
On Second Order
Formulae of

Pseudo-Regular Theory

Sébastien Limet et Pierre Pillot Université d’Orléans, LIFO

Rapport N◦2006-04

Abstract

This report deals with a class of second order formulae where the only predicate is the joinability
modulo a conditional term rewrite system, first order variables are ground terms and second order
variables are relations on ground terms (i.e. sets of tuples of ground terms). We use a technique based
on a representation of regular relations by logic programs to decide the existence of solutions of a class of
second order pseudo-regular formulae and to exhibit one solution when it exists. Our algorithm produces
conditional rewrite rules that define the value of the second order variables. Our technique may be useful
to automatically synthetize a program that defines a relation from its specification.

1 Introduction

Second order theories have been widely studied for a long time because of their practical applications in
several fields of computer sciences. The most studied class is monadic second order logic. Many variants of
this logic have been proved decidable using automata techniques (see [17] for a survey). The solutions of
formulae in such a logic is represented by automata on strings or trees e.g. the weak second order logic with
k successors WSkS is solved using finite tree automata [16] that defines regular relations. Applications of
monadic second order logic are numerous from circuit verification [5] which is the historical use, to program
verification [8], or more recently queries in semi-structured databases [7].

In this paper, we study a class of formulae based on the predicate ↓?
R (i.e. the joinability modulo a terms

rewrite systems). In the first order case, a solution of an equation s ↓?
R t is a substitution σ such that sσ and

tσ rewrite into the same term. The term rewrite systems we consider are conditional term rewrite systems
(CTRS for short). A CTRS defines a relation on terms for some function symbols by means of conditional
rewrite rules of the form l → r ⇐ C (e.g. the CTRS of Example 1 above defines the relation + on positive
integers). In the second order formulae studied in the present paper, second order variables represent such
a relation. For example, a solution of the formula ∀xX(x) ↓?

R x + x where x is a first order variable and
X a second order one, is a relation (t1, t2) such that t2 = 2 × t1. Our aim is to automatically build the
rewrite rules that define this relation. It is obvious that in the general case, solving second order formulae is
undecidable since the joinability problem in the first order case is undecidable, so we need some restrictions
on the CTRS.

In a previous paper [10], we defined the class of first order pseudo-regular formulae and showed that the
solutions of such a formula can be represented by a regular relation. Some restrictions are imposed to the
rewrite system to insure that the relations it defines are regular relations (those rewrite systems are called
pseudo-regular TRS). The closure properties of regular relations is used to prove first that the solutions
of a single equation are a regular relation, and then that the solutions of a formula are also regular. The
technique used to represent and manipulate relations in that paper is based on logic programs and comes
from [12].

The main contributions of this paper are the following. First, we extend the results of [10] to the case
of CTRS. CTRS are syntactically much more expressive than TRS and are widely used in functional logic
programming as the basis of languages like Babel or Curry. The second contribution is a decision procedure
for a class of second order formulae, called positive second pseudo-regular formulae, that includes the first
order theory. When a formula is satisfiable, we compute a CTRS that defines one possible instance for the
second order variables. Therefore, our technique can be used to automatically generate a CTRS (which can
be considered as a program) from the specification of the intended results.

Example 1 The following CTRS is a pseudo-regular one. It represents the addition for positive integers
represented by binary digit strings. In our encoding, the units are the leftmost symbols. For example the
term 0(1(⊥)) represents the binary number 10 i.e. the number 2. + is the addition and ⊕ the addition with
a carry over. The rules with n1 or n2 represents several rules where n1 and n2 can be replaced by 0 or 1.

2

⊥+ n1(y)→ n1(y) n1(y) +⊥ → n1(y)
0(x) + 0(y)→ 0(x+ y) 1(x) + 1(y)→ 0(x⊕ y)
n1(x) + n2(y)→ 1(x+ y) if n1 6= n2 ⊥+⊥ → ⊥
s(⊥)→ 1(⊥) s(0(x))→ 1(x)
s(1(x))→ 0(s(x))
⊥⊕ 0(y)→ 1(y) ⊥⊕ 1(y)→ 0(s(y))
0(y)⊕⊥ → 1(y) 1(y)⊕⊥ → 0(s(y))
0(x)⊕ 0(y)→ 1(x+ y) 1(x)⊕ 1(y)→ 1(x⊕ y)
n1(x)⊕ n2(y)→ 0(x⊕ y) if n1 6= n2 ⊥⊕⊥ → 1(⊥)
This CTRS is not really conditional since there are no conditions in the rewrite rules. Let us consider

the two following rules that defines the subtraction element by element of two lists of integers.
sl(⊥,⊥)→ ⊥
sl(c(x1, y1), c(x2, y2))→ c(x3, sl(y1, y2))⇐ x2 + x3 ↓R x1

In the context of TRS without condition, the function sl would need the explicit definition of the subtrac-
tion between two integers.
∀xX(x) = x+ x is a positive second order formula, our procedure constructs automatically the following

CTRS that defines the only possible instance for X.
fX(⊥)→ ⊥ f ′X(⊥)→ ⊥
fX(0(x))→ 0(fX(x)) f ′X(0(x))→ 1(fX(x))
fX(1(x))→ 0(f ′X(x)) f ′X(1(x))→ 1(f ′X(x))

Notice that fX introduces a 0 in the units and shift the digits of the number which corresponds to double
a integer represented by binary digits.

Section 2 states the basic notations and definitions used in this paper. Section 3 describes how we use
logic programs to represent regular relations and recall some results of [10]. Section 4 defines the class
of pseudo regular CTRS and describe how to translate from CTRS to logic programs and vice et versa.
Section 5 defines the class of positive second order pseudo-regular formulae and describes the algorithm to
decide them. Finally Section 6 concludes this paper.

2 Preliminaries

We recall some basic notions and notations concerning terms, conditional term rewrite systems and logic
programming; for details see [2, 14].

First Order Terms and Relations. Let Σ be a finite set of symbols with arity, Var be an infinite set of
variables, and T (Σ,Var) be the first-order term algebra over Σ Var . A term is linear if no variable occurs
more than once in it and a term without variable is called a ground term. In this paper, Σ consists of three
disjoint subsets: the set F of defined function symbols, the set C of constructor symbols and the set Pr of
predicate symbols. The terms of T (C,Var) are called data-terms and those of the form P (~t) where P is a
predicate symbol of arity n and ~t is a vector of T (F ∪ C,Var)n are called atoms.

