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Abstract

We introduce an inductive definition for two classes of orders. By

simple proofs, we show that one corresponds to the interval orders class

and that the other is exactly the semiorders class. To conclude we con-

sider most of the known equivalence theorems on interval orders and on

semiorders, and we give simple and direct inductive proofs of these equiv-

alences with ours characterizations.
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1 Introduction

In the following we are only concerned by finite orders. We present two classes
of orders defined inductively by decompositions of the order’s ground sets into
three sets (X1, X2, Z) the two firsts being none void. These decompositions rely
upon two classical order’s notions which are the antichain and the series compo-
sition. Particularly, we assume both that X2 and Z forms an antichain, and that
X1 and X2 are in series composition. The difference between the two classes is
achieved by a further condition on the order relations between elements of X1

and elements of Z. In section 3 and in section 4, we give simple proofs of the
fact that these classes are characterized by forbidden suborders. These charac-
terizations provide the equivalence of one class with the interval orders class,
and the equivalence of the other class with the semiorders class. The inductive
definition thus obtained for the interval orders and for the semiorders are, up
to our knowledge, so far unknown. In section 5 and in section 6 we consider
most of the known equivalence theorems on interval orders and on semiorders,
and we give simple and direct inductive proofs of these equivalences with ours
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characterizations. Note that, in 2003, B. Balof and K.P. Bogart [2] already
give inductive proofs for the Fishburn and Mirkin characterization theorem of
interval orders and for the Scott-Suppes characterization theorem of semiorders.

2 Preliminaries

For general order terminology and known results we refer to B.S.W. Schröder [11]
and to W.T. Trotter [13]. We only recall some of them and fix some nota-
tions. An order P is a couple (V (P ), <

P
) such that <

P
is a transitive and

antireflexive binary relation with ground set V (P ). Given an order P , Max(P )
(resp. Min(P )) denotes the set of its maximal (resp. minimal) elements. For
every x ∈ V (P ), ↓[

P
x (resp. ↑[

P
x) denotes the predecessor (resp. successor)

set of x. For every A, B ⊆ V (P ), P [A] denotes the sub-order of P induced
by A, that is P [A] = (A, (A × A)∩ <

P
), and P [A] <

P
P [B] means that

∀a ∈ A, ∀b ∈ B holds a <
P

b. Given two orders P1 = (V (P1), <P1
) and

P2 = (V (P2), <P2
) on disjoint ground sets, the series composition of P1 and P2

is the order P1 ⊗ P2 = (V (P1) ∪ V (P2), (V (P1) × V (P2))∪ <
P1

∪ <
P2

). Notice
that if P1 = ∅ then P1⊗P2 = P2, and that the behaviour is similar when P2 = ∅.
An order P is said to be an antichain if <

P
= ∅. Similarly, a subset A of V (P )

is an antichain of P if its elements are pairwise incomparable in P , that is, if
(A × A)∩ <

P
= ∅. The set of all the antichains of P is denoted A(P ).

3 Recursively Antichain-Series Decomposable Or-

ders and Interval Orders

Definition 1 An order P is Antichain-Series decomposable if its ground set
V (P ) is the disjoint union of three sets X1, X2 and Z which fulfill (i) X1 and
X2 are none void, (ii) P [X1] <

P
P [X2], and (iii) P [X2 ∪ Z] is an antichain.

The family (X1, X2, Z) is then called an Antichain-Series decomposition of P .

Remark 1 Since P [X1] <
P

P [X2], and since P [X2∪Z] is an antichain, it then
immediately follows that X2 ∪ Z = Max(P ). So, taking X2 ∪ Z = Max(P ) for
condition (iii) in the definition would not have induced a loss of generality.

Definition 2 An order P is Recursively Antichain-Series decomposable if either
it is an antichain, or it has an Antichain-Series decomposition, say (X1, X2, Z),
such that P [X1 ∪ Z] is still Recursively Antichain-Series decomposable.

Theorem 1 An order P is Recursively Antichain-Series decomposable if and
only if it has no sub-order isomorphic to the 2 ⊕ 2 order (see Figure 1 (a)).

Proof . To show the forward implication we proceed by contradiction. Let P be a
Recursively Antichain-Series decomposable order having sub-orders isomorphic
to the 2 ⊕ 2 and assume that P is of minimal cardinality over all such orders.
Let {a, b, c, d} be a subset of V (P ) inducing a 2 ⊕ 2 sub-order with a <

P
b and

3



c <
P

d, and let (X1, X2, Z) be an Antichain-Series decomposition of P such
that P [X1 ∪ Z] is still Recursively Antichain-Series decomposable. Then, as P
is minimal in cardinality, we have that {a, b, c, d}∩X2 6= ∅. Now, without loss of
generality, assume that b ∈ X2. Consequently, we obtain that {c, d} ∩ X1 = ∅,
and thus that {c, d} ⊆ (X2∪Z): which contradicts that P [X2∪Z] is an antichain.

To show the backward implication we proceed by induction on |V (P )|. The
base case being obvious with |V (P )| = 1, we simply have to consider that
|V (P )| ≥ 2 and, to avoid trivial cases, that P is not an antichain. Then, as P has
no sub-order isomorphic to the 2⊕2, it follows that for x ∈ V (P ) with maximal
ideal size we have that ↓[

P
x = V (P )\Max(P ). Then, with X1 = V (P )\Max(P ),

X2 = {x} and Z = Max(P )\{x}, we obtain an Antichain-Series decomposition
of P : note that X1 6= ∅ since P is not an antichain. We now conclude by
induction hypothesis on P [X1 ∪ Z]. �

This characterization by forbidden sub-order provides the equivalence be-
tween Recursively Antichain-Series decomposable orders and interval orders.
Recall that an order P = (V (P ), <

P
) is said to be an interval order if it can

be represented by assigning a real interval Ix = [l(x), r(x)] to each element
x ∈ V (P ), such that x <

P
y if and only if r(x) <R l(y) for all x, y ∈ V (P ). The

family (Ix)x∈V (P ) is then said to be an interval representation of P . These
orders, introduced in 1914 by N. Wiener [14], have since extensively been
studied and several characterizations have been obtained: see the books of
B.S.W. Schröder [11], of P.C. Fishburn [4] and of W.T. Trotter [13]. However, up
to our knowledge, none of them is inductive. We obtain such a characterization
by the following one due to P.C. Fishburn [3] and B.G. Mirkin [6].

Theorem 2 [P.C. Fishburn [3], B.G. Mirkin [6]] An order P is an interval order
if and only if it has no sub-order isomorphic to the 2 ⊕ 2 order.

