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Abstract
Over-approximating the descendants (successors) of a initial set of terms by a rewrite system
is used in verification. The success of such verification methods depends on the quality of the
approximation. To get better approximations, we are going to use non-regular languages. We
present a procedure that always terminates and that computes an over-approximation of descen-
dants, using synchronized tree-(tuple) languages expressed by logic programs.
Keywords: rewriting, descendants, tree languages, logic programming.

1 Introduction

Given an initial set of terms I, computing the descendants (successors) of I by a rewrite
system R is used in the verification domain, for example to check cryptographic protocols or
Java programs [2, 7, 9, 8]. Let R∗(I) denote the set of descendants of I, and consider a set
Bad of undesirable terms. Thus, if a term of Bad is reached from I, i.e. R∗(I)∩Bad 6= ∅, it
means that the protocol or the program is flawed. In general, it is not possible to compute
R∗(I) exactly. Instead, we compute an over-approximation App of R∗(I) (i.e. App ⊇ R∗(I)),
and check that App ∩Bad = ∅, which ensures that the protocol or the program is correct.

Most often, I, App and Bad have been considered as regular tree languages, recognized
by finite tree automata. In the general case, R∗(I) is not regular, even if I is. Moreover,
the expressiveness of regular languages is poor, and the over-approximation App may not
be precise enough, and we may have App ∩ Bad 6= ∅ whereas R∗(I) ∩ Bad = ∅. In other
words, the protocol is correct, but we cannot prove it. Some work has proposed CEGAR-
techniques (Counter-Example Guided Approximation Refinement) in order to conclude as
often as possible [2, 3, 5]. However, in some cases, no regular over-approximation works,
whatever the quality of the approximation is [4].

To overcome this theoretical limit, we want to use more expressive languages to express
the over-approximation, i.e. non-regular ones. However, to be able to check that App∩Bad =
∅, we need a class of languages closed under intersection and whose emptiness is decidable.
Actually, since we still assume that Bad is regular, closure under intersection with a regular
language is enough. The class of context-free tree languages has these properties, and an
over-approximation of descendants using context-free tree languages has been proposed in
[13]. This class of languages is quite interesting, however it cannot express relations (or
countings) in terms between independent branches, except if there are only unary symbols
and constants. For example, let R = {f(x)→ c(x, x)} and the infinite set I = {f(t)} where
t denotes any term composed with the binary symbol g and constant b. Then R∗(I) =
I ∪ {c(t, t)}, which is not a context-free language [1, 12].

We want to use another class of languages that has the needed properties, and that can
express relations between independent branches: the synchronized tree-(tuple) languages [14,
11], which were finally expressed thanks to logic programs (Horn clauses) [15, 16]. This class
has the same properties as context-free tree languages: closure under union, closure under
intersection with a regular language (in quadratic time), decidability of membership and
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emptiness (in linear time). Both include regular languages, however they are different.
The example given above is not context-free, but synchronized. The language {sn(pn(a))}
(where sn means that s occurs n times vertically) is context-free, but it is not synchronized.
{c(sn(a), pn(a))} belongs to both classes (note that s and p are unary).

In this paper, we propose a procedure that always terminates and that computes an
over-approximation of the descendants obtained by a left-linear rewrite system, using syn-
chronized tree-(tuple) languages expressed by logic programs. Note that the left-linearity of
rewrite systems (or transducers) is a usual restriction, see [2, 5, 7, 9, 8]. Nevertheless, such
rewrite systems are still Turing complete [6].

The paper is organized as follows: classical notations and notions manipulated through-
out the paper are introduced in Section 2. Our main contribution, i.e. computing approx-
imations using synchronized languages, is explained in Section 3. Finally, in Section 4 our
technique is applied on two pertinent examples: an example illustrating a non-regular ap-
proximation of a non-regular set of terms, and another one that cannot be handled by any
regular approximation.

