Monien and Sudborough
prove in [21] that:

Theorem 2 ([21]).Solving balanced 0,1-linear equation systems is strongly NP-hard, i.e. the problem is
hard even when the integers in the matricesA andb are polynomially bounded by the size ofA.

Monien and Sudborough use a version of this problem for a reduction to CUTWIDTH of edge-weighted
trees, which shows that the latter is NP-hard. Our reductions are also fromBALANCED SYSTEM OF 0,1-
LINEAR EQUATIONS, inspired by their reduction. Nevertheless, it is not clearthat one could directly find
a reduction from CUTWIDTH of edge-weighted trees toPATHWIDTH of (node) weighted trees or circle
graphs or other problems we consider in this paper.

3.2 NP-hardness ofPATHWIDTH for octopus graphs

This subsection is devoted to the proof of the following theorem:

Theorem 3. PATHWIDTH is NP-hard for octopus graphs.

More technically, we prove by the following Proposition that theBALANCED SYSTEM OF0,1-LINEAR

EQUATIONS problem is polynomially reducible toPATHWIDTH of octopus graphs.

Proposition 1. Given an instance(A, x) of BALANCED SYSTEM OF 0,1-LINEAR EQUATIONS, we con-
struct an octopus graphG(A, b) as follows:

– G(A, b) has a clique tree formed by a head andn legs withm nodes each, wheren is the number of
columns andm is the number of rows ofA.

– Let KH be the clique ofG(A, b) corresponding to the head of the octopus, and forj, 1 ≤ j ≤ n and
eachi, 1 ≤ i ≤ m let Ki,j denote the clique corresponding to the node of thejth leg, situated at
distancei from the head.
• the head cliqueKH is of sizeb1 + k, wherek is an arbitrary number larger thanb1;
• for eachi, j, Ki,j is of sizeAi,j + b1 − bi + k;
• for eachi, j, the minimal separatorSi,j = Ki−1,j ∩ Ki,j is of sizeAi,j ; hereK0,j denotes the

head cliqueKH .

Fig. 2. Matrices

We havepwd(G(A, b)) ≤ b1 + k − 1 if and only if the systemAx = b has a 0,1-solution.

5



Fig. 3. Octopus graph corresponding to the matrices from Figure 2

Proof. For simplicity, the graphG(A, b) will be simply denoted byG. Recall that the minimal separators
of G are pairwise disjoint and each vertex of the graph appears inat most two maximal cliques. We point
out that, by our choice ofk ≥ b1, and by the fact thatb1 ≥ bi for all i > 1, the graphG is well constructed.

We first show that, if the systemAx = b has a 0,1-solution thenpwd(G) ≤ b1 + k − 1 (actually it
is easy to notice that the inequality can be replaced with an equality, due the fact thatG has a clique of
sizeb1 + k). Suppose the system has a solutionx∗. We provide a folding ofG by putting all legsj of
the octopus such thatx∗

j = 0 to the left, and all those withx∗
j = 1 to the right of the head cliqueKH .

Moreover, the folding is such that, on each side of the the head cliqueKH , starting fromKH , we first put
the maximal cliques at distance1 from the head in the clique tree, then those at distance 2 and so on, like
in a breadth-first search of the clique tree starting from thehead.

More formally, letL = {j, 1 ≤ j ≤ n | x∗
j = 0} andR = {j, 1 ≤ j ≤ n | x∗

j = 1}. We construct a
folding Q as follows. The head cliqueKH is in the middle position of the folding. We put to the right of
KH the cliquesKi,j , for all j ∈ R and alli, 1 ≤ i ≤ m. The ordering is such that for anyi1 ≤ i2, and any
j1, j2, Ki1,j1 appears beforeKi2,j2 in Q. We may assume that, for a fixedi, the cliquesKi,j, j ∈ R appear
by increasingj. The cliques appearing beforeKH in the permutation are ordered symmetrically w.r.t.KH .
Let H = FillFolding(G,Q) andP the path decomposition corresponding to the folding, it remains to
prove thatP has no bag with more thanb1 + k vertices. Since each leg of the octopus is either completely
to the left or completely to the right of the cliqueKH , this clique does not separate, in the permutationQ,
any couple of cliques adjacent in the clique tree. Therefore, by Lemma 4, the bag corresponding toKH in
P has no other vertices thanKH . Consider now a bag ofP , corresponding to a cliqueKi,j . We assume
w.l.o.g. thatj ∈ R, the casej ∈ L is similar by symmetry of the folding. This bag, denoted byBi,j ,
containsKi,j and the vertices of all the separators corresponding to edges of the clique tree, such thatKi,j