Now directly from both Theorem 1 and Theorem 2 we obtain:

Corollary 1 An order is an interval order if and only if it is Recursively
Antichain-Series decomposable.

Remark 2 If we replace condition (iii), in the definition of Antichain-Series
decomposable orders, by “P [X2] and P [Z] are both antichains”, then the order
of Figure 1 (c) would be Recursively Antichain-Series decomposable by taking,
for example, X2 = {c, d} and Z = {a, b}.

4 Recursively Full-Antichain-Series Decompos-

able Orders and Semiorders

Definition 3 An order P is Full-Antichain-Series decomposable if its ground
set V (P ) is the disjoint union of three sets X1, X2 and Z which fulfill (i) X1

and X2 are none void, (ii) P [X1] <
P

P [X2], (iii) P [X2 ∪ Z] is an antichain,
and (iv) ∀z ∈ Z, we have (X1 \Max(P [X1])) ⊆ ↓[

P
z. The family (X1, X2, Z) is

then called a Full-Antichain-Series decomposition of P .
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Figure 1: (a): the 2 ⊕ 2 order; (b): the 3 ⊕ 1 order; (c): a none interval order.

Definition 4 An order P is Recursively Full-Antichain-Series decomposable if
either it is an antichain, or it has a Full-Antichain-Series decomposition, say
(X1, X2, Z), such that P [X1 ∪ Z] is still Recursively Full-Antichain-Series de-
composable.

Theorem 3 An order P is Recursively Full-Antichain-Series decomposable if
and only if it has no sub-order isomorphic neither to the 2 ⊕ 2 order nor to the
3 ⊕ 1 order (see Figure 1 (a) and (b)).

Proof . To show the forward implication, as in the proof of Theorem 1, we
proceed by contradiction. Thus, let P a Recursively Full-Antichain-Series de-
composable order the 3 ⊕ 1 order, and assume that P is of minimal cardinality
over all such orders. As, by Theorem 1, P cannot contain a 2⊕ 2 sub-order, let
{a, b, c, d} be a subset of V (P ) inducing a 3⊕1 sub-order with a <

P
b <

P
c. Let

(X1, X2, Z) be a Full-Antichain-Series decomposition of P such that P [X1 ∪Z]
is Recursively Full-Antichain-Series decomposable. Then, as P is minimal in
cardinality, we have that {a, b, c, d} ∩ X2 6= ∅. Now, either d ∈ X2 and thus
{a, b, c} ⊆ Z which contradicts that Z is an antichain. Or, c ∈ X2 and thus we
have both {a, b} ⊆ X1 and d ∈ Z, consequently a ∈ (X1 \ Max(P [X1])) but
now a ‖

P
d: a contradiction.

To show the backward implication, again, we follow the same steps than in
the proof of Theorem 1. Simply notice that with X2 = {x} where x ∈ V (P )
and x has a maximal ideal size, with X1 = V (P ) \ Max(P ), and with Z =
Max(P )\{x}, we obtain a Full-Antichain-Series decomposition of P . Indeed, if
there exists z ∈ Z and y1 ∈ (X1 \Max(P [X1]))\↓[

P
z then y1 ‖

P
z and thus, due

to the transitivity, for every y2 ∈ Max(P [X1]) such that y1 <
P

y2 we have that
y2 ‖

P
z since z ∈ Max(P ) (see Remark 1). Consequently with {y1, y2, x, z} we

obtain a sub-order of P isomorphic to a 3 ⊕ 1: a contradiction. �

An order P = (V (P ), <
P
) is said to be a semiorder if it can be represented

by assigning a real interval Ix = [l(x), r(x)] of unit length, that is r(x)−l(x) = 1,
to each element x ∈ V (P ), such that x <

P
y if and only if r(x) <R l(y) for all

x, y ∈ V (P ). These orders have been introduced in 1956 by R.D. Luce [5], but,
up to our knowledge, none of the characterizations since established is inductive.
To obtain such a characterization we use the next one due to D. Scott and
P. Suppes [12].
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Theorem 4 [D. Scott and P. Suppes [12]] An order P is a semiorder if and
only if it has no sub-order isomorphic neither to the 2⊕2 order nor to the 3⊕1
order.

Now directly from both Theorem 3 and Theorem 4 we obtain:

Corollary 2 An order is a semiorder if and only if it is Recursively Full-
Antichain-Series decomposable.

5 Interval Orders’s Equivalence Theorems

In this section we recall most of the known characterization theorems on interval
orders. For each of these characterizations we give a simple and direct equiv-
alence proof with the class of the Recursively Antichain-Series decomposable
orders.

5.1 Direct Equivalences

We begin by showing that Recursively Antichain-Series decomposable orders are
exactly those orders having an interval representation. Combining this result
with our previous Theorem 1 this gives the classical Fishburn and Mirkin char-
acterization theorem of interval orders. Notice that the inductive proof of our
forward implication has, on certain points, some similarities with the inductive
proof, of the Fisburn and Mirkin theorem, given by B. Balof and K.P. Bogart [2].

Theorem 5 An order P is Recursively Antichain-Series decomposable if and
only if it is an interval order.

Proof . For the two implications we proceed by induction on |V (P )|. As the base
cases are obvious with |V (P )| = 1, we simply have to consider that |V (P )| ≥ 2.
To avoid trivial cases we also assume that P is not an antichain.

For the forward implication let (X1, X2, Z) be an Antichain-Series decom-
position of P such that P [X1 ∪ Z] is still Recursively Antichain-Series decom-
posable. Let (Ix)x∈V (P [X1∪Z]) be an interval representation of P [X1 ∪ Z] ob-
tained by induction hypothesis. Then let gr = max{r(x) : x ∈ X1} and let
rZ = max{gr + 3

2 , max{r(x) : x ∈ Z}}. Let I ′(x) = I(x) for x ∈ X1, let
I ′(x) = [l(x), rZ ] for x ∈ Z and let I ′(x) = [gr + 1

2 , rZ ] for x ∈ X2. It is then
immediate that for every x2 ∈ X2 we have both that for every x1 ∈ X1 holds
r(x1) <R l(x2), and that for every xz ∈ Z holds [l(x2), r(x2)]∩ [l(xz), r(xz)] 6= ∅.
Also, as we only increase interval’s right end points for the elements of Z and
as Z ⊆ Max(P [X1 ∪Z]), we have that (I ′x)x∈V (P [X1∪Z]) is still an interval rep-
resentation of P [X1 ∪Z]. Thus, (I ′x)x∈V (P ) is a suitable interval representation
for P .