2 Preliminaries

Consider a finite ranked alphabet Σ and a set of variables Var. Each symbol f ∈ Σ has a
unique arity, denoted by ar(f). The notions of first-order term, position, substitution, are
defined as usual. Given σ and σ′ two substitutions, σ ◦ σ′ denotes the substitution such
that for any variable x, σ ◦ σ′(x) = σ(σ′(x)). TΣ denotes the set of ground terms (without
variables) over Σ. For a term t, Var(t) is the set of variables of t, Pos(t) is the set of positions
of t. For p ∈ Pos(t), t(p) is the symbol of Σ ∪ Var occurring at position p in t, and t|p is
the subterm of t at position p. The term t[t′]p is obtained from t by replacing the subterm
at position p by t′. PosVar(t) = {p ∈ Pos(t) | t(p) ∈ Var}, PosNonVar(t) = {p ∈ Pos(t) |
t(p) 6∈ Var}. Note that if p ∈ PosNonVar(t), t|p = f(t1, . . . , tn), and i ∈ {1, . . . , n}, then p.i
is the position of ti in t. For p, p′ ∈ Pos(t), p < p′ means that p occurs in t strictly above p′.
Let t, t′ be terms, t is more general than t′ (denoted t ≤ t′) if there exists a substitution ρ
s.t. ρ(t) = t′. Let σ, σ′ be substitutions, σ is more general than σ′ (denoted σ ≤ σ′) if there
exists a substitution ρ s.t. ρ ◦ σ = σ′.

A rewrite rule is an oriented pair of terms, written l → r. We always assume that l
is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a finite set of rewrite rules.
lhs stands for left-hand-side, rhs for right-hand-side. The rewrite relation →R is defined
as follows : t →R t′ if there exist a position p ∈ PosNonVar(t), a rule l → r ∈ R, and a
substitution θ s.t. t|p = θ(l) and t′ = t[θ(r)]p. →∗R denotes the reflexive-transitive closure
of →R. t′ is a descendant of t if t→∗R t′. If E is a set of ground terms, R∗(E) denotes the
set of descendants of elements of E.

In the following, we consider the framework of pure logic programming, and the class
of synchronized tree-tuple languages defined by CS-clauses [15, 16]. Given a set Pred of
predicate symbols; atoms, goals, bodies and Horn-clauses are defined as usual. Note that
both goals and bodies are sequences of atoms. We will use letters G or B for sequences of
atoms, and A for atoms. Given a goal G = A1, . . . , Ak and positive integers i, j, we define
G|i = Ai and G|i.j = (Ai)|j = tj where Ai = P (t1, . . . , tn).

I Definition 1. Let B be a sequence of atoms. B is flat if for each atom P (t1, . . . , tn) of
B, all terms t1, . . . , tn are variables. B is linear if each variable occurring in B (possibly at
sub-term position) occurs only once in B. Note that the empty sequence of atoms (denoted
by ∅) is flat and linear.
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A CS-clause1 is a Horn-clause H ← B s.t. B is flat and linear. A CS-program Prog is a
logic program composed of CS-clauses.
Given a predicate symbol P of arity n, the tree-(tuple) language generated by P is L(P ) =
{~t ∈ (TΣ)n | P (~t) ∈Mod(Prog)}, where TΣ is the set of ground terms over the signature Σ
andMod(Prog) is the least Herbrand model of Prog. L(P ) is called Synchronized language.

The following definition describes the different kinds of CS-clauses that can occur.

I Definition 2. A CS-clause P (t1, . . . , tn)← B is :
empty if ∀i ∈ {1, . . . , n}, ti is a variable.
normalized if ∀i ∈ {1, . . . , n}, ti is a variable or contains only one occurrence of function-
symbol. A CS-program is normalized if all its clauses are normalized.
preserving if Var(P (t1, . . . , tn)) ⊆ Var(B). A CS-program is preserving if all its clauses
are preserving.
synchronizing if B is composed of only one atom.

I Example 3. The CS-clause P (x, y, z) ← G(x, y, z) is empty, normalized, and preserving
(x, y, z are variables). The CS-clause P (f(x), y, g(x, z)) ← G(x, y) is normalized and non-
preserving. Both clauses are synchronizing.

Given a CS-program, we focus on two kinds of derivations: a classical one based on
unification and a rewriting one based on matching and a rewriting process.