separates the endpoints of the edge in the permutationQ (see Lemma 4). These separators are of two types:
Si,j′ with j′ ∈ R, j′ > j andSi+1,j′′ with j′′ ∈ R, j′′ < j. Their sizes are respectivelyAi,j′ andAi+1,j′′ ,
and by definition of balanced systemsAi+1,j′′ ≤ Ai,j′′ . Since|Ki,j | = Ai,j + b1 − bi + k, the size of
the bagBi,j is at mostb1 − bi + k +

∑
j∈R Ai,j Note that, for any fixedi the equality is attained by the

bagBi,j0 which is closest toKH in the permutation. By definition of setR, the sum is exactlybi and the
conclusion follows.

Now conversely, assume thatpwd(G) ≤ b1 + k − 1, we show that the systemAx = b has a 0,1-solution.
Let Q be a permutation of the maximal cliques ofG such thatFillFolding(G,Q) is of pahwidth at most
b1 + k − 1; such a folding exists by Theorem 1.

Claim.For any legj of the octopus tree, all cliquesKi,j , 1 ≤ i ≤ m of the leg are on the same side of the
head cliqueKH in the permutationQ.

Proof. (of the claim) Indeed ifKH separates in the permutationQ two cliques of a same legj, then
it necessarily separates two consecutive cliquesKi,j and Ki+1,j , for somei, 1 ≤ i < m. It follows
by Lemma 4 that, when constructingFillFolding(G,Q), the bag of the resulting path decomposition,
corresponding to the cliqueKH , contains bothKH and the minimal separatorSi,j = Ki,j ∩Ki+1,j . Since
KH andSi,j are disjoint by construction ofG, this bag would have strictly more than|KH | = b1 + k
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vertices, contradicting the assumption that the pathwidthof FillFolding(G,Q) is at mostb1 + k − 1. This
completes the proof of the claim. ⊓⊔

Let L be the set of indicesj, 1 ≤ j ≤ n such that the cliques of legj appear beforeKH in Q, and
symmetrically letR be the set of indices corresponding to legs appearing afterKH .

Claim.For all i, 1 ≤ i ≤ m, we have
∑

j∈L

Ai,j =
∑

j∈R

Ai,j = bi.

Proof. (of the claim) Take an arbitrary value ofi, 1 ≤ i ≤ m. We prove that
∑

j∈R Ai,j ≤ bi. Among all
cliquesKi,j , j ∈ R let j0 be the indexj corresponding to the one which is closest toKH in the ordering
Q. Therefore, for anyj ∈ R\{j0}, there are two cliquesKi′−1,j andKi′,j, with i′ ≤ i, separated byKi,j0

in the permutationQ (here again we use the conventionK0,j = KH ). In FillFolding(G,Q), the separator
Si′,j is merged to the cliqueKi,j0 , addingAi′,j ≥ Ai,j new vertices in the corresponding bag. Thus this
bag will have at least|Ki,j0 | +

∑
j∈R\{j0}

Ai,j vertices, so its size is at leastb1 − bi + k +
∑

j∈R Ai,j .
Since the pathwidth ofFillFolding(G,Q) is at mostb1 +k−1, each bag produced by the folding is of size
at mostb1 + k, in particular we must have

∑
j∈R Ai,j ≤ bi. By symmetry, we also have

∑
j∈R Ai,j ≤ bi,

and since the sum of all elements in rowi is 2bi the conclusion follows. ⊓⊔

By the last claim, the 0,1-column vectorx∗ such that, for allj, 1 ≤ j ≤ n, x∗
j = 0 if j ∈ L andx∗

j = 1
if j ∈ L is a solution of the systemAx = b, which completes the proof of this Proposition. ⊓⊔

Clearly the graphG(A, b) can be constructed in polynomial time, thus theBALANCED SYSTEM OF0,1-
LINEAR EQUATIONS problem is polynomially reducible toPATHWIDTH of octopus graphs. By Theorem 2,
we conclude thatPATHWIDTH is NP-hard even when restricted to octopus graphs, which proofs Theorem 3.