A position p is a string of integers whose length is denoted by |p|. For a term t, Pos(t) denotes the set of
positions in t, and t|u the subterm of t at position u. The term t[u←s] is obtained from t by replacing the
subterm at position u by s. Var(t) is the set of variables occurring in t. The set ΣPos(t) ⊆ Pos(t) denotes
the set of non-variable positions, i.e., t|u 6∈ Var for u ∈ ΣPos(t) and t|u ∈ Var for u ∈ Pos(t)\ΣPos(t). The
depth of a term t ∈ T (F ∪C,Var) denoted Depth(t) is 0 if t ∈ Var and Max({ |p| | p ∈ ΣPos(t) } otherwise.
A term of depth 1 is said flat. The depth of an atom P (~t) denoted Depth(P (~t)) is Max({Depth(s) | s ∈ ~t }).
An atom of depth 0 is said flat.

A substitution is a mapping from Var to T (Σ,Var) where xσ 6= x for a finite set of variables. The domain
of a substitution σ, Dom(σ), is the set {x ∈ Var | xσ 6= x }. For V ⊆ Var , σ|V denotes the restriction of σ
to the variables in V , i.e., xσ|V = xσ for x ∈ V and xσ|V = x otherwise. If ∀x ∈ Dom(σ), xσ is a data-term
then σ is called a data substitution. If a term t is an instance of a term s, i.e. t = sσ, we say that t matches s
and s subsumes t.

3

Let CVar = {2i | i ≥ 1 } be the set of context variables distinct from Var , a n-context is a term t in
T (Σ,Var ∪CVar) such that each 2i 1 ≤ i ≤ n occurs once and only once in t and no other element of CVar
occurs in t. 21 (also denoted 2) is called the trivial context, if C a term of T (C,Var ∪ CVar) then C is a
constructor context. For an n-context C, the expression C[t1, . . . , tn] denotes the term C{2i 7→ ti | 1 ≤ i ≤
n }.

This paper mainly deals with relations on ground data-terms. A data-relation r̃ of arity n is a subset
of T n+1(C). Notice that what we call arity for a relation is its number of components minus 1 because in
our context, a relation r̃ with n components models in fact a relation from T n−1(C) to T (C). The notation
r̃(t1, . . . , tn−1) denotes the following set of ground data-terms { tn | (t1, . . . , tn−1, tn) ∈ r̃ }. The set of all the
possible data-relations is recursively enumerable, so we associate to each data-relation of arity n a unique
relation symbol of arity n different from (Σ ∪ Var) and called the name of the relation. We denote R the
set of relation names.

Logic programs. If H,A1, . . . , An are atoms then H ⇐ A1, . . . , An is a Horn clause, H is said to be the
head of the clause and A1, . . . , An is said to be the body. The elements of V ar(A1, . . . , An) \ V ar(H) are
called existential variables. A logic program is a set of Horn clauses. The Herbrand domain is the set of all
ground atoms. The body of the clause H ⇐ B is said linear iff every variable occurs at most once in B. A
clause is said to be linear if both the head and the body are linear. A set of ground atoms S is an Herbrand
model of the clause H ⇐ B iff ∀σ such that Bσ ⊂ S, Hσ ∈ S. S is an Herbrand model of the logic program
P if it is a model of all clauses of P. For a logic program P and a ground atom A we write P |= A if A
belongs to the least Herbrand model of P (denoted M(P)). The language described by a n-ary predicate
symbol P w.r.t. a program P is the set { (t1, . . . , tn) | P |= P (t1, . . . , tn) } of n-tuples of ground terms.

Conditional Term Rewrite Systems. A term rewrite system (TRS) is a set of oriented equations built
over T (F ∪ C,Var) and called rewrite rules. Lhs and rhs are shorthands for the left-hand and right-hand
side of a rule, respectively. For a TRS R, the rewrite relation is denoted by →R and is defined by t →R s
iff there exists a rule l→ r in R, a non-variable position u in t, and a substitution σ, such that t|u = lσ and
s = t[u←rσ]. Such a step is written as t→[u,l→r] s. If σ is a data-substitution then the step is called a data-
step. If a term t cannot be reduced by any rewriting rule, it is said to be irreducible. The reflexive-transitive
closure of →R is denoted by →∗R. The joinability relation ↓R is defined by t ↓R s iff t→∗R u and s→∗ u for
some term u. Notice that R-joinability is equivalent to R-unifiability for confluent rewrite systems.

A conditional term rewrite system, CTRS for short, is a finite set of rewrite rules of the form l→ r ⇐ B
where B is a finite conjunction of conditions that must be checked before rewriting. A rewrite step, t→R s
iff there exists a conditional rule l → r ⇐ B in R, a non-variable position u in t, and a substitution σ, such
that t|u = lσ and s = t[u←rσ] and Bσ is true. The notion of data-step extends trivially to the conditional
case.

In this paper, we consider join CTRS i.e. the conditions are pairs of terms s ↓R t which are verified for a
substitution σ if sσ and tσ are R-joinable. Moreover, we focus on constructor based CTRS, i.e. CTRS which
lhs of rewrite rules are of the form f(t1, . . . , tn) where f is defined function symbol and each ti (1 ≤ i ≤ n)
is a data-term.

In the context of constructor based CTRS, a data-solution of a joinability equation s ↓?
R t is a data-

substitution σ such that sσ →∗R u and tσ →∗R u where u is a data term and all rewriting steps are data-

steps. For a CTRS R and a defined function f , we denote f̃ the following data-relation f̃ = { (t1, . . . , tn, t) ∈
Tn+1(C) | f(t1, . . . , tn)→∗R t with a data only data-steps }.

3 Pseudo-regular relations

This section first presents the logic programming formalism we use to represent the tree tuple languages.
Then, it presents results we use in the section 5. All the results presented here come from [10] and [12].

4

A cs-program is simply a logic program consisting of Horn clauses which bodies are linear and without
function symbols. [12] introduces two subclasses of cs-programs, called respectively regular and pseudo-
regular programs. The first class corresponds to the regular relations of [4], and the second one weakens the
syntax of regular programs but [10] shows that regular and pseudo-regular programs define the same class
of relations. The next definition introduces regular and pseudo-regular programs as well as a more general
class that still describes regular relations.

Definition 1 A Horn clause is called non-Greibach (NG for short) if at least one of the arguments of the
head is of depth more than one. Let H ⇐ B be a clause such that B contains no function symbols.

• H ⇐ B is called NGPR-like iff none of the arguments of H are variables and there exists a mapping
π: Var 7→ IN+ such that π(x) = u then all occurrences of x in the arguments of H are at position u
and π(x) = π(y) for all variables x and y occurring in the same body atom.

• H ⇐ B is called NGSPR iff it is NGPR-like and it contains no existential variable

• H ⇐ B is called pseudo-regular (PR for short) iff it is NGPR-like and B is linear and Depth(H) = 1.

• H ⇐ B is called regular (R for short) iff it is PR and H is linear

A program is PR-like, PR, R, NGSPR if all its clauses are of the corresponding type.