I Definition 4. Given a logic program Prog and a sequence of atoms G,
G derives into G′ by a resolution step if there exist a clause2 H ← B in Prog and
an atom A ∈ G such that A and H are unifiable by the most general unifier σ (then
σ(A) = σ(H)) and G′ = σ(G)[σ(A)← σ(B)]. It is written G;σ G

′.
G rewrites into G′ if there exist a clause H ← B in Prog, an atom A ∈ G, and a
substitution σ, such that A = σ(H) (A is not instantiated by σ) and G′ = G[A← σ(B)].
It is written G→σ G

′.

I Example 5. Let Prog = {P (x1, g(x2)) ← P ′(x1, x2). P (f(x1), x2) ← P ′′(x1, x2).}, and
consider G = P (f(x), y). Thus, P (f(x), y)) ;σ1 P

′(f(x), x2) with σ1 = [x1/f(x), y/g(x2)]
and P (f(x), y))→σ2 P

′′(x, y) with σ2 = [x1/x, x2/y].

We consider the transitive closure ;+ and the reflexive-transitive closure ;∗ of ;.
For both derivations, given a logic program Prog and three sequences of atoms G1, G2

and G3 :
if G1 ;σ1 G2 and G2 ;σ2 G3 then one has G1 ;∗σ2◦σ1

G3;
if G1 →σ1 G2 and G2 →σ2 G3 then one has G1 →∗σ2◦σ1

G3.

In the remainder of the paper, given a set of CS-clauses Prog and two sequences of atoms
G1 and G2, G1 ;∗Prog G2 (resp. G1 →∗Prog G2) also denotes that G2 can be derived (resp.
rewritten) from G1 using clauses of Prog.

It is well known that resolution is complete.

I Theorem 6. Let A be a ground atom. A ∈Mod(Prog) iff A;∗Prog ∅.

1 In former papers, synchronized tree-tuple languages were defined thanks to sorts of grammars, called
constraint systems. Thus "CS" stands for Constraint System.

2 We assume that the clause and G have distinct variables.
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I Example 7. Let A = P (f(g(a)), g(a), c) and A′ = P ′(f(g(a)), h(c)) be two ground atoms.
Let Prog be the CS-program defined by:
Prog = {P (f(g(x)), y, c)← P1(x), P2(y). P1(a)← . P2(g(x))← P1(x). P ′(f(x), u(z))← .}
Thus, A ∈Mod(Prog) and A′ /∈Mod(Prog).

Note that for any atom A, if A → B then A ; B. If in addition Prog is preserving,
then Var(A) ⊆ Var(B). On the other hand, A;σ B implies σ(A)→ B. Consequently, if A
is ground, A; B implies A→ B.

The following lemma focuses on a preserving property of the relation ;.
I Lemma 8. Let Prog be a CS-program, and G be a sequence of atoms. Let |G|Σ denote
the number of occurrences of function-symbols in G. If G is linear and G;∗ G′, then G′ is
also linear and |G′|Σ ≤ |G|Σ.
Consequently, if G is flat and linear, then G′ is also flat and linear.
Proof. Let G = A1 . . . Ak be a linear sequence of atoms and suppose that G;σ G

′.
Then there exist an atom Ai(s1, . . . , sn) of G and a CS-clause Ai(t1, . . . , tn) ← B in
Prog such that G′ = σ(G)[σ(Ai) ← σ(B)]. As G is linear and σ is the most general
unifier between Ai(s1, . . . , sn) and Ai(t1, . . . , tn), σ does not instantiate variables from
A1, . . . , Ai−1, Ai+1, . . . Ak. So G′ = A1, . . . , Ai−1, σ(B), Ai+1, . . . Ak.

G′ is not linear only if σ(B) is not linear. As B is linear, σ(B) is not linear would require
that two distinct variables xj1 , xj2 from B are instantiated by two terms containing a same
variable y ∈ Var(σ(xj1) ∩ Var(σ(xj1)). Since σ is the most general unifier, xj1 , xj2 are also
in Var(Ai(t1, . . . , tn)) (σ does not instantiate extra variables). Then y occurs at least twice
in Ai(s1, . . . , sn) (the atom of goal G), which is impossible since G is linear. Consequently
G′ is linear.

By contradiction: to obtain |G′|Σ > |G|Σ, we must have in σ(B) a duplication of a non-
variable subterm of σ((Ai(s1, . . . , sn)) (because B is flat), which is not possible because B
and Ai(s1, . . . , sn) are linear and σ is the most general unifier.