Fig. 4.Folding for the octopus graph from Figure 3

4 Weighted trees

We prove in this section thatPATHWIDTH is hard for weighted trees.
Let us consider now the case of weighted trees. We adapt the ideea of Proposition 1 by transforming a

system of 0,1-linear equation into a pathwidth problem for weighted trees.

Proposition 2. Given an instance(A, x) of BALANCED SYSTEM OF 0,1-LINEAR EQUATIONS, we con-
struct an weighted octopus treeT (A, b) as follows:

– T (A, b) is formed by a head,n legs with2m nodes each, wheren is the number of columns andm is
the number of rows ofA, plus an node adjacent only to the head.

– LetN be the head node of the tree. The nodes of legj are denotedS1,j, C1,j , S2,j, C2,j , . . . , Sm,j, Cm,j

and appear in this order;S1,j is the one adjacent to the head. (TheS-nodes play the same role as the
minimal separators for octopus graphs.)
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• the headN is of weightk, wherek is an arbitrary number larger than2b1;
• the nodeN ′ adjacent only toN is of weightb1;
• for eachi, j, the nodeCi,j is of weightb1 − bi + k;
• for eachi, j, the nodeSi,j is of weightAi,j .

We havepwd(T (A, b)) ≤ b1 + k − 1 if and only if the systemAx = b has a 0,1-solution.

Proof. Let H(A, b) the graph obtained by replacing, inT (A, b), each node by a clique module such that
the number of vertices of the clique is exactly the weight of the node like in Observation 1. We have
pwd(T (A, b)) = pwd(H(A, b)). Note thatH(A, b) is chordal. The maximal cliques ofH(A, b) corre-
spond now to edges ofT (A, b), i.e. the maximal cliques are exactly the unions of two clique modules
corresponding to adjacent nodes ofT . Let us use the same notations for the clique modules ofH(A, b)
as for the corresponding vertices ofT (A, b). AlthoughH(A, b) is not exactly an octopus graph, because
the vertices ofN appear in several maximal cliques, its structure is quite similar. In particular it has a
clique tree such that the corresponding tree, denotedT̃ , is an octopus. The head of the octopus tree is the
cliqueN ∪ N ′. Each leg ofT̃ corresponds to one of then long paths ofT (A, b). The cliques of legj are,
starting from the head, the cliques corresponding to the2m edges of thejth path fromN to the leafSn,j :
N ∪ S1,j , S1,j ∪ C1,j , C1,j ∪ S2,j , S2,j ∪ C2,j , . . . , Sn,j ∪ Cn,j .

Assume thatpwd(H(A, b)) ≤ b1 + k− 1, we prove that the systemAx = b has a 0,1-solution. For this
purpose we use the octopus chordal graphG(A, b) constructed in Proposition 1, and it is sufficient to show
thatpwd(G(A, b)) ≤ pwd(H(A, b)).

Recall that a graphG1 is a minor of a graphG2 if G1 can be obtained fromG2 by a series of edge
deletions, vertex deletions and edge contractions (contracting an edgeuv consists in replacing this edge by
a single vertex, whose neighborhood is the union of the neighborhoods ofu and ofv). It is well-known
that, if G1 is a minor ofG2, then the pathwidth ofG1 is at most the pathwidth ofG2 [28].

Claim.G(A, b) is a minorH(A, b).