For the backward implication let (Ix)x∈V (P ) be an interval representation of
P . Let gl = max{l(x) : x ∈ V (P )}, let X2 = {x : x ∈ V (P ) : l(x) = gl}, let
Z = {x : x ∈ V (P ) : (l(x) 6= gl) and (r(x) ≥ gl)} and let X1 = V (P )\ (X2∪Z).
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Since obviously X1 <
P

X2, X2 ∩Z = ∅ and (X2 ∪Z) ∈ A(P ), the result follows
immediatly by induction hypothesis. Notice that the assumption “P is not an
antichain” implies that X1 6= ∅. �

Recall that an antichain C, of an order P , is said to be maximal if every
element of V (P ) is either in C or comparable with some element of C. The
set of all the maximal antichains forms a lattice by ordering its corresponding
ideals by inclusion. That is, given A and B two maximal antichains, we have
A is strictly less than B if and only if (↓[

P
A ∪ A)  (↓[

P
B ∪ B). We denote

this order by AM(P ), and we refer to it as the lattice of maximal antichains of
P . Notice that its greatest and its least element are respectively Max(P ) and
Min(P ), and notice that the following well known property comes directly from
the definition of the order relation.

Property 1 Let P be an order and let A, B ∈ V (AM(P )). If B <
AM(P )

A,
then for every x ∈ A \ B and for every C ∈ V (AM(P )) such that C ≤

AM(P)
B

we have that x /∈ C.

In 1991, K. Reuter [9] shows that an order is an interval order if and only if
its lattice of maximal antichains is totally ordered. In the following, we give a
version of that theorem for Recursively Antichain-Series decomposable orders.

Theorem 6 An order P is Recursively Antichain-Series decomposable if and
only if its lattice of maximal antichains is totally ordered.

Proof . For the two implications we proceed by induction on |V (P )|. As the base
cases are obvious with |V (P )| = 1, we simply have to consider that |V (P )| ≥ 2.
To avoid trivial cases we also assume that P is not an antichain

For the forward implication, let (X1, X2, Z) be an Antichain-Series decom-
position of P such that P [X1 ∪ Z] is still Recursively Antichain-Series de-
composable. Then, the result follows quite immediately by induction hypoth-
esis on P [X1 ∪ Z]. Indeed, due to the series compositions X1 <

P
X2, if

Max(P [X1∪Z]) = Z then V (AM(P )) = (V (AM(P [X1∪Z]))\{Z})∪{X2∪Z},
and otherwise V (AM(P )) = V (AM(P [X1 ∪ Z])) ∪ {X2 ∪ Z}.

For the backward implication, assume that AM(P ) is totaly ordered, let ⊤
be its greatest element, and let pred⊤ be its (unique) immediate predecessor
in AM(P ). Let X2 = ⊤ \ pred⊤, let Z = ⊤ \ X2 and let X1 = V (P ) \ ⊤.
Since ⊤ = Max(P ), in order to conclude by induction hypothesis, it remains to
show that both AM(P [X1 ∪Z]) is totally ordered and that X1 <

P
X2. For the

former case, it suffices to show that V (AM(P )) \ {⊤} = V (AM(P [X1 ∪ Z]))
since for every x ∈ X1 ∪ Z we have that ↓[

P [X1∪Z]
x = ↓[

P
x. First, for every

A ∈ V (AM(P )) \ {⊤}, it follows, by Property 1, that A ⊆ V (P [X1 ∪ Z]),
and consequently that A ∈ V (AM(P [X1 ∪ Z])). Second, by contradiction, let
A ∈ V (AM(P [X1 ∪ Z])) \ V (AM(P )). Then, there exists Y ⊆ X2 such that
(A ∪ Y ) ∈ V (AM(P )). Consequently, we have that Y = X2 and then follows
that A = Z. Which contradicts that pred⊤ ∈ V (AM(P [X1 ∪ Z])) and that
Z  pred⊤ (Z = ⊤ ∩ pred⊤ and Z 6= pred⊤ since the element of AM(P ) are
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maximal for inclusion). For the latter case, assume that there exist x1 ∈ X1

and x2 ∈ X2 such that x1 ‖
P

x2. Thus, there exists A ∈ (V (AM(P )) \ {⊤})
such that {x1, x2} ⊆ A: which leads to a contradiction with Property 1 and
x2 ∈ ⊤ \ pred⊤. �

For any order P and for any disjoint subsets A and B of V (P ), [A|B]P
denotes, if there exists one, a linear extension of P [A∪B] such that a <

[A|B]P
b

whenever both a ∈ A, b ∈ B and a ‖
P [A∪B]

b. By convention if A = B = ∅ we
say that [A|B]P exists. In 1978, I. Rabinovitch [8] shows that an order P is an
interval order if and only if [A|B]P exists for every two disjoint subsets A and B
of V (P ). We give here a version of that theorem for Recursively Antichain-Series
decomposable orders.

Theorem 7 An order P is Recursively Antichain-Series decomposable if and
only if [A|B]P exists for every two disjoint subsets A and B of V (P ).

Proof . For the forward implication we proceed by induction on |V (P )|. As
the base case is obvious with |V (P )| = 1, we simply have to consider that
|V (P )| ≥ 2. To avoid trivial cases we also assume that P is not an antichain.
By aim of simplicity, for every x ∈ V (P ), we denote P [V (P ) \ {x}] by P − x.
Let (X1, X2, Z) be an Antichain-Series decomposition of P such that P [X1 ∪Z]
is still Recursively Antichain-Series decomposable. Thus, for any x ∈ X2 and
for Z ′ = Z ∪ (X2 \ {x}), we have that (X1, {x}, Z ′) is still an Antichain-Series
decomposition of P such that P [X1 ∪ Z ′] is Recursively Antichain-Series de-
composable: it is sufficient to use the (X1, X2 − {x}, Z) Antichain-Series de-
composition of P − x when X2 6= {x}. Let A and B be two any disjoint
subsets of V (P ). Firstly, if x /∈ A, then, quite immediately from the induc-
tion hypothesis on P − x, we have that [A|B]P exists. Indeed, when x ∈ B,
then, for example, we can set [A|B]P = [A|(B \ {x})]P−x ⊗ {x}. Secondly,
assume that x ∈ A: by induction hypothesis we consider [(A \ {x})|B]P−x.
Let B< = {b : b ∈ B : b <

P
x} and let b<

max be the greatest element of B<

in [(A \ {x})|B]P−x. Let B‖ = {b : b ∈ B : b ‖
P

x} and let b
‖
min be the

least element of B‖ in [(A \ {x})|B]P−x. Then we have that A ∩ {y : y ∈

A ∪ B : b
‖
min ≤

[(A\{x})|B]P−x
y ≤

[(A\{x})|B]P−x
b<
max} = ∅. Indeed, by contra-

diction, let a be an element belonging to this intersection: notice that a 6= x.