Example 2 The clause P (d(y1, x1), c(x1, y2))⇐ P1(x1), P2(y1, y2) is not NG-PR-like since x1 is at position
2 in the first argument of the clause head and at position 1 in the second argument.

The clause P (d(x1, y1), c(x1, y2)) ⇐ P1(y1), P2(x1, y2) is also not NG-PR-like since x1 and y2 occur in
the same body atom but they do not occur at the same position in the head of the clause.

The clause P (c(s(x), y), s(s(z))) ⇐ P (x, z), Q(y) is NGSPR since x and z occur both at occurrence 1.1
in the arguments of the head.

The clauses Psl(c(x1, y1), c(x2, y2), c(x3, y3))⇐ P+(x2, x3, x1), Psl(y1, y2, y3) and Psl(⊥,⊥,⊥)⇐ are both
regular.

Lemma 1 [10] Any NGSPR program P can be transformed into an equivalent finite PR program. Any PR
program can be transformed into an equivalent finite regular program.

This lemma is proved in [10] using a logic program transformation technique presented in [12].
Decidability of membership and emptiness tests as well as closure under intersection of pseudo-regular

relations have been shown in [12]. An algorithm to compute the closure under complement is specified
in [10].

4 Pseudo-regular CTRS

This section specifies the class of CTRS we consider and shows how to translate from CTRS to logic programs
and vice versa. The translation from CTRS to logic programs is an extension of [13] while the reverse
translation is a new contribution of this paper.

Definition 2 A conditional constructor based CTRS R is said pseudo-regular if all its rewrite rules are of
the form f(t1, . . . , tn)→ C[f1(~x1), . . . , fm(~xm)]⇐ f ′1(~x′1) ↓R x′1 . . . f ′k(~x′k) ↓R x′k where

• C is a constructor context, f, f1, . . . , fm, f
′
1, . . . , f

′
k are defined function symbols

• ⋃1≤i≤m(~x1)
⋃

1≤i≤k(~x′i)
⋃

1≤i≤k(x′k) ⊆ Var(f(t1, . . . , tn)) ∪ Var(C)

• there exists a mapping π: Var 7→ IN+, such that π(x) = u implies that all occurrences of x in t1, . . . , tn
and in C are at position u,

5

>
v ; 〈v, ∅〉

if v ∈ Var

s1 ; 〈t1,G1〉 . . . sn ; 〈tn,Gn〉
f(s1, . . . , sn) ; 〈f(t1, . . . , tn),

⋃
i Gi〉

if f ∈ C

s1 ; 〈t1,G1〉 . . . sn ; 〈tn,Gn〉
f(s1, . . . , sn) ; 〈x,⋃i Gi

⋃{Pf (t1, . . . , tn, x)}〉
if f ∈ F

s1 ; 〈t1,G1〉 s2 ; 〈t2,G2〉
s1 ↓R s2 ; 〈ε,G1 ∪ G2 ∪ Pid(t1, t2)〉

s ; 〈t,G〉 c1 ; 〈ε,G1〉 . . . ck ; 〈ε,Gk〉
f(s1, . . . , sn)→ s⇐ c1 . . . ck ; Pf (s1, . . . , sn, t)⇐ G ∪ G1 ∪ . . . ∪Gk

Note that the variables x introduced by the third rule are new fresh variables.

Table 1: Converting CTRS rules to Horn clauses

• all the variables of ~x′i have the same image by π as x′i (1 ≤ i ≤ k).

• the image by π of all the variables of ~xi is u, the position of fi(~xi) in C[f1(~x1), . . . , fm(~xm)] (1 ≤ i ≤ m).

C is said the irreducible part of C[f1(~x1), . . . , fm(~xm)], the term fi(~xi) are called possible redexes and the
positions of the fi in C the possible redex positions of C[f1(~x1), . . . , fm(~xm)]

Example 3 R = {f(s(c(x, y)), s(c(x, z))) → s(c(g(x), f(y, y))) ⇐ g(z) ↓R y, f(s(0), s(0)) → 0, g(s(x)) →
s(x)} is pseudo-regular. The irreducible part of the lhs of the first rule is s(c(21,22)) and it contains two
possible redex positions namely 1.1 and 1.2 corresponding to the possible redexes g(x) and f(y, y). Notice
that the definition 2 does not forbid duplicated variables in a single possible redex.

We extend the technique presented in [13] that encodes the rewrite relation by a logic program in order to
be able to deal with CTRS. This translation intends to obtain logic programs that preserve as best as possible
syntactic properties of the TRS. The obtained logic program encodes the rewrite relation with data-steps.

Table 1 specifies the rules that transform terms and conditional rewrite rules to Horn clauses. Pid is a
pseudo-regular predicate that defines the equality between data terms. Its set of clauses is denotes Pid and
is

Pid = {Pid(c(x1, . . . , xn), c(y1, . . . , yn))⇐ Pid(x1, y1), . . . , Pid(xn, yn) | c ∈ C }
For a CTRS R, let LP(R) denotes the logic program consisting of Pid union the set of clauses obtained

by applying the fourth rule to all rewrite rules in R.

Remark 1 In the context of pseudo-regular CTRS, the conditions are of the form f(x1, . . . , xn) ↓R y. The
transformation gives Pf (x1, . . . , xn, z), Pid(y, z) which we simplify by Pf (x1, . . . , xn, y).

For example, the first rewrite rule of Example 3 is transformed into
Pf (s(c(x, y)), s(c(x, z)), s(c(x1, x2)))⇐ Pg(x, x1), Pf (y, y, x2), Pg(z, y).
The rewrite rules that defines function sl of Example 1 are transformed into the two clauses headed by

Psl in Example 2
The following theorem states the relation between a constructor based CTRS R and LP(R).

Theorem 1 Let R be a CTRS, s a term such that s ; 〈s′,G〉. s→∗ t iff t is a data-term LP(R) |= Gµ and
t = s′µ where µ is a data substitution.

6

The proof of this theorem is essentially the same as the equivalent one for pseudo-regular TRS. It can be
found in [11].

Lemma 2 Let R be a pseudo-regular CTRS then LP(R) is a NGSPR logic program.

Proof 1 Let l → r ⇐ C a rule of the pseudo-regular CTRS R. l → r is a pseudo-regular rule according
to [10], therefore it is sufficient to prove that all variables of each atom A of G (with C ; 〈ε,G〉) have the
same image by π which is by definition the case since each atom A is of the form Pf (~x, x) when it comes
from the condition f(~x) ↓?R x.