Proof. (of the claim) InH(A, b), for eachj, 1 ≤ j ≤ m, letS′
i−1,j be a subset ofCi−1,j , of sizeAi,j . Here

C0,j denotesN , and we ensure that the setsS0,1, S0,2, . . . , S0,j are pairwise disjoint, which is possible by
our choice ofk ≥ 2b1 =

∑n

j=1 A1,j . Choose a matching betweenSi,j andS′
i−1,j , for each pairi, j, and

contract each edge of the matching ; the set of vertices obtained by these contractions is denotedUi,j . We
claim that the new graph is exactlyG(A, b). Note that the edges of all these matchings are pairwise disjoint.
In the octopus clique treẽT of H(A, b), let us consider thejth legC0,j∪S1,j , S1,j∪C1,j , C1,j∪S2,j , S2,j∪
C2,j , . . . , Sn,j∪Cn,j . The cliques of typeCi−1,j∪Si,j are smaller than the cliquesCi,j∪Si,j . In particular,
after applying our contractions, in the new graph the leg hasbeen transformed into the following sequence
of maximal cliquesN, U1,j ∪ C1,j , U2,j ∪ C2,j , . . . , Un,j ∪ Cn,j (N is not a maximal clique of the new
graph but only of its restriction to the leg). It is sufficientto notice that the size of the cliqueUi,j ∪ Ci,j is
Ai,j + b1 − bi + k, and intersection of two consecutive cliques corresponds to setsUi,j, of sizeAi,j . The
new graph is indeedG(A, b). ⊓⊔

Conversely, assume that the systemAx = b has a 0,1-solutionx∗, we give a folding ofH(A, b)
producing a path decomposition of widthb1 + k − 1. Like in the proof of Proposition 1, letR (resp.L) be
the set of indicesi, 1 ≤ j ≤ n such thatx∗

j = 1 (resp.x∗
j = 0). We only discuss the folding to the right of

the cliqueN ∪N ′, the left-hand side being symmetrical. To the right ofN ∪N ′ we put the cliquesN ∪S1,j

for eachj ∈ R. Then,

for eachi, 1 ≤ i ≤ m in increasing order,
for eachj ∈ R

we append at the end the cliquesSi,j ∪ Ci,j andCi,j ∪ Si+1,j

It remains to prove that the width of the corresponding folding is at mostb1+k−1. The bags corresponding
to cliques of typeN ∪ S1,j wil be merged with all other separatorsS1,j′ , j′ ∈ R \ {j}, so they become of
sizeb1 + k. Among the other bags, those that give the width of the folding are the bags corresponding to
cliques of typeSi,j ∪ Ci,j . Indeed the bags corresponding toCi,j ∪ Si+1,j are merged in the folding with
the same separators as the bag ofSi,j ∪ Ci,j , and|Ci,j ∪ Si+1,j | ≤ |Si,j ∪ Ci,j |, thus after the folding the
former bags remain smaller than the latter. To each bag of these bagsBi,j corresponding toSi,j ∪Ci,j , we
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add all other separatorsSi′,j′ with j′ ∈ R \ {j} andi′ being eitheri or i + 1. Thus, after the folding, the
size of each of these bags is at most|Ci,j | +

∑
j′∈R |Si,j |, which is preciselyk + b1. ⊓⊔

Fig. 5. Weighted tree corresponding to the matrices from Figure 2

The construction of the octopus treeT (A, b) of Proposition 2 is clearly polynomial in the size of matrix
A. By Theorem 2 we deduce:

Theorem 4. The PATHWIDTH of weighted trees is NP-hard, even when the weights are polynomially
bounded by the size of the tree.

As a byproduct, this also implies a result already proved in [?], namely thatPATHWIDTH remains NP-
hard for distance-hereditary graphs and circle graphs. A graph is distance-hereditary if and only if it can be
obtained starting from a unique vertex and repeatedely adding a new pendant vertices (with only one new
neighbour), or vertices which are true twins or false twins of already existing vertices [?]. Recall that two
verticesx andy are false twins (true twins) ifN(x) = N(y) (N(x) ∪ {x} = N(y) ∪ {y}. In particular all
trees are distance-hereditary, and by adding true twins we obtain that the graphs obtained from weighted
trees by replacing each vertex with a clique module are also distance-hereditary. Therefore Theorem 4
implies the NP-hardness ofPATHWIDTH when restricted to distance hereditary graphs. Eventually, note
that circle graphs contain all distance-hereditary graphs[?].