Then, by definition of [(A \ {x})|B]P−x, it follows that b
‖
min <

P−x
a and thus

that b
‖
min <

P
a. Consequently, due to transitivity and by definition of b

‖
min,

we have that a ‖
P

x. Thus {b
‖
min, a} ⊆ Z ′ which contradicts that Z ′ is an an-

tichain. Now let D‖ = {b : b ∈ B‖ : b
‖
min ≤

[(A\{x})|B]P−x
b <

[(A\{x})|B]P−x
b<
max}.

As, for every y ∈ D‖ and for every t ∈ B<, we don’t have y <
P

t, and as for

every a ∈ (A ∩ ↓[
P
x) we have a <

[(A\{x})|B]P−x

b
‖
min, it then follows that there

exists [A|B]P = [(A \ {x})|B]P−x[{y : y ∈ (A ∪ B) \ D‖ : y ≤
[(A\{x})|B]P−x

b<
max}] ⊗ ({x}, ∅) ⊗ [(A \ {x})|B]P−x[D‖ ] ⊗ [(A \ {x})|B]P−x[{y : y ∈ A ∪ B :

b<
max <

[(A\{x})|B]P−x

y}].
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For the backward implication we proceed by contrapositive: by Theorem 1
assume that {a, b, c, d} is a subset of V (P ) inducing a 2 ⊕ 2 sub-order such
that a <

P
b and c <

P
d. But now, [A|B]P does not exist for A = {b, d} and

B = {a, c}. �

5.2 Two More Equivalences

In this subsection we are interested by the characterizations of interval orders
in terms of their succesors sets and predecessors sets. First, in order to simplify
the proofs, we need to precise the correlations between P and P [X1 ∪ Z] when
we consider Antichain-Series decompositions maximal for inclusion on X2.

Lemma 1 Let P be a Recursively Antichain-Series decomposable order, and let
(X1, X2, Z) be its (unique) Antichain-Series decomposition maximal for inclu-
sion on X2. Then, P [X1∪Z] is still Recursively Antichain-Series decomposable
and Max(P [X1 ∪ Z]) ∩ X1 6= ∅.

Proof . Let (X1, X2, Z) be an Antichain-Series decomposition of P such that
P [X1∪Z] is still Recursively Antichain-Series decomposable and such that A =
{x : x ∈ Z : ↓[

P
x = X1} is of minimal cardinality over all such decomposition.

If A = ∅, then clearly (X1, X2, Z) is maximal for inclusion on X2 and
Max(P [X1 ∪ Z]) ∩ X1 6= ∅. Indeed, if Max(P [X1 ∪ Z]) ∩ X1 = ∅ then in
every (X ′

1, X
′
2, Z

′) Antichain-Series decomposition of P [X1 ∪Z] holds X1 = X ′
1

thus the fact that X ′
2 6= ∅ contradicts A = ∅.

If A 6= ∅, we have that Max(P [X1∪Z]) = Z and then whenever (X ′
1, X

′
2, Z

′)
is an Antichain-Series decomposition of P [X1 ∪ Z] holds X1 = X ′

1. Thus, we
obtain that X ′

2 ⊆ A. Consequently (X1, X2 ∪X ′
2, Z \X ′

2) is an Antichain-Series
decomposition of P such that P [X1 ∪ (Z \ X ′

2)] is still Recursively Antichain-
Series decomposable: which contradicts the minimality of A. �

For any order P , we define U(P ) = {↑[
P
x : x ∈ V (P )} and D(P ) =

{↓[
P
x : x ∈ V (P )}. It is well known, see C.H. Papadimitriou and M. Yan-

nakakis [7], that interval orders are characterized by the fact that their prede-
cessors sets can be totaly ordered by inclusion, that is: an order P is an interval
order if and only if D(P ) is linearly ordered by inclusion. We present next a
rewriting of that theorem for Recursively Antichain-Series decomposable orders.

Theorem 8 An order P is Recursively Antichain-Series decomposable if and
only if D(P ) is linearly ordered by inclusion.

Proof . For the two implications we proceed by induction on |V (P )|. As the base
cases are obvious with |V (P )| = 1, we simply have to consider that |V (P )| ≥ 2.
To avoid trivial cases we also assume that P is not an antichain.

For the forward implication, let (X1, X2, Z) be an Antichain-Series decom-
position of P maximal for inclusion on X2. Notice that this implies that for
all x, y ∈ X2 we have that ↓[

P
x = ↓[

P
y, and that for every x ∈ X2 and z ∈ Z

we have that ↓[
P
z  ↓[

P
x and ↓[

P
x = X1. Thus, as for every x ∈ X1 ∪ Z we
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have that ↓[
P
x = ↓[

P [X1∪Z]
x, and as by Lemma 1 P [X1 ∪ Z] is still Recursively

Antichain-Series decomposable, we immediately conclude by induction hypoth-
esis on P [X1 ∪ Z] since D(P ) = D(P [X1 ∪ Z]) ∪ {X1}.

For the backward implication, let X1 be the greatest element of D(P ), let
X2 = {x : x ∈ V (P ) : ↓[

P
x = X1} and let Z = V (P ) \ (X1 ∪ X2). Notice that,

as X1 is the greatest element of D(P ), we have that both X2 6= ∅ and X2 ⊆
Max(P ). To conclude that (X1, X2, Z) is an Antichain-Series decomposition of
P it suffices to notice that Z ⊆ Max(P ) since, otherwise, the predecessor set
containing z ∈ Z \ Max(P ) cannot be included in X1. Since by construction
D(P [X1∪Z]) = D(P )\{X1}, by induction hypothesis we conclude that P [X1∪
Z] is Recursively Antichain-Series decomposable. �

Remark 3 Due to its stability under duality, it follows that an order P is
Recursively Antichain-Series decomposable if and only if U(P ) is linearly ordered
by inclusion.

We are now interested in the following characterization, due to P.C. Fish-
burn, which gives an interval representation of the order by mean of the cardi-
nals of the equivalence classes on the predecessors and on the successors sets.
First, for any order P and for every x ∈ V (P ), we define blP (x) = |{d ∈
D(P ) : d  ↓[

P
x}|, and brP (x) = |{u ∈ U(P ) : ↑[

P
x  u}|.