Now, we give the transformation from a NGSPR program into a pseudo-regular CTRS.
For each flat atomA of the form P (x1, . . . , xn−1, xn) we define term(A) = fP (x1, . . . , xn−1) and equat(A) =

fP (x1, . . . , xn−1) ↓R xn. We extend equat to a sets of flat atoms G in the natural way i.e. equat(G) =
{ equat(A) | A ∈ G }.
Definition 3 Let C = P (t1, . . . , tn−1, C[x1, . . . , xm])⇐ G,G′ be a NGSPR clause where G = {P (~x, x) | x ∈
{x1, . . . , xm} and x occurs once in G,G ′ }
RR(C) = fP (t1, . . . , tn−1) → C[x1, . . . , xm]σ ⇐ equat(G′) where σ = {x 7→ term(P (~x, x)) | P (~x, x) ∈

G }.
For a NGSPR logic program P, let RR(P) denote the CTRS consisting of the rules {RR(H ⇐ G) | H ⇐

G ∈ P }.
For example, Pf (s(x1, y), s(x2, y), s(z1, z2))⇐ Pf (x2, x1, z1)Pf (x1, x1.x2) is transformed into f(s(x1, y), s(x2, y))→

s(f(x2, x1), z2)⇐ f(x1, x1) ↓R x2 and the two clauses headed by Psl in Example 2 are transformed into the
two rewrite rules for the function sl in the CTRS of Example 1.

Lemma 3 Let P be a NGSPR logic program, RR(P) is a pseudo-regular CTRS.

Proof 2 Let us consider a clause C = H ⇐ G,G ′ of the NGSPR program P where H = P (t1, . . . , tn−1, C[x1, . . . , xm]),
G is the set of atoms P (~x, x) such that x ∈ {x1, . . . , xm} and x occurs only once in G,G ′. The corresponding
rewrite rules is fP (t1, . . . , tn−1) → C[x1, . . . , xm]σ ⇐ equat(G′) where σ = {x 7→ term(P (~x, x)) | P (~x, x) ∈
G }. From the definition of NGSPR programs, we know that

• No existential variables occurs in C which means that Var(G,G ′) ⊆ Var(H) hence
⋃

1≤i≤m Var(xiσ)∪
Var(equat(G′) ⊆ Var(fP (t1, . . . , tn−1) ∪Var(C).

• There exists a mapping π from Var to IN+ such that if π(x) = p then all occurrences of x are at
position p in t1, . . . , tn and C

• All the variables of a given atom A of G,G ′ have the same image by π therefore all the variables of
each equation of equat(G ′) have the same image by π. Moreover all the variables of xσ have the same
image as x by π i.e. if x ∈ {x1, . . . , xn}, the position of xσ in C[x1, . . . , xm]σ.

So we can conclude that RR(C) is a NGSPR conditional rewrite rule.

Lemma 4 Let P be a NGSPR logic program. LP(RR(P)) = P.

Proof 3 In this proof we consider that PfP is a notation for the predicate symbol P . Let P be a NGSPR
logic program and C be a clause of P. C is of the form P (t1, . . . , tn−1, C[x1, . . . , xm])⇐ G,G′.
RR(C) = fP (t1, . . . , tn−1) → C[x1, . . . , xm]σ ⇐ equat(G′) where σ = {x 7→ term(P (~x, x)) | P (~x, x) ∈

G }. For each atom P (~x, x) of G ′, equat(P (~x, x)) = fP (~x) ↓R x. From Remark 1, each equation fP (~x) ↓R x
is transformed into PfP (~x, x) (i.e P (~x, x)).

Each atom P (~x, x) of G is transformed into the term fP (~x). From Table 1 fP (~x) ; 〈x, PfP (~x, x)〉,
therefore C[x1, . . . , xm]σ ; 〈C[x1, . . . , xm],G〉. Hence fP (t1, . . . , tn−1)→ C[x1, . . . , xm]σ ⇐ equat(G′) ; C.

Theorem 2 Let P be a NGSPR logic program and P (~t, t) a ground atom. P |= P (~t, t) iff fP (~t)→∗ t.
Proof 4 From Lemma 4, we know that LP(RR(P)) = P. The term fP (~t) ; 〈x, P (~t, x)〉 because all the
terms of ~t are ground data terms and we consider PfP as a notation for P . From Theorem 1 we know that
fP (~t)→∗ t iff t is a ground data-term, LP(RR(P)) |= P (~t, x)µ and t = xµ, in other words iff P |= P (~t, t).

7

5 Second order pseudo-regular formulae

In this section, we present the kind of formulae we deal with and the way we solve them. We first define the
second order algebra we consider.

5.1 Second order

Let X be a set of second order variables with arity, different from Σ ∪ Var ∪ R. The set of second order
terms built over the signature T (Σ,Var ,R,X) is the smallest set such that

• Var is included in this set,

• if t1, . . . , tn are second order terms and f is either a symbol of arity n of Σ or a variable of arity n of
X or a relation symbol of arity n of R, then f(t1, . . . , tn) is a second order term.

For a second order term V ar(t) denotes the set of first order and second order variables of t. A second
order term t is said ground if Var(t) is empty. Let R be a CTRS, t be a ground second order term, the
model of t is denoted by MR(t) and is the smallest set of ground data terms such that

• { c(t1, . . . , tn) | ∀1 ≤ i ≤ n, ti ∈MR(si) } if t = c(s1, . . . , sn) and c ∈ C,

• { f̃(t1, . . . , tn) | ∀1 ≤ i ≤ n, ti ∈MR(si) } if t = f(s1, . . . , sn) and f ∈ F ,

• { r̃(t1, . . . , tn) | ∀1 ≤ i ≤ n, ti ∈MR(si) } if t = r̃(s1, . . . , sn) and r̃ ∈ R.

Notice that for a first order term ground term t, MR(t) is the set of ground data terms s such that
t→∗R s with a data-derivation. This is easily proved by induction on the height of the term t.

A second order substitution σ is a mapping from Var ∪ X to T (F ∪ C,Var) ∪ R ∪ X such that xσ 6= x
for a finite subset of Var ∪ X and

• if x ∈ Var , xσ ∈ T (F ∪ C,Var)

• if x ∈ X and x is of arity n, xσ is a data-relation of arity n or is x itself.

The domain of σ is the set of variables such that xσ 6= x. A second order substitution is called data ground
if all x ∈ Dom(σ) ∩Var , xσ is a ground data term. We extend σ to T (Σ,Var ,R,X) trivially.

Example 4 Let us consider the CTRS of Example 1, the relation r̃ = {(t1, 0(t1))}, the second order term
X(x) + y and the substitution σ = {X 7→ r̃, x 7→ 1(⊥), y 7→ 1(0(⊥))}. Var(t) = Dom(σ) = {X,x, y}. σ is
data-ground. tσ = r̃(1(⊥))+1(0(⊥)) is a ground term andMR(tσ) = {0(0(1(⊥)))} sinceMR(xσ) = {1(⊥)}
so MR(r̃(xσ)) = {0(1(⊥))} and finally MR(tσ) is the union +̃(t1, t2) such that t1 ∈ MR(r̃(xσ)) and
t2 ∈MR(yσ) i.e. the set {+̃(0(1(⊥)), 0(1(⊥)))} = {0(0(1(⊥)))}.