The result trivially extends to the case of several steps G;∗ G′. J

I Example 9. Let Prog = {P (g(x), f(x))← P1(x)} and G = P (g(f(y)), z). Then G; G′

with G′ = P1(f(y)), and G′ is linear. Moreover, |G′|Σ ≤ |G′|Σ with Σ = {f\1, a\0}.

3 Computing Descendants

Given a CS-program Prog and a left-linear rewrite system R, we propose a technique al-
lowing us to compute a CS-program Prog′ such that R∗(Mod(Prog)) ⊆Mod(Prog′). First
of all, a notion of critical pairs is introduced in Section 3.1. Roughly speaking, this notion
makes the detection of uncovered rewriting steps possible. Critical pair detection is at the
heart of the technique. Thus, in Section 3.2 some restrictions are underlined on CS-programs
in order to make the number of critical pairs finite. Moreover, when a CS-program does not
fit these restrictions, we have proposed a technique in order to transform such a CS-program
into another one of the expected form (REMOVE CYCLES in Fig.1). The detected critical
pairs lead to a set of CS-clauses to be added in the current CS-program. However, they may
not be in the expected form i.e. normalized CS-clauses. Indeed, one of the restritions set in
Section 3.2 is that the CS-program has to be normalized. So, we propose in Section 3.3 an
algorithm providing normalized CS-clauses from non-normalized ones. Finally, in Section
3.4, our main contribution, i.e. the computation of an over-approximating CS-program, is
fully described.
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Figure 1 An overview of our contribution

3.1 Critical pairs
The notion of critical pair is at the heart of our technique. Indeed, it allows us to add
CS-clauses into the current CS-program in order to cover rewriting steps. This notion is
described in Definition 10.

I Definition 10. Let Prog be a CS-program and l → r be a left-linear rewrite rule. Let
x1, . . . , xn be distinct variables s.t. {x1, . . . , xn} ∩ V ar(l) = ∅. If there are P and k s.t.
P (x1, . . . , xk−1, l, xk+1, . . . , xn) ;+

θ G where resolution is applied only on non-flat atoms, G
is flat, and the clause P (t1, . . . , tn)← B used during the first step of this derivation satisfies
tk is not a variable3, then the clause θ(P (x1, . . . , xk−1, r, xk+1, . . . , xn))← G is called critical
pair.

I Remark. Since l is linear, P (x1, . . . , xk−1, l, xk+1, . . . , xn) is linear, and thanks to Lemma 8
G is linear, then a critical pair is a CS-clause. Moreover, if Prog is preserving then a critical
pair is a preserving CS-clause4.

I Example 11. Let Prog be the normalized and preserving CS-program defined by:

Prog = {P (c(x), c(x), y)← Q(x, y). Q(a, b)← . Q(c(x), y)← Q(x, y)}.

and consider the left-linear rewrite rule: c(c(x′))→ h(h(x′)). Recall that for all goals G,G′,
the step G→ G′ means that G;σ G

′ where σ does not instantiate the variables of G.
Thus P (c(c(x′)), y′, z′) ;θ Q(c(x′), y) → Q(x′, y) where θ = [x/c(x′), y′/c(c(x′)), z′/y].
It generates the critical pair P (h(h(x′)), c(c(x′)), y) ← Q(x′, y). There are also two other
critical pairs: P (c(c(x′)), h(h(x′)), y)← Q(x′, y) and Q(h(h(x′)), y)← Q(x′, y).

However, some of the detected critical pairs are not so critical since they are already
covered by the current CS-program. These critical pairs are said to be convergent.

I Definition 12. A critical pair H ← B is said convergent if H →∗Prog B.

I Example 13. The three critical pairs detected in Example 11 are not convergent in Prog.

So, here we come to Theorem 14, i.e. the corner stone making our approach sound.
Indeed, given a rewrite system R and CS-program Prog, if every critical pair that can be
detected is convergent, then for any set of terms I such that I ⊆ Mod(Prog), Mod(Prog)
is an over-approximation of the set of terms reachable by R from I.