Theorem 9 [P.C. Fishburn [4]] An order P is an interval order if and only if
(x <

P
y ⇐⇒ brP (x) <N blP (y)).

In order to establish the same equivalences with the Recursively Antichain-
Series decomposable orders’s class, we need more insights into the structure of
the Antichain-Series decompositions.

Remark 4 Let (X1, X2, Z) be an Antichain-Series decomposition of P , then
we obtain the following relations between the successors and the predecessors in
P and in P [X1 ∪ Z].

For the predecessors sets:

1. if x ∈ X1 ∪ Z, we have ↓[
P [X1∪Z]

x = ↓[
P
x ⊆ X1,

2. if x ∈ X2, we have ↓[
P
x = X1.

For the successors sets:

3. if x ∈ X2, we have ↑[
P
x = ∅,

4. if x ∈ Z, we have ↑[
P
x = ↑[

P [X1∪Z]
x = ∅,

5. if x ∈ X1, we have ↑[
P
x = ↑[

P [X1∪Z]
x ∪ X2.

Consequently we obtain:

10



6. D(P ) = D(P [X1 ∪ Z]) ∪ {X1}, and

7. either Max(P [X1 ∪Z]) ∩X1 = ∅, and then U(P ) = {∅} ∪ {U ∪X2 : U ∈
U(P [X1 ∪ Z]) : U 6= ∅},

8. or Max(P [X1 ∪ Z]) ∩ X1 6= ∅, and then U(P ) = {∅} ∪ {U ∪ X2 : U ∈
U(P [X1 ∪ Z])}.

Proposition 1 Let P be a Recursively Antichain-Series decomposable order,
and let (X1, X2, Z) be its (unique) Antichain-Series decomposition maximal for
inclusion on X2, then:

1. D(P ) is the disjoint union of D(P [X1 ∪ Z]) and {X1}, and thus we have
that |D(P )| = |D(P [X1 ∪ Z])| + 1,

2. U(P ) = {∅} ∪ {U ∪ X2 : U ∈ U(P [X1 ∪ Z])}, and thus we have that
|U(P )| = |U(P [X1 ∪ Z])| + 1.

Proof . Item 1: from the condition of maximality upon X2 we directly obtain
that for every z ∈ Z we have ↓[

P
z  X1. Consequently, the item 1 of Remark 4

can be now written as: if x ∈ X1 ∪ Z, we have ↓[
P [X1∪Z]

x = ↓[
P
x  X1. Thus

D(P ) is the disjoint union of D(P [X1 ∪ Z]) and {X1}.
Item 2 is an immediate consequence of Lemma 1 and Remark 4 item 8. �

Lemma 2 Let P be a Recursively Antichain-Series decomposable order, then
|U(P )| = |D(P )|.

Proof . We proceed by induction on |V (P )|. As the base case is obvious with
|V (P )| = 1, we simply have to consider that |V (P )| ≥ 2. To avoid a trivial case
we also assume that P is not an antichain. Let (X1, X2, Z) be the Antichain-
Series decomposition of P maximal for inclusion on X2, as by Lemma 1 we have
that P [X1 ∪ Z] is still Recursively Antichain-Series decomposable it remains
to show, for example, that both |D(P )| = |D(P [X1 ∪ Z])| + 1 and |U(P )| =
|U(P [X1 ∪ Z])| + 1: which corresponds to Proposition 1. �

We can now establish the equivalence.

Theorem 10 An order P is Recursively Antichain-Series decomposable if and
only if (x <

P
y ⇐⇒ brP (x) <N blP (y)).

Proof . For the two implications we proceed by induction on |V (P )|. As the base
cases are obvious with |V (P )| = 1, we simply have to consider that |V (P )| ≥ 2.
To avoid trivial cases we also assume that P is not an antichain.

For the forward implication, let (X1, X2, Z) be the Antichain-Series decom-
position of P maximal for inclusion on X2. By Proposition 1 (1), for x ∈ X1∪Z,
we have blP (x) = blP [X1∪Z](x). By Proposition 1 (2), for x1 ∈ X1, we have
brP (x1) = brP [X1∪Z](x1) and for z ∈ Z we have brP (z) = |U(P )| − 1 =
|U(P [X1 ∪ Z])|. As by Lemma 1, P [X1 ∪ Z] is still Recursively Antichain-
Series decomposable, the induction hypothesis insures that x <

P [X1∪Z]
y ⇐⇒
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brP [X1∪Z](x) <N blP [X1∪Z](y). Consequently, as moreover Z  Max(P [X1∪Z])
and thus for every x1 ∈ X1 and for every z ∈ Z holds blP [X1∪Z](x1) ≤N

brP [X1∪Z](z), then, for x, y ∈ (X1 ∪ Z) we have x <
P

y ⇐⇒ brP (x) <N blP (y).
Now, for x2 ∈ X2, by Proposition 1 (1), we have blP (x2) = |D(P )| − 1 =
|D(P [X1 ∪ Z])|, and by Proposition 1 (2), we have brP (x2) = |U(P )| − 1 =
|U(P [X1 ∪ Z])|. Consequently, due to Lemma 2, first for every z ∈ Z and
every x2 ∈ X2 holds brP (z) = blP (x2), and second, for every x1 ∈ X1 and
every x2 ∈ X2 holds brP (x1) <N blP (x2) since for every order Q and every
q ∈ V (Q) we have that brQ(q) ≤N |U(Q)| − 1. So, as both Z ∪ X2 = Max(P )
and X1 <

P
X2, we obtain the result we were looking for.