Notice that the model of the ground term c(⊥,⊥) + 0(⊥) is empty since the first component of +̃ is never
headed by the constructor symbol c.

5.2 Pseudo-regular equations and formulae

Definition 4 Let R be a pseudo regular CTRS. A second order pseudo-regular joinability equation s ↓?
R t

is an equation such that s and t are second order terms. A first order pseudo-regular joinability equation is
an equation s ↓?R t such that neither s nor t contain second order variables.

Notice that pseudo-regular joinability equations do not contain any constructor symbols. This restriction
may be weaken by allowing the sides of the equations to be of the form C[t1, . . . , tn] where C is a context
that does not contain any constructor symbols and t1, . . . , tn are ground data-terms. Indeed, in this case we
can introduce to the CTRS the rules { fti → ti | 1 ≤ i ≤ n } where fti are new defined function symbols
of arity 0. It is obvious that these new rewriting rules are pseudo-regular since they do not contain any
variables. Moreover f̃ti = {ti} thus MR(C[t1, . . . , tn]) =MR(C[f1, . . . , fn]).

8

Definition 5 Let R be a CTRS, and s ↓?R t be a second order pseudo-regular joinability equation. A ground
data substitution σ is a solution of s ↓?R t iff sσ and tσ are ground terms and MR(sσ) ∩MR(tσ) 6= ∅.

Notice that the definition given in [10] for first order joinability equations states that σ is a solution of
s ↓?R t, iff sσ →∗R u and tσ →∗R u where u is a data term and all rewriting steps are data-steps. SinceMR(sσ)
is the set of ground data terms reachable from sσ by a data-derivation andMR(tσ) is the equivalent set for
tσ, the two definitions coincide.

Let R be a pseudo-regular CTRS, first order pseudo-regular R-formulae are defined by the following
grammar:

e ::= s ↓?R t|¬e|e ∨ e|e ∧ e|∀xe|∃xe

where s ↓?R t is a second order pseudo regular equation and x is a first order variable.
The set solutions of such a formula is defined as follows

• SOL(s ↓?R t) = {σ | MR(sσ) ∩MR(tσ) 6= ∅ }

• SOL(¬e) = {σ | σ 6∈ SOL(e) }

• SOL(e1 ∧ e2) = {σ | Dom(σ) = V ar(e1 ∧ e2), σ|V ar(e1) ∈ SOL(e1),
σ|V ar(e2) ∈ SOL(e2) }

• SOL(e1∨e2) = {σ | Dom(σ) = V ar(e1∨e2), σ|V ar(e1) ∈ SOL(e1) or σ|V ar(e2) ∈
SOL(e2) }

• SOL(∃xe) = {σ | Dom(σ) = V ar(e) \ {x}, ∃σ′ ∈ SOL(e), σ = σ′|V ar(e)\{x} }

• SOL(∀xe) = {σ | Dom(σ) = V ar(e) \ {x}, ∀σ′ ∈ SOL(e), σ = σ′|V ar(e)\{x} }

Example 5 Let us consider once more the CTRS of Example 1. The following formula is pseudo-regular

∀x∃y,¬y + y ↓?R x ∨X(x) ↓?R true

The smallest solution of this equation instanciates the variable X to the relation ẽ = { (n, true) | n is an even number }

Unfortunately, we cannot solve any second order pseudo-regular formulae since most of their solutions
instanciate second order variables with non regular relations. Even if we restrict ourselves to regular solutions,
they are usually infinitely many and incomparable. Since our tools cannot represent such infinite sets, we
restrict ourselves to the class of positive second formulae i.e. formulae where second order equations are
never under a negation. Thus, we restrict the rule of the grammar e e ::= ¬e if the formulae e is a first order
one. Moreover, the result of our algorithm is either the empty set if the formula as no model or the set of
solutions corresponding to one particular instance of the second order variables. For the example above, our
algorithm does not compute the smallest solution.

5.3 Solving Second Order Pseudo-regular Formulae

The main result of [10] is an algorithm to solve any first order pseudo-regular formula when the pseudo-
regular TRS is not a conditional one. This algorithm can be used in the conditional case since it is based on
the ability to represent the rewrite relation by a NGSPR logic program which is the case for pseudo-regular
CTRS (see Theorem 1). The idea of the resolution algorithm of [10] is the following. The solutions of an
first order joinability equation s ↓?R t can be represented by the PR program computed from LP(R) and
the clause P (~x) ⇐ Gs, Gt, PId(xs, xt) when s ; 〈xs,Gs〉 and t ; 〈xt,Gt〉 and ~x = Var(s ↓?R t). Then the
resolution of a first order formula is based on the algorithms that compute the different operations on regular
relations represented by PR logic programs.

9

>
δ(v) = 〈v, true〉

if v ∈ Var

δ(t1) = 〈x1, e1〉 . . . δ(tn) = 〈xn, en〉
δ(f(t1, . . . , tn)) = 〈x, ∃x1 . . . xnf(x1, . . . , xn) ↓?R x,

∧
1≤i≤n ei〉

if f ∈ F ∪ X and x 6∈ ⋃1≤i≤n Var(ei)

δ(s) = 〈xs, es〉 δ(t)〈xt, et〉
δ(s ↓?R t) = ∃xs, xtxs ↓?R xt ∧ es ∧ et

Table 2: Flattening second order equations

In the second order case, we cannot compute the set of solutions therefore our aim is to find a particular
instance for the second order variables and the corresponding set of solutions for the first order variables.
To reach this goal we need to transform the initial formula in two steps: first, we flatten the equations of
the formula and then we put the result in prenex disjunctive normal form.

The rules of table 2 are used to transform any second order pseudo regular joinability equation to an
equivalent formula which equations are of the form f(~x) ↓?

R y where f ∈ F ∪ X and ~x, y are first order
variables.

Lemma 5 Let R be a pseudo-regular CTRS and s ↓?R t a second order equation, SOL(s ↓?R t) = SOL(δ(s ↓?R
t))

Proof 5 Let s be a second order term without constructor symbols and 〈x, e〉 = δ(s). We prove by induction
on the depth of the term s that for all data ground substitution σ of domain Var(s) such that sσ is a data
ground term, t ∈ M(sσ) iff t ∈ SOL(e). If s is a first order variable, it is true since e = true therefore
SOL(e) = T (C).