We can also prove that theMODIFIED CUTWIDTH problem is NP-hard on edge-weighted trees. The
MODIFIED CUTWIDTH is a layout problem related toPATHWIDTH andCUTWIDTH. The proof of this result,
although similar to the proofs of Theorems 3 and 4, is quite long and tedious, therefore the discussion about
MODIFIED CUTWIDTH has been postponed to the Appendix.

5 PATHWIDTH of octopus graphs: polynomial cases

Pathwidth can be computed in polynomial time for chordal graphs having all minimal separators of size
one, which are exactly the block graphs [6]. Already for chordal graphs with all minimal separators of size
two it becomes NP-hard to compute pathwidth [11]. We proved that is NP-hard to compute pathwidth for
octopus graphs, which also have a very simple structure since each vertex appears in at most two maximal
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cliques. We will show how to compute pathwidth in polynomialtime for a subclass of octopus graphs,
namely octopus graphs with all separators of each leg of the same size.

Let G be an octopus graph with, for each legj, all separators of the same sizesj .
Let G1 be the graph obtained fromG by removing from each leg all cliques except the maximum one.

The clique tree ofG1 is a star and all separators are disjoint, the graphG1 is a so-called primitive starlike
graph. We can compute the pathwidth ofG1 using the algorithm for primitive starlike graphs of Gustedt
[11].

Lemma 5. There exists an orderingQ where the cliques of each leg appear consecutively such thatthe
pathwidth ofFillFolding(G,Q) is exactly the pathwidth ofG.

Proof. Let Q be an ordering forG such that the pathwidth ofFillFolding(G,Q) is exactly the pathwidth
of G. LerKl,j be a clique of maximum size of the legj. LetQ′ be the folding obtained by (1) removing all
other cliques of legj and then (2) replacing them contigously toKl,j , in the order of the leg (K1,j being
the closest to the head). We claim that the new folding is alsooptimal. All cliques of legj are merged
with exactly the same separators asKl,j, thus the size of their bags is upper bounded by the size of the
bag corresponding toKl,j. Let K be a clique which is not on the legj. If K was merged before with
one or more minimal separators of legj, in the new folding it will be merged with at most one of these
separators, so the corresponding bag does not increase. IfK was not merged with a minimal separator of
legj, then in the new folding the bag ofK remains unchanged. Therefore we do not modify the pathwidth
of FillFolding(G,Q′).

Theorem 5. The pathwidth of an octopus graph with, for each leg, all separators of the same size can be
computed in polynomial time.

Proof. Let G such an octopus graph. First we construct the graphG1 by deleting from each leg ofG all the
cliques which are not maximum cliques. Letk be the maximum difference between the size of the head and
the peripheral cliques. It follows that the graphG1 is a primitive starlike graph [11]. Using the polynomial
time algorithm of Gustedt we compute the pathwidth ofG1. In order to construct an orderingQ for G such
that the pathwidth ofFillFolding(G,Q) is exactly the pathwidth ofG, we place next to each peripheral
cliqueKi,j of G1 all the cliques from legj, respecting the ordering of the leg.

Clearly, when we have octopus graphs with a constant number of cliques the problem becomes poly-
nomial, because the number of possible foldings is constant, too. It would be interesting to know if the
PATHWIDTH problem on octopus graphs becomes polynomial when we restrict to octopuses with legs of
constant size, or to octopuses with constant number of legs.In the latter case, using dynamic programming
techniques, one can decide if the pathwidth is at most the size of the head of the octopus, minus one. More
generally, if we know that there exists an optimal folding such that each leg is either completely to the left
or completely to the right of the octopus, then we can also show using some results of [30] that the bags
of a same leg should appear in the order of the leg. Then one cancompute an optimal folding by dynamic
programming, and the running time is of typeO(Poly(n)·nl), wherel is the number of legs of the octopus.