For the backward implication, define Mbl(P ) = max{blP (x) : x ∈ V (P )}
and then let X2 = {x : x ∈ V (P ) : blP (x) = Mbl(P )}, let X1 = {x : x ∈
V (P ) : brP (x) < Mbl(P )}, and let Z = V (P ) \ (X1 ∪ X2). To begin notice
that the fact that (X1, X2, Z) is an Antichain-Series decomposition of P di-
rectly follows from that first X1 6= ∅ since P is not an antichain, that second
X1 <

P
X2 since ∀x1 ∈ X1 and ∀x2 ∈ X2 holds brP (x1) <N blP (x2), and that

third X2 ∪ Z ∈ A(P ) since ∀z ∈ Z and ∀x2 ∈ X2 holds brP (z) ≥N blP (x2).
Now, in order to conclude using the induction hypothesis, it remains to show
that P [X1 ∪ Z] fulfills x <

P [X1∪Z]
y ⇐⇒ brP [X1∪Z](x) <N blP [X1∪Z](y). As

(X1, X2, Z) is an Antichain-Series decomposition of P , we immediatly deduce
from Remark 4 item (1) and item (6), that for every x ∈ (X1 ∪ Z) holds
blP [X1∪Z](x) = blP (x). Moreover, with U⋆(P [X1 ∪ Z]) = U(P [X1 ∪ Z]) \ {∅},
we obtain that the mapping φ from U⋆(P [X1 ∪Z]) to U(P ), defined by φ(U) =
U ∪ X2, is injective. Then, from Remark 4 item (7) and item (8), it follows
that U(P ) ⊆ {φ(U) : U ∈ U⋆(P [X1 ∪ Z])} ∪ {∅} ∪ {X2}. Consequently, as for
every x1 ∈ X1 and for every U ∈ U(P [X1 ∪ Z]), ↑[

P [X1∪Z]
x1  U implies that

both U ∈ U⋆(P [X1 ∪ Z]) and ↑[
P
x1  φ(U), then brP [X1∪Z](x1) ≤N brP (x1)

and thus brP [X1∪Z](x1) = brP (x1). Indeed, brP [X1∪Z](x1) <N brP (x1) implies

that there exists t ∈ {∅, X2} such that ↑[
P
x1  t: which is impossible. Conse-

quently, since Z ⊆ Max(P [X1 ∪ Z]), it follows that, for every x, y ∈ (X1 ∪ Z)
we have x <

P [X1∪Z]
y ⇐⇒ (brP [X1∪Z](x) <N blP [X1∪Z](y)). Indeed, on the one

hand if x <
P [X1∪Z]

y then x 6∈ Z and thus brP [X1∪Z](x) = brP (x). On the
other hand, for every z ∈ Z we have that brP [X1∪Z](z) = |U(P [X1 ∪ Z])| − 1
and thus, as by Lemma 2 U(P [X1 ∪ Z]) = D(P [X1 ∪ Z]), there doesn’t exist
y ∈ V (X1 ∪ Z) such that brP [X1∪Z](z) <N blP [X1∪Z](y): indeed for every or-
der Q and every q ∈ V (Q) we have that blQ(q) ≤N |D(Q)| − 1. Consequently
whenever brP [X1∪Z](x) <N blP [X1∪Z](y) we have that x ∈ X1 and thus that
brP [X1∪Z](x) = brP (x). �

6 Semiorders’s Equivalence Theorems

In this section, we consider most of the known equivalence theorems on semiorders,
and we give simple and direct inductive proofs of these equivalences with ours
characterizations. Notice that in 2003 B. Balof and K.P. Bogart [2] already give
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inductive proofs of the Fishburn and Mirkin characterization theorem of interval
orders and of the Scott-Suppes characterization theorem of semiorders.

We begin by showing that Recursively Full-Antichain-Series decomposable
orders are exactly those orders having an interval representation with unit length
intervals. Again, combining this result with our previous Theorem 3 this gives
the Scott-Suppes charaterization theorem of semiorders. Notice that the induc-
tive proof of our forward implication has, on certain points, some similarities
with the inductive proof, of the Scott-Suppes theorem, given by B. Balof and
K.P. Bogart [2].

Theorem 11 [D. Scott and P. Suppes [12]] An order is Recursively Full-Antichain-
Series decomposable if and only if it is a semiorder.

Proof . For the two implications we proceed by induction on |V (P )|. As the base
cases are obvious with |V (P )| = 1, we simply have to consider that |V (P )| ≥ 2.
To avoid trivial cases we also assume that P is not an antichain.

For the forward implication, in order to simplify the proof, we also assume
that the interval representation is such that whenever two intervals intersect
then this intersection contains more than one point. Let (X1, X2, Z) be a Full-
Antichain-Series decomposition of P such that P [X1 ∪ Z] is still Recursively
Full-Antichain-Series decomposable. Let (Ix = [l(x), r(x)])x∈V (P [X1∪Z]), be an
interval representation of P [X1 ∪ Z] fulfilling the induction hypothesis. To
begin notice that, if Z = ∅, we can immediately conclude with the family
(I ′′x = [l′′x, r′′x ])x∈V (P ) such that I ′′x = Ix for x ∈ (X1 ∪ Z) and by setting for
every x2 ∈ X2, l′′(x2) = 1 + max{r(x1) : x1 ∈ X1} and r′′(x2) = 1 + l′′(x2).
Now, assume that Z 6= ∅, let a = max{l(x) : x ∈ Max(P [X1])}, let b =
min{r(x) : x ∈ Max(P [X1])}, and notice that a <R b. Then, for every z ∈ Z
let l′(z) = max{l(z), a+b

2 } and r′(z) = l′(z) + 1. Consider the intervals family
(I ′x = [l′(x), r′(x)])x∈V (P [X1∪Z]) defined by I ′x = Ix for every x ∈ X1 and by
I ′x = [l′(x), r′(x)] for every x ∈ Z. Now, we show that (I ′x)x∈V (P [X1∪Z]) is
a same unit length interval representation of P [X1 ∪ Z] such that whenever
two intervals intersect then this intersection contains more than one point. Let
a′

Z = max{l′(z) : z ∈ Z}, let b′Z = min{r′(z) : z ∈ Z}, let Z ′ = {z : z ∈ Z :
l(z) 6= l′(z)} and notice that if Z ′ = ∅ then there is nothing to do. Thus assume
that Z ′ 6= ∅.

First, we show that for every z′ ∈ Z ′, and for every x ∈ (X1∪Z), if I ′x∩I ′z′ 6= ∅
then |I ′x∩I ′z′ | 6= 1. Clearly by contrustuction this is true for x ∈ (Max(P [X1])∪
Z ′). Moreover, as for every x ∈ (X1 \Max(P [X1])) we have r′(x) = r(x) <R a,
we then remain with x ∈ Z \ Z ′: but as for x ∈ Z \ Z ′ we have a+b

2 ≤ l(x) =
l′(x), thus the only possibility is that r′(z′) = l(x). But, as r(z′) <R r′(z′) we
now obtain a contradiction with the fact that (Ix)x∈V (P [X1∪Z]) is an interval
representation of P [X1 ∪ Z].