Consider now a term s of depth greater than 0, s can be written f(s1, . . . , sn). δ(s) = 〈x, ∃x1 . . . xnf(x1, . . . , xn) ↓?R
x,
∧

1≤i≤n ei〉 if δ(si) = 〈xi, ei〉. Let σ a ground data substitution of domain Var(s) and σi = σ|Var(si)

for 1 ≤ i ≤ n. By induction hypothesis, we know that ti ∈ M(siσi) iff si ∈ SOL(ei). Therefore
t ∈ SOL(∃x1 . . . xnf(x1, . . . , xn) ↓?R x,

∧
1≤i≤n ei) iff t ∈ f̃(t1, . . . , tn), thus, iff t ∈M(f(s1, . . . , sn)).

We consider now a conjunctive pseudo-regular formula F , of the form fo(~y) ∧ X1(~x1) ↓?R x1 ∧ . . . ∧
Xm(~xm) ↓?R xm where fo(~y) is a conjunction of first order pseudo-regular equations and ~y the vector of the
variables occurring in those equations. Les Pfo(~y) be the pseudo-regular logic program that represents the
set of solutions of fo(~y). Let SO(F) be the following set of clauses {PXi(~xi, xi)⇐ Pfo(~y) | 1 ≤ i ≤ m } and
σSO(F) = {Xi 7→ r̃i} where r̃i = { (~t, t) | SO(F) |= PXi(~t, t) }.

Lemma 6 Let F be a conjunctive pseudo-regular formula, F is satisfiable iff FσSO(F) is satisfiable.

Proof 6 It is obvious that if FσSO(F) is satisfiable then F is satisfiable. Now consider that F is satisfiable,
this means that fo(~y) is satisfiable, therefore the model of Pfo(~y) is not empty. This means that SO(F)
instanciates each second order variable of F by a non-empty relation, thus FσSO(F) is satisfiable.

The following lemma helps to caracterize the instance of the second order variables we compute. It is
used to prove that our algorithm gives a solution iff the whole formula is satisfiable. It is also important
when one wants to synthetize a CTRS from a pseudo-regular formula.

Lemma 7 Let F = fo(~y) ∧X1(~x1) ↓?R x1 ∧ . . . ∧Xm(~xm) ↓?R xm be a conjunctive pseudo-regular formula,
σSO(F) is the smallest solution of the following second pseudo regular formula ∀~zfo(~y) ⇒ X1(~x1) ↓?R x1 ∧
. . .∧Xm(~xm) ↓?R xm where ~z is a vector composed of the union the variables of ~y, of ~xi and xi (1 ≤ i ≤ m).

10

Proof 7 The proof of this lemma is obvious since σSO(F) is computed from the set of clauses Xi(~xi)⇐ fo(~y)
(1 ≤ i ≤ n).

We are now ready to describe the algorithm that decides the satisfiability of a positive pseudo-regular
formula and gives one instance of the second order variables and the set of corresponding solutions for the
first order variables when the formula is satisfiable.

Let R be a pseudo-regular CTRS and F a positive second-order pseudo-regular formula in prenex disjunc-
tive normal form. SO(F) is the following set of clauses {SO(C) | C is a conjunctive factor of F }, σSO(F)

is the substitution of the second order variables of F defined by {Xi 7→ r̃i} where r̃i = { (~t, t) | SO(F) |=
PXi(~t, t) }. Finally we call LP(F) the pseudo-regular logic program equivalent to SO(F) obtained by the
transformation of [10].

Algorithm 1 Let R be a pseudo-regular CTRS and F a positive second-order pseudo-regular formula.

1. Compute F ′ equivalent to F and in prenex disjunctive normal form.

2. Compute LP(R) and LP(F ′).

3. Solve the pseudo-regular formula F ′σSO(F ′), using the algorithm of [10] considering each second order
variable symbols as defined function symbols and LP(R)∪LP(F ′) as the representation of the relations.
The result is a pseudo-regular logic program called PSOL(F).

4. Compute the CTRS RR(()PSOL(F)).

Theorem 3 Let R be a pseudo-regular CTRS and F a positive second-order pseudo-regular formula. M(PSOL(F))
is not empty iff F is satisfiable.

Proof 8 Let us call F ′ the prenex disjunctive normal form of F . F ′ is of the form qtfo1(~y1)∧ so1(~x1, ~X1)∨
. . . fon(~yn) ∧ son(~xn, ~Xn) where qt are the quantifications of the formula, each foi(~yi) is a conjunction of

first order joinability equations which variables are those of ~yi and soi(~xi, ~Xi) is a conjunction of flat second
order joinability equations of form X(~x) ↓?R x where X ∈ Xi and the variables of ~x and x occur in ~xi.
M(PSOL(F)) represents the set of solutions of the formula F ′σSO(F ′), therefore if M(PSOL(F)) is not

empty FσSO(F ′) is satisfiable thus F is also satisfiable.
If F is satisfiable, F ′ is also statisfiable therefore qtfo1(~y1)∨ . . . fon(~yn) as well as fo1(~y1)∨ . . . fon(~yn)

have at least one model. This means that M(SO(F ′)) is not empty so σSO(F ′) instanciates second order
variables to non empty relations. Moreover we know from Lemma 7 that ∀~zi, foi(~yi) ⇒ soi(~xi, Xi)σSO(F ′)

which means that ∀~zi, foi(~yi) ⇒ foi(~yi) ∧ soi(~xi, Xi)σSO(F ′) hence qtfo1(~y1) ∧ so1(~x1, ~X1) ∨ . . . fon(~yn) ∧
son(~xn, ~Xn) is satisfiable.

Example 6 Let us consider again the CTRS of Example 1 and the following formula ∃y, X(y + y) ↓?
R

y ∨X(s(y + y)) ↓?R y
The flattening of this formula gives ∃y, ∃x1(y + y ↓?R x1 ∧X(x1) ↓?R y) ∨ ∃x2, x3s(x3) ↓?R x2 ∧ y + y ↓?R

x3 ∧X(x2) ↓?R y) which prenex form F ′ is ∃y, x1, x2, x3(y+ y ↓?R x1 ∧X(x1) ↓?R y)∨ (s(x3) ↓?R x2 ∧ y + y ↓?R
x3 ∧ X (x3) ↓?R y)

SO(F ′) = {PX(x1)⇐ P+(y, y, x1), PX(x2)⇐ Ps(x3, x2), P+(y, y, x3)}
It can be easily seen that relation defined by PX in M(SO(F ′)) is { (n1, n2) | n1/2 = n2 }. For lake of

space, we cannot give the CTRS computed by our algorithm.

To specify a relation, we want to synthetize it is important to know Lemma 7. The typical formula to give
as input is ∃~zfo(~y) ∧X(~x) ↓?R x where fo(~y) is a conjunction of first order equations over the free variables
~y and the variable of ~z are those of ~y union ~x, x. Indeed if fo(~y) is satisfiable the computed instance for X
is ∀~zfo(~y) ∧X(~x) ↓?R x. The existential quantification being there only to avoid the generation of the set of
solutions of free first order variables.