6 Conclusion

We have proved that thePATHWIDTH problem is NP-hard for weighted trees, even when restrictedto
polynomial weights, and also for the class of octopus graphs, which is a very restricted subset of chordal
graphs. We have also shown that the MODIFIED CUTWIDTH problem is NP-hard for weighted trees.

Thus, despite the recent polynomial algorithms computing pathwidth for block graphs [6], biconvex
bipartite graphs [26] or circular-arc graphs [30], the techniques for pathwidth computation do not seem
extendable to large classes of graphs. A natural question isto search for good approximation algorithms for
pathwidth. For chordal graphs and more generally graphs without long induced cycles, Nisse [22] proposed
approximation algorithms whose approximation ratios do not depend of the size of the graph, but only on
the pathwidth and the size of the longest induced cycle. It remains an open problem whether pathwidth
can be approximated within a constant factor, even for the class of chordal graphs or the class of weighted
trees.
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Another interesting question is the CONNECTED SEARCH NUMBERon weighted trees. In the graph
searching game, we say that a search strategy is connected if, at each step of the game, the clear area
induces a connected subgraph [1]. Theconnected search numberis the minimum number of searchers
required to clean a graph using a connected strategy. This number can be computed in polynomial time for
trees [1]. In the weighted version, we needw(v) searchers to guard a vertexv of weightw(v). The algorithm
computing the connected search for unweighted trees cannotbe straightforwardly extended to the weighted
case. We should also point out that our NP-hardness proof forPATHWIDTH (and thus node search number)
of weighted trees is strongly based on the fact that, in our class of octopus trees, the optimal search strategy
is not connected, thus the proof cannot be immediately adapted to the connected search number problem.
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A Modified cut-width for edge-weighted trees

As mentioned in the Introduction,PATHWIDTH can also be seen as a graph layout problem, and in this
context pathwidth has been introduced under the name of vertex separation. There is a wide range of
layout problems with various applications, see e.g. [14] for a survey. We are interested here in two of them,
CUTWIDTH andMODIFIED CUTWIDTH.

Recall thatlayoutL of a graphG = (V, E) is a total ordering(v1, v2, . . . , vn) of its vertices. Assume
thatG is an edge-weighted graph, i.e. we have a weight function associating to each edgexy a positive
weightwe(xy). We denote byσL(x) the index of vertexx in the layout. Thecutwidthof the layoutL is

cwd(L) = max
i,1≤i≤n

∑

xy∈E,σL(x)≤i<σL(y)

we(xy)

In full words, the cutwidth of the layout is the maximum weight crossing some pointi, where we
say that an edge crossesi if one of the endpoints has an index at mosti, and the other endpoint has an
index strictly greater thani. Thecutwidthof the edge-weighted graphG is the minimum cutwidth over all
possible layouts ofG:

cutwd(G) = min{cutwd(L) | L layout ofG}

Themodified cutwidthis defined in a very similar way except that this time, for an indexi of a layout,
we say that an edge crossesi if it starts strictly beforei and ends strictly afteri – in other terms edges
incident toi are not counted. So the modified cutwidth of a layoutL is

mcwd(L) = max
i,1≤i≤n

∑

xy∈E,σL(x)<i<σL(y)

we(xy)

and the modified cutwidth of the edge-weighted graphG is

cutwd(G) = min{cutwd(L) | L layout ofG}.

Both problems are NP-hard, even for unweighted graphs, in which case each edge counts 1 in the sums.
Monien and Sudborough prove thatCUTWIDTH is NP-hard for edge-weighted trees, even when weights are
polynomial in the size of the tree. Based again on similar ideas, we show thatMODIFIED CUTWIDTH is also
NP-hard for weighted trees with polynomial weights. We point out that, despite the fact that thatCUTWIDTH

andMODIFIED CUTWIDTH are sintaxically very similar, there are not straightforward reductions between
them. Somehow surprisingly, there are easy reductions betweenMODIFIED CUTWIDTH andPATHWIDTH,
see e.g. [12], unfortunately these reductions do not stay inthe class of trees. We prove:

Theorem 6. TheMODIFIED CUTWIDTH problem is NP-hard on edge-weighted trees, even when weights
are polynomially bounded in the size of the tree.