Second, we show that for every z′ ∈ Z ′ and for every z ∈ Z holds I ′z′ ∩I ′z 6= ∅:
which is true if for example a′

Z <R b′Z . So, assume that b′Z <R a′
Z . Since Z ′ 6= ∅,

by construction, we have that b′Z = a+b
2 +1, this means that a+b

2 +1 <R a′
Z and

thus that there exists z ∈ Z \ Z ′ such that a+b
2 + 1 <R l(z). Then, as r(z′) <R
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r′(z′) = a+b
2 + 1 we have a contradiction with the fact that (Ix)x∈V (P [X1∪Z])

is an interval representation of P [X1 ∪ Z]. So, we have that a′
Z ≤R b′Z and,

since an intersection cannot be reduced to one point, thus we have a′
Z <R b′Z .

Since for every z′ ∈ Z ′, on the one hand for every x1 ∈ Max(P [X1]) holds
I ′z′ ∩ I ′x1

6= ∅, and on the other hand for every x1 ∈ (X1 \ Max(P [X1])) holds

r′(x1) = r(x1) <R a < a+b
2 = l′(z′), then (I ′x)x∈V (P [X1∪Z]) is an unit length

interval representation of P [X1 ∪ Z].
Now, as for every x1 ∈ X1 we have that r′(x) = r(x) ≤R a + 1 and as

3a+b+4
4 <R

a+b
2 + 1 ≤R b′Z we can immediately conclude with the family (I ′′x =

[l′′x, r′′x ])x∈V (P ) such that I ′′x = I ′x for x ∈ (X1 ∪ Z) and by setting for every

x2 ∈ X2, l′′(x2) = max{a′
Z , 3a+b+4

4 } and r′′(x2) = 1 + l′′(x2).
For the backward implication, let (Ix = [l(x), r(x)])x∈V (P ), be an interval

representation of P such that all intervals have the same unit length. Let lm =
max{l(x) : x ∈ V (P )}, let r = max{r(x) : x ∈ V (P ) : r(x) <R lm}. First,
notice that, since P is not an antichain, r is well defined and then the set
X1 = {x : x ∈ V (P ) : r(x) ≤R r} is none void. Second, let X2 = {x : x ∈ V (P ) :
r <R l(x)}, then X2 6= ∅, due to lm, and moreover we have X1 <

P
X2. Third, let

Z = V (P ) \ (X1 ∪X2). Then, immediatly from the definitions of lm, X2 and Z,
we obtain that Max(P ) is the disjoint union of Z and X2. So, since by induction
hypothesis P [X1∪Z] is clearly Recursively Full-Antichain-Series decomposable,
in order to conclude it remains to show the condition (iv) of Definition 3. On the
contrary, assume that both there exists x ∈ (X1 \Max(P [X1])) and there exists
z ∈ Z such that x ‖

P
z (notice that obviously we don’t have z ≤

P
x). Thus, we

have that l(z) ≤R r(x) and r <R r(z). But now, for any y ∈ Max(P [X1]) such
that x <

P
y we have that l(z) ≤R r(x) <R l(y) ≤R r(y) ≤ r <R r(z). Then we

get a contradiction with the fact that, in (Ix)x∈V (P ), all the intervals have the
same length. �

The equivalence between unit interval graphs and proper interval graphs,
due to F.S. Roberts [10], has this immediate and well known interpretation for
orders: an order P is a semiorder if and only if it can be represented by assigning
a positive real interval to each of its elements such that no interval is strictly
included in an other. In the following we present a version of that theorem for
Recursively Full-Antichain-Series decomposable orders.

Theorem 12 An order P is Recursively Full-Antichain-Series decomposable if
and only if it can be represented by assigning a positive real interval to each of
its elements such that no interval is strictly included in an other.

Proof . For the two implications we proceed by induction on |V (P )|. As the base
cases are obvious with |V (P )| = 1, we simply have to consider that |V (P )| ≥ 2.
To avoid trivial cases we also assume that P is not an antichain.

For the forward implication, let (X1, X2, Z) be a Full-Antichain-Series de-
composition of P such that P [X1 ∪ Z] is still Recursively Full-Antichain-Series
decomposable. Let (Ix = [l(x), r(x)])x∈V (P [X1∪Z]), be an interval representation
of P [X1 ∪ Z] such that no interval is strictly included in an other: which exists
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by induction hypothesis. First notice that, if Z = ∅, we can immediately con-
clude by setting for every x2 ∈ X2, l(x2) = r(x2) = 1 + max{r(x1) : x1 ∈ X1}.
Now, assume that Z 6= ∅, let lZ = min{l(z) : z ∈ Z} and let r = −1 if
(X1 \ Max(P [X1])) = ∅, and r = max{r(x) : x ∈ (X1 \ Max(P [X1]))} oth-
erwise. Let rm = min{r(x) : x ∈ Max(P [X1])}, notice that r <R rm since,
by definition of r, there exists x ∈ Max(P [X1]) such that r <R l(x) and thus
∀y ∈ X1 with r(y) <R l(x) we have y /∈ Max(P [X1]). As, by condition (iv) of
Definition 3, we have that r <R lZ , with l = min{lZ, rm} we obtain r <R l.
Thus there exists a mapping α from {x : x ∈ Max(P [X1]) : r <R l(x)} into ]r, l[
such that for all x, y ∈ {x : x ∈ Max(P [X1]) : r <R l(x)} we have l(x) <R l(y)
if and only if α(x) <R α(y) and l(x) = l(y) if and only if α(x) = α(y). Now, let
rM = max{r(x) : x ∈ (X1 ∪ Z)}. Then, there exists a mapping β from Z into
[rM + 1, rM + 2] such that for all x, y ∈ Z we have r(x) <R r(y) if and only if
β(x) <R β(y) and r(x) = r(y) if and only if β(x) = β(y). Now, consider the
family (I ′x)x∈V (P [X1∪Z]) defined by:

- I ′x = Ix if x ∈ X1 and l(x) ≤R r,

- I ′x = [α(x), r(x)] if x ∈ Max(P [X1]) and r <R l(x),

- I ′x = [l(x), β(x)] if x ∈ Z.