11

6 Conclusion

In this paper, we have extended the results of [10] to conditional term rewrite systems. We have also define
algorithm to decide the positive second order pseudo-regular formulae. When the formula is satisfiable, the
algorithm expresses the instances of second order variables by a CTRS. This result provides a synthesis
mecanism of CTRS which can be considered as functional logic programs.

Second order theories with second order variables occurring in the terms have been studied in the context
of second order unification (see e.g. [9, 15]). Our joinability equations are unifiability equations when the
CTRS is a confluent therefore resolution of pseudo-regular second order equations remains to solve second
order unification modulo a CTRS.

The synthesis of programs from a specification has been already investigated. In the context of functional
programs for example [6, 1] use term rewriting systems to provide an computational model for functional
programming and the specification of the function to be synthetized is a set of equations that can be viewed as
a positive conjunctive formulae. Higher order logic has been used in [3] for specification in order to synthesize
logic programs but some heuristics are used and the result is partially correct whereas our method is exact
(i.e. we obtain a correct instance for second order variables). In most of the cases synthesis of programs
(functional or not) use inductive with deductive methods to find partially correct result. As a consequence
such methods generate more general program than ours. In our framework, such partial solutions may be
generated using some approximations during the computation of the operations on the regular relations.

References

[1] M. Alpuente, D. Ballis, F. J. Correa, and M. Falaschi. Automated Correction of Functional Logic
Programs. In P. Degano, editor, Proc. of the European Symp. on Programming, ESOP 2003, volume
2618 of LNCS, pages 54–68. Springer, 2003.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, United Kingdom,
1998.

[3] P. Bostrom, H. Idestam-Alquist. Induction of logic programs by example-guided unfolding. Journal of
Logic Programming, 40:159–183, 1999.

[4] H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques
and Applications (TATA). http://www.grappa.univ-lille3.fr/tata, 1997.

[5] D. A. Basin and N. Klarlund. Hardware verification using monadic second-order logic. In Proceedings of
the 7th International Conference On Computer Aided Verification, volume 939, pages 31–41. Springer
Verlag, 1995.

[6] N. Dershowitz and E. Pinchover. Inductive synthesis of equationnal programs. In Proc. of the Eighth
National Conference on Artificial Intelligence, pages 234–239. AAAI press, 1990.

[7] Georg Gottlob and Christoph Koch. Monadic queries over tree-structured data. In Proceedings of the
17th IEEE Symposium on Logic in Computer Science, pages 189 – 202. IEEE Computer Society, 2002.

[8] J. L. Jensen, M. E. Jorgensen, N. Klarlund, and M. I. Schwartzbach. Automatic verification of pointer
programs using monadic second-order logic. In SIGPLAN Conference on Programming Language Design
and Implementation, pages 226–236, 1997.

[9] L. Levy and M. Villaret. Linear second-order unification and context unification with tree-regular
constraints. In Proc. of the 11th Int. Conf. on Rewriting Techniques and Applications, RTA’00, volume
1833 of LNCS, pages 156–171. Springer, 2000.

[10] S. Limet and P. Pillot. Solving first order formulae of pseudo-regular theory. In Proc. 2th Int. Conf. on
Thoerical Aspect of Computing (ICTAC’05), volume 3091 of LNCS, pages 110–124. Springer, 2005.

12

[11] S. Limet and P. Pillot. On second order formulae of pseudo-regular theory. Technical report, LIFO,
Université d’Orléans, 2006.

[12] S. Limet and G. Salzer. Manipulating tree tuple languages by transforming logic programs. In Ingo
Dahn and Laurent Vigneron, editors, Electronic Notes in Theoretical Computer Science, volume 86.
Elsevier, 2003. Accepted for publication in Journal of Automated Reasoning.

[13] S. Limet and G. Salzer. Proving properties of term rewrite systems via logic programs. In V. van
Oostrom, editor, Proc. 15th Int. Conf. on Rewriting Techniques and Applications (RTA’04), volume
3091 of LNCS, pages 170–184. Springer, 2004.

[14] J.W. Lloyd. Foundations of Logic Programming. Springer, 1984.

[15] Joachim Niehren, Manfred Pinkal, and Peter Ruhrberg. On equality up-to constraints over finite trees,
context unification and one-step rewriting. In 14th International Conference on Automated Deduction,
volume 1249 of LNAI, pages 34–48. Springer Verlag, 1997.

[16] J. Thatcher and J. Wright. Generalized finite tree automata theory with an application to a descision
problem of second-order logic. Mathematical System Theory, 2(1):57–81, 1968.

[17] W. Thomas. Handbook of Formal Language, volume 3, chapter 7, pages 389–455. Springer Verlag, 1997.

13

7 Appendix

The relation →n
R denotes n steps of the rewrite relation. A sequence t0 →R t1 →R . . . →R tn is called a

derivation.

Theorem 4 1 Let R be a pseudo-regular CTRS, s be a term, and s ; 〈s′,G〉. Then s→∗ t with t data-term
holds iff there is a substitution µ such that t = s′µ and LP(R) |= Gµ.

Before proving the theorem in Lemma 8 and 9 we introduce some auxiliary notions. For the body G of
a clause generated by the transformation rules from a rule l→ r, we define

• OG = {u | Au ∈ G }

• O0
G = {u ∈ OG | u 6< v for all v ∈ OG }

• Oi+1
G = {u ∈ OG \

⋃
iO

i
G | u 6< v for all v ∈ OG \

⋃
iO

i
G }

• Height(G) = max{ i | OiG 6= ∅ }

• Gi = {Au ∈ G | u ∈ OiG }

Note that OG is the same as PRedPos(r), Height(G) is the maximal number of nested possible redex positions
in r, and OiG is the set of possible redex positions which are nested below Height(G)− i redexes. A sequence
t0 →R t1 →R . . .→R tn is called a derivation. In the next definition we note s← s′ ⇐ C if s can be rewrite
in s′ if it needs all the conditions in C to be satisfied. The relation cpt which count the number of necessary
rewriting step is recursively defined as follow:

• cpt(s→ t⇐ ∅) = 1

• cpt(s → s′ ⇐ {bigcups↓?
R
t∈Csσ →∗ utσ →∗ u} →∗ t) = 1 + cpt(s′ →∗ t) + cpt({bigcups↓?

R
t∈Csσ →∗

utσ →∗ u}).

• cpt({s′ →∗ t} ∪ r) = cpt(s′ →∗ t) + cpt(r)

Lemma 8 Let R be a conditionnal term rewriting system, s be a term, and s ; 〈s′,G〉. If LP(R) |= Gµ for
some substitution µ, then s→∗ s′µ.