The proof is very similar to the one of Theorem 3, based on a reduction fromBALANCED SYSTEM OF

0,1-LINEAR EQUATIONS:

Proposition 3. Given a n instance(A, b) of BALANCED SYSTEM OF 0,1-LINEAR EQUATIONS, we con-
struct the following edge-weighted treeTe(A, b).
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– First construct an octopus tree with a head nodeh, also considered as the root of the tree, and
n legs withm nodes each, wherem × n is the size of matrixA. The nodes of legj are denoted
n1,j , n2,j, . . . , nm,j, starting from the head.

– Fix a numberk > 2b1 and, for eachi, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n give the edge betweenni,j and its
parent the weightAi,j .

– For eachi, j, create three leavesl1i,j , l
2
i,j , l

2
i,j adjacent toni,j . The weight of the three edges between

l
q
i,j andni,j is k + b1 − bi + Ai,j − Ai+1,j (hereAm+1,j = 0 for all j).

– create four leavesl1h, l2h, l3h, l4h adjacent to the head nodeh. The corresponding incident edges are all
of weightk.

We havemodcutwd(Te(A, b)) ≤ b1 + k if and only if the systemAx = b has a 0,1-solution.

Proof. Assume that the systemAx = b has a0, 1-solution, we construct a layoutL of Te(A, b) such that
modcutwd(L) ≤ k+b1. As usual, letx∗ be a 0,1-solution of the system and letL = {j, 1 ≤ j ≤ n | x∗

j =
0} andR = {j, 1 ≤ j ≤ n | x∗

j = 1}. Firstly we fix the ordering of the internal nodes of the tree.After
the head node we put nodes corresponding to legsj ∈ R, in breadth-first search order starting fromh:
n1,j1 , n1,j2 , . . . , n1,jp

, n2,j1 , n2,j2 , . . . , n2,jp
, . . . , nm,j1 , nm,j2 , . . . , nm,jp

, whereR = {j1, j2, . . . , jp}.
The nodes of legs∈ L are put beforeh and ordered symmetrically w.r.t.h. We eventually insert the leaf
nodes in the layout as follows. We insert two leaves incidentto h right afterh (and symmetrically two right
beforeh). For each internal nodeni,j with j ∈ R we insert one of its pendant leaves, sayl1i,j , right before
the node, and the two other leavesl2i,j andl3i,j right after the node. (Thus for nodesni,j with j ∈ L we
insert one of its leaves right after the node, and two of them right before the node).

It remains to show thatmodcutwd(L) ≤ k + b1. We say that an edge isheavyif its weight is at least
k. Intuitively, ”heavy edges” are much heavier than the ”light” ones. Recall that an edge crosses a node
u if one of its endpoints appears striclty before, and the other strictly afteru in the layout. The weight
crossingu is the sum of the weights of the edges crossingu. Let ni,j be a node situated afterh in the
layout. Amongni,j and the three adjacent leaves, clearly the position with maximum crossing weight is
the leafl2i,j appearing right afterni,j (in particular the others are not crossed by heavy edges). The leafl2i,j
is crossed by:

– a heavy edge incident toni,j , of weightk + b1 − bi + Ai,j − Ai+1,j ;
– for eachj′ ∈ R s.t.ni,j′ appears strictly beforeni,j , the edgeni,j′ni+1,j′ of weightAi+1,j′ < Ai,j ;
– for eachj′′ ∈ R s.t. ni,j′ appears strictly afterni,j , the edgeni−1,j′′ni,j′′ of weight Ai,j′′ (here

n0,j′′ = h);
– the edgeni,jni+1,j , of weightAi+1,j , if i < m.