3 In other words, the overlap of l on the clause head P (t1, . . . , tn) is done at a non-variable position.
4 We have θ(P (x1, . . . , xk−1, l, xk+1, . . . , xn)) →∗ G, and since Prog is preserving
V ar(θ(P (x1, . . . , xk−1, l, xk+1, . . . , xn))) ⊆ V ar(G). Since V ar(r) ⊆ V ar(l) we have
V ar(θ(P (x1, . . . , xk−1, r, xk+1, . . . , xn))) ⊆ V ar(G).
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I Theorem 14. Let Prog be a normalized and preserving CS-program and R be a left-linear
rewrite system.
If all critical pairs are convergent, then Mod(Prog) is closed under rewriting by R, i.e.
(A ∈Mod(Prog) ∧A→∗R A′) =⇒ A′ ∈Mod(Prog).

Proof. Let A ∈ Mod(Prog) s.t. A →l→r A
′. Then A|i = C[σ(l)] for some i ∈ IN and

A′ = A[i← C[σ(r)].
Since resolution is complete, A ;∗ ∅. Since Prog is normalized and preserving, resolution
consumes symbols in C one by one, thus G0 =A ;∗ Gk ;∗ ∅ and there exists an atom
A′′ = P (t1, . . . , tn) in Gk and j s.t. tj = σ(l) and the top symbol of tj is consumed during
the step Gk ; Gk+1. Consider new variables x1, . . . , xn s.t. {x1, . . . , xn} ∩ V ar(l) = ∅,
and let us define the substitution σ′ by ∀i, σ′(xi) = ti and ∀x ∈ V ar(l), σ′(x) = σ(x).
Then σ′(P (x1, . . . , xj−1, l, xj+1, . . . , xn)) = A′′, and according to resolution (or narrowing)
properties P (x1, . . . , l, . . . , xn) ;∗θ ∅ and θ ≤ σ′.
This derivation can be decomposed into : P (x1, . . . , l, . . . , xn) ;∗θ1

G′ ;θ2 G ;∗θ3
∅ where

θ = θ3 ◦ θ2 ◦ θ1, and s.t. G′ is not flat and G is flat5. P (x1, . . . , l, . . . , xn) ;∗θ1
G′ ;θ2 G can

be commuted into P (x1, . . . , l, . . . , xn) ;∗γ1
B′ ;γ2 B ;∗γ3

G s.t. B is flat, B′ is not flat, and
within P (x1, . . . , l, . . . , xn) ;∗γ1

B′ ;γ2 B resolution is applied only on non-flat atoms, and
we have γ3 ◦ γ2 ◦ γ1 = θ2 ◦ θ1. Then γ2 ◦ γ1(P (x1, . . . , r, . . . , xn))← B is a critical pair. By
hypothesis, it is convergent, then γ2 ◦γ1(P (x1, . . . , r, . . . , xn))→∗ B. Note that γ3(B)→∗ G
and recall that θ3◦γ3◦γ2◦γ1 = θ3◦θ2◦θ1 = θ. Then θ(P (x1, . . . , r, . . . , xn))→∗ θ3(G)→∗ ∅,
and since θ ≤ σ′ we get P (t1, . . . , σ(r), . . . , tn) = σ′(P (x1, . . . , r, . . . , xn)) →∗ ∅. Therefore
A′ ;∗ Gk[A′′ ← P (t1, . . . , σ(r), . . . , tn)] ;∗ ∅, hence A′ ∈Mod(Prog).
By trivial induction, the proof can be extended to the case of several rewrite steps. J

If Prog is not normalized, Theorem 14 does not hold.

I Example 15. Let Prog = {P (c(f(a))) ←} and R = {f(a) → b}. All critical pairs
are convergent since there is no critical pair. P (c(f(a))) ∈Mod(Prog) and P (c(f(a)))→R

P (c(b)). However there is no resolution step issued from P (c(b)), then P (c(b)) 6∈Mod(Prog).

If Prog is not preserving, Theorem 14 does not hold.

I Example 16. Let Prog = {P (c(x), c(x), y)← Q(y). Q(a)←}, and R = {f(b)→ b}. All
critical pairs are convergent since there is no critical pair.
P (c(f(b)), c(f(b)), a) →Prog Q(a) →Prog ∅, then P (c(f(b)), c(f(b)), a) ∈ Mod(Prog). On
the other hand, P (c(f(b)), c(f(b)), a)→R P (c(b), c(f(b)), a). However there is no resolution
step issued from P (c(b), c(f(b)), a), then P (c(b), c(f(b)), a) 6∈Mod(Prog).