To show that (I ′x = [l′(x), r′(x)])x∈V (P [X1∪Z]) is an interval representation of
P [X1 ∪ Z] we proceed by contradiction: as for every x ∈ (X1 ∪ Z) we have
Ix ⊆ I ′x, this means that there exist x, y ∈ (X1 ∪ Z) such that x <

P [X1∪Z]
y

and I ′x ∩ I ′y 6= ∅. Consequently, we have that x 6∈ Z and thus that r′(x) = r(x).
This implies that l′(y) 6= l(y) and so that both y ∈ Max(P [X1]) and r <R l(y).
Thus, we get that x 6∈ Max(P [X1]) and then that r′(x) = r(x) ≤R r, which
implies that l′(y) ≤R r: a contradiction with α into ]r, l[. To show that, in
(I ′x)x∈V (P [X1∪Z]), no interval is strictly included in an other, we also proceed
by contradiction: let x, y ∈ V (P [X1 ∪ Z]) such that I ′x  I ′y. Notice that by
definition either l′(y) = l(y) or r′(y) = r(y). First, assume that both l′(y) = l(y)
and r′(y) = r(y), but then we have that Ix ⊆ I ′x  I ′y = Iy: a contradiction.
Second, assume that both l′(y) 6= l(y) and r′(y) = r(y), then y ∈ Max(P [X1])
and r <R l(y). Thus, due to α, either x ∈ X1 and l(x) ≤R r, or x ∈ Z. In
the former case we get a contradiction with r <R l′(y) ≤R r′(x) and r′(x) =
r(x) ≤R r. In the latter case we get a contradiction with β into [rM +1, rM +2]
and r′(y) ≤R rM . Third, assume that both l′(y) = l(y) and r′(y) 6= r(y), then
y ∈ Z. Thus, due to β, either x ∈ X1 and l(x) ≤R r, or x ∈ Max(P [X1]) and
r <R l(x). In the former case we get a contradiction with r <R l(y) = l′(y)
(condition (iv) of Definition 3) and l′(y) ≤R l′(x) = l(x) ≤R r. In the latter
case we get a contradiction with α into ]r, l[ and l ≤R l(y) = l′(y). By setting
for every x2 ∈ X2, l′(x2) = rM + 1 and r′(x2) = 2 + l′(x2), we now obtain an
interval representation of P such that no interval is strictly included in an other.
To finish with positive real intervals, we only have to translate every interval to
the right with a same value being more than one.

Starting with (Ix = [l(x), r(x)])x∈V (P ), an interval representation of P such
that no interval is strictly included in an other, the backward implication fol-
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lows exactly the same lines than the backward implication of Theorem 11 by
changing the last sentence in: “Then we get a contradiction with the fact that,
in (Ix)x∈V (P ), no interval is strictly included in an other.”. �

In 1976, P. Avery [1] shows that an order P is Recursively Full-Antichain-
Series decomposable if and only if it has a linear extension L such that for every
x, y ∈ V (P ) if x ≤

L
y then both ↓[

P
x ⊆ ↓[

P
y and ↑[

P
y ⊆ ↑[

P
x. We give next

a version of that theorem for Recursively Full-Antichain-Series decomposable
orders.

Theorem 13 An order P is Recursively Full-Antichain-Series decomposable if
and only if it has a linear extension L such that for every x, y ∈ V (P ) if x ≤

L
y

then both (a) ↓[
P
x ⊆ ↓[

P
y and (b) ↑[

P
y ⊆ ↑[

P
x.

Proof . For the two implications we proceed by induction on |V (P )|. As the base
cases are obvious with |V (P )| = 1, we simply have to consider that |V (P )| ≥ 2.
To avoid trivial cases we also assume that P is not an antichain.

For the forward implication, let (X1, X2, Z) be a Full-Antichain-Series de-
composition of P such that P [X1 ∪ Z] is still Recursively Full-Antichain-Series
decomposable. Let LP [X1∪Z] be a linear extension of P [X1 ∪ Z] fulfilling con-
dition (a) and condition (b): which exists by induction hypothesis. Then
L′

P [X1∪Z] = LP [X1∪Z][X1] ⊗ LZ , where LZ is any total order on Z, is a linear

extension of P [X1 ∪ Z] still fulfilling condition (a) and condition (b). Indeed,
on the one hand, as ∀z ∈ Z we have (X1 \ Max(P [X1])) ⊆ ↓[

P
z, then for every

x1 ∈ X1 and for every z ∈ Z holds ↓[
P [X1∪Z]

x1 ⊆ ↓[
P [X1∪Z]

z. On the other hand

we have Z ⊆ Max(P [X1 ∪ Z]). Now, let LP = L′
P [X1∪Z] ⊗ LX2 , where LX2 is

any total order on X2. Then, as X2 ⊆ Max(P ) and X1 <
P

X2, LP is clearly a
linear extension of P fulfilling condition (a) and condition (b).

For the backward implication, let L be a linear extension of P fulfilling
condition (a) and condition (b), and let gL be the greatest element of L. Let
X2 = {x : x ∈ V (P ) : ↓[

P
x = ↓[

P
gL}, let X1 = ↓[

P
gL and let Z = V (P )\(X1∪X2).

Then L[X1∪Z] is a linear extension of P [X1∪Z] and, as for every x ∈ (X1∪Z)
we have that ↓[

P [X1∪Z]
x = ↓[

P
x \ X2 and ↑[

P [X1∪Z]
x = ↑[

P
x \ X2, then clearly

L[X1 ∪Z] still fulfills condition (a) and condition (b). Thus it remains to show
that (X1, X2, Z) is a Full Antichain-Series decomposition of P . First notice
that by definition we have X1 <

P
X2. Moreover, since P is not an antichain,

condition (a) and the fact that gL ∈ X2 implies that X1 6= ∅. Now, since
gL is the greatest element of L, again due to condition (a), we have that for
every x ∈ V (P ) either x ∈ Max(P ) or x ∈ ↓[

P
gL holds. Consequently we have

that (Z ∪ X2) = Max(P ), and thus it only remains to show that ∀z ∈ Z, we
have (X1 \Max(P [X1])) ⊆ ↓[

P
z: which is an immediate consequence of the fact

that X1 is an initial section of L: that is that there exists y ∈ V (P ) such that
X1 = {x ∈ V (P ) : x ≤

L
y}. Indeed, since X1 is an initial section of L, for every

z ∈ Z and for every x1 ∈ X1 holds x1 <
L

z and thus, by condition (a), we have
that ↓[

P
x1 ⊆ ↓[

P
z. To conclude, notice that condition (b) immediately implies

that X1 is an initial section of L. �
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Boston.

[12] Scott, D. and Suppes, P. (1958) Foundational Aspects of Theories of Mea-
surement. J. Symb. Log. 23, 113-128.

[13] Trotter, W.T. (1992) Combinatorics and Partially Ordered Sets: Dimen-
sion Theory. The John Hopkins University Press, Baltimore, Maryland.

[14] Wiener, N. (1914) A Contribution to the Theory of Relative Position.
Proc. Camb. Philos. Soc. 17, 441-449.

17