Since
∑

j∈R Ai,j = bi it follows that the weight crossingl2i,j is at mostk + b1. Amongh and the incident
leaves appearing after it in the layout, the maximum crossing weight corresponds to the leaf right afterh.
This weight isk (from the heavy edge) plus the sum

∑
j∈R A1,j = b1 (from the light edges incident toh).

Again the crossing weight is at mostk + b1. By symmetry, the same holds for nodes appearing beforeh in
the layout, hencemodcutwd(L) ≤ k + b1.

Conversely, assume thatmodcutwd(Te(A, b)) ≤ k + b1.

Claim. There is an optimal layoutL such that, for each internal node, all corresponding adjacent leaves
appear next to the node in the layout. (Some of these leaves may apear before, and others after the internal
node, but the node and its pendant leaves appear consecutively in the layout.)

Proof. (of the claim) First notice that, in a layout of modified cutwidth at mostk + b1, it is not possible
that a heavy edgee crosses an internal nodeu. Indeed in this situation, there would be three heavy edges –
e and two edges incident ou – such that the intersection of the intervals of the layout corresponding to the
three edges is of length at least one. Only two of these three edges share an endpoint, thus in the layout we
would have a position crossed by two heavy edges – a contradiction.

Let vl be a heavy edge, wherev is the internal node. It is still possible that this edge crosses a leaf
l′ incident to some other nodeu. Then the only possibility is thatv, l′, l, u appear contiguously in this
order, or the reverse one, otherwise two heavy edges cross a same position. Now we transform the layout
replacing the sequencev, l′, l, u by v, l, l′, u without increasing the cutwidth. ⊓⊔
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Claim. In the optimal layoutL satisfying the previous claim no edge crosses the head node.

Proof. (of the claim) By the previous claim, we may assume that the four leaves incident toh are next
to it in the optimal layoutL. Clearly, two of them should be to its left and the two others to its right. Let
L = {j | n1,j appears beforeh} and letR = {j | n1,j appears afterh} in the layoutL. Observe that
all edges of typen1,jh, with j ∈ R (resp.j ∈ L) cross the leaf right after (resp. right before)h. This
leaf is also crossed by a heavy edge of weightk. Thus

∑
j∈L A1,j ≤ b1, also

∑
j∈L A1,j ≤ b1, so both

inequalities must by equalities. If some light edge crossesh, it also crosses the leaf right after and right
beforeh, so the weight crossing these vertices exceedsk + b1 – a contradiction. ⊓⊔

We can no defineL (resp.R) the set of indicesj, 1 ≤ j ≤ n, such that the nodes of typeni,j appear
before (resp. after)h in the optimal layout. We prove that, for anyi, 1 ≤ i ≤ m, we have

∑
j∈R Ai,j ≤ bi,

and by symmetry the same holds forL. For a fixedi, let j0 ∈ R be such thatni,j0 is the leftmost element
of the layout among allni,j , j ∈ R. Consider the leaf attached toni,j which is crossed by a heavy edge
incident toni,j0 ; this leaf appears right before or right afterni,j0 . The leaf is also crossed by edges of type
ni′−1,j, ni′,j for all j ∈ R \ j0 (againn0,j = h) and somei′ ≤ i depending onj. Each of these edges is of
weight at leastAi,j . Finally, the same leaf crossed either by the edgeni−1,j0 , ni,j0 , of weightAi,j0 (if this
leaf is beforeni,j0 ) or by edgeni,j0 , ni+1,j0 , of weightAi+1,j0 (if the leaf is afterni,j0 andi < m). Using
the facts thatAi,j0 > Ai+1,j0 , the weight of the heavy edge isk + b1 − bi + Ai,j0 − Ai+1,0 and the total
weight crossing the leaf should not exceedk + b1 we deduce that

∑
j∈R Ai,j ≤ bi. Altogether, the system

Ax = b has a 0,1-solutionx∗ by takingx∗
j = 0 for all j ∈ L, andx∗

j = 1 for all j ∈ R. ⊓⊔

The treeTe(A, b) can be constructed in polynomial time w.r.t. the size of matrix A, which proves
Theorem 6.
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