Proof 9 The unconditionnal part is the same as in [10]. For the conditionnal part we have to prove if
LP(R) |= Gµ for some substitution µ, then ∃n cpt(s→R s

′µ) = n.
LP(R) |= Gµ iff there exists a successful proof tree T headed by Gµ. We use induction on the height h of

the proof trees.
h = 0: This means that s ; 〈s, ∅〉, so s is irreducible so s→∗ s with 0 steps.
h > 0: Let Au be the chosen atom and Pf (t1, . . . , tn, t) ⇐ B be the top clause used to build the proof

tree. Let f(s1, . . . , sn) → r ⇐ c the conditionnal rewrite rule that produced this clause. (G \ Au)µ ∪ Bσ is
the next goal in the proof tree. Let s′′ = s[u←σr ⇐ σc], s′′ ; 〈s′,G \ {Av | u ≤ v }) ∪ Bσ〉. (G \ {Av | u ≤
v })µ∪ Bσ ⊆ (G \Au)µ ∪ Bσ therefore LP(R) |= (G \ {Av | u ≤ v })µ∪ Bσ with a proof of height inferior to
h, so s[u←σr ⇐ c]→∗ s′µ]σ = s′µ and no rules have been applied on occurrences of rσ brought by σ. Now,
let us consider the term s|u. s|u ; 〈xu,

⋃
u≤v,v∈PRedPos(s|u)Av〉. LP(R) |= {Avµ | u ≤ v } with a proof of

height inferior to h, so s|u →∗ xuµ = rσ. Therefore s →∗ s[u←rσ ⇐ cσ] →∗ s′µ. The whole derivation is
data.

For the proof of Lemma 9, we introduce the following notations.

Definition 6 For a data derivation s→∗ t we define the term (s bas→∗ t) \ u as follows:

• (s bas→∗ t) \ u = s|u if cpt(s→∗ t) = 0

14

• if the derivation is of the form s→ s[v←rσ ⇐ cσ]→∗ t, (s bas→∗ t) \u = s|u if v < u and (s bas→∗ t) \u =

(s[v←rσ bas→∗ t) \ u otherwise.

Intuitively, (s bas→∗ t) \ u denotes the term obtained by applying rewrite steps of s→∗ t to s|u.

Lemma 9 Let R be a conditionnal term rewriting system, s be a term, and s ; 〈s′,G〉. If s →∗ t with t

data-term then LP(R) |= Gδ where δ = {xv 7→ (s bas→∗ t) \ v | v ∈ PRedPos(s) } and s′δ = t.

Proof 10 By induction on the number n of necessary rewrite step. For the unconditionnal part and for
(n ≤ 1) that is the same as in [10]. For the conditionnal part we have to prove if ∃n cpt(s→R t) = n then

LP(R) |= Gδ where δ = {xv 7→ (s bas→∗ t) \ v | v ∈ PRedPos(s) } and s′δ = t.
n > 0: s →[u,l→r⇐c,σ] t

′ →m t. By property of data rewriting u ∈ PRedPos(s) therefore u ∈ OG. Let
Au = Pf (s1, . . . , sn, xu) and Pf (s′1, . . . , s

′
n, s
′′)⇐ B be the clause of LP(R) produced for l→ r ⇐ c. We have

t′ ; G\{Av | v > u }∪{Av | v ∈ PRedPos(rσ) } and cpt(t′ →m t) < n so LP(R) |= (G\{Av | v > u }∪{Av |
v ∈ PRedPos(rσ) } ∪ {Ci | i ∈ c)δ′ } where δ′ = {xv 7→ (t′ bas→∗ t) \ v | v ∈ PRedPos(t′) }. By definition, for

all v 6> u, (s bas→∗ t) \ v = (t′ bas→∗ t) \ v, By induction hypothesis,for all i ∈ c,LP(R) |= ({Ci | i ∈ c)δ′ }. hence
for all v 6> u, xvδ

′ = xvδ and LP(R) |= (G \ {Av | v > u })δ.
Now, we have to prove that LP(R) |= {Av ∈ G | v ≥ u }δ. By definition, for all v > u, (s bas→∗ t) \ v = s|v

so, as in the case k = 0, siδ = s|u.i therefore f(s1, . . . , sn)δ = lσ = f(s′1, . . . , s
′
n)σ. Moreover xuδ = (s bas→∗

t) \ u = (t′ bas→∗ t) \ u and s′′ = Irr(r) so (t′ bas→∗ t) \ u = Irr(r)[v←(s bas→∗ t) \ u|v, v ∈ PRedPos(r)]. Let

σ′ = σ ∪ {xv 7→ (s bas→∗ t) \ u|v}. We have Pf (s1, . . . , sn, xu)δ = Pf (s′1, . . . , s
′
n, s
′′)σ′ and therefore Gδ is a

logical consequence of (G \ {Au})δ ∪Bσ′. Bσ′ ⊆ ({Av | v ∈ PRedPos(rσ) })δ′ and therefore LP(R)∪ |= Bσ′.
It remains to prove that s′δ = t. By induction hypothesis Irr(t′)δ′ = t. s′ = Irr(s) and s→[u,l→r⇐c,σ] t

′.
Hence, either xu /∈ Var(s′) and in this case s′ = Irr(t′) or xu ∈ Var(s′) and in this case Irr(t′) = s′[u ←
Irr(rσ)⇐ cσ]. In the first case, since xvδ = xvδ

′ for all v 6≥ u, we obtain s′δ = Irr(t′)δ′ = t. In the second

case, xuδ = (s bas→∗ t) \ u = (t′ bas→∗ t) \ u = t|u, therefore s′δ = Irr(t′)δ′[u ← xuδ] = Irr(t′)δ′[u ← t|u] =
t[u← t|u] = t.

Definition 7 Let R be a term rewrite system and P be a logic program. We say that P encodes →∗R if
for all terms s and t, the relation s →∗R t holds iff for some substitution µ, P |= Gµ and t = s′µ where
s ; 〈s′,G〉.

Lemma 10 2 Let R be a pseudo-regular CTRS then LP(()R) is a NGSPR logic program.

Proof 11 The proof concerning the transformation of the non conditionnal part of the pseudo-regular CTRS
by ; in a NGSPR shared logic program is the same proof as in [10] for the transformation of a pseudo-regular
TRS R′ in a NG-shared-PR logic program given by LP(R′). Secondly we show that the conditionnal parts
add only pseudo-regular atom in the body of the clause. For each f(x1, . . . , xn)← z of the conditionnal part
we have a define function symbol f . Therefore by applying ; we create only one atom Pf (x1, . . . , xn, z) wich
is added in the boddy of the clause. Futhermore all the variables of f(x1, . . . , xn)← z have the same image u
by pi and ; keep the image u by pi for the non conditionnal part hence all the variables of Pf (x1, . . . , xn, z)
have the same image u by pi and the clause stay NGSPR.

15