Unfortunately, for a given finite CS-program, there may be infinitely many critical pairs.
In the following section, this problem is illustrated and some syntactical conditions on CS-
program are underlined in order to avoid this critical situation.

3.2 Ensuring finitely many critical pairs
The following example illustrates a situation where the number of critical pairs is unbounded.

I Example 17. Let Σ = {f\2, c\1, d\1, s\1, a\0} and f(c(x), y)→ d(y) be a rewrite rule, and
Prog = {P0(f(x, y))←P1(x, y). P1(x, s(y))←P1(x, y). P1(c(x), y)←P2(x, y). P2(a, a)← .}.

5 Since ∅ is flat, a flat goal can always be reached, i.e. in some cases G = ∅.
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Then P0(f(c(x), y)) → P1(c(x), y) ;y/s(y) P1(c(x), y) ;y/s(y) · · ·P1(c(x), y) → P2(x, y).
Resolution is applied only on non-flat atoms and the last atom obtained by this derivation
is flat. The composition of substitutions along this derivation gives y/sn(y) for some n ∈ IN.
There are infinitely many such derivations, which generates infinitely many critical pairs of
the form P0(d(sn(y)))← P2(x, y).

This is annoying since the completion process presented in the following needs to compute
all critical pairs. This is why we define sufficient conditions to ensure that a given finite
CS-program has finitely many critical pairs.

I Definition 18. Prog is empty-recursive if there exist a predicate P and distinct vari-
ables x1, . . . , xn s.t. P (x1, . . . , xn) ;+

σ A1, . . . , P (x′1, . . . , x′n), . . . , Ak where x′1, . . . , x′n are
variables and there exist i, j s.t. x′i = σ(xi) and σ(xj) is not a variable and x′j ∈ V ar(σ(xj)).

I Example 19. Let Prog be the CS-program defined as follows:
Prog = {P (x′, s(y′))← P (x′, y′). P (a, b)← .}

From P (x, y), one can obtained the following derivation: P (x, y) ;[x/x′, y/s(y′)] P (x′, y′).
Consequently, Prog is empty-recursive since σ = [x/x′, y/s(y′)], x′ = σ(x) and y′ is a
variable of σ(y) = s(y′).

The following lemma shows that the non empty-recursiveness of a CS-program is suffi-
cient to ensure the finiteness of the number of critical pairs.

I Lemma 20. Let Prog be a normalized CS-program.
If Prog is not empty-recursive, then the number of critical pairs is finite.

I Remark. Note that the CS-program of Example 17 is normalized and has infinitely many
critical pairs, however it is empty-recursive because P1(x, y) ;[x/x′, y/s(y′)] P1(x′, y′).

Proof. By contrapositive. Let us suppose there exist infinitely many critical pairs. So there
exist P1 and infinitely many derivations of the form (i) : P1(x1, . . . , xk−1, l, xk+1, . . . , xn) ;∗α
G′ ;θ G (the number of steps is not bounded). As the number of predicates is finite and
every predicate has a fixed arity, there exists a predicate P2 and a derivation of the form
(ii) : P2(t1, . . . , tp) ;k

σ G
′′
1 , P2(t′1, . . . , t′p), G′′2 (with k > 0) included in some derivation of

(i), strictly before the last step, such that :

1. G′′1 and G′′2 are flat.
2. σ is not empty and there exists a variable x in P2(t1, . . . , tp) such that σ(x) = t and t

is not a variable and contains a variable y that occurs in P2(t′1, . . . , t′p). Otherwise we
could not have an infinite number of σ necessary to obtain infinitely many critical pairs.

3. At least one term t′j (j ∈ {1, . . . , p}) is not a variable (only the last step of the initial
derivation produces a flat goal G). As we use a CS-clause in each derivation step, we
can assume that t′j is a term among t1, . . . , tn and moreover that t′j = tj . This property
does not necessarily hold as soon as P2 is reached within (ii). We may have to consider
further occurrences of P2 so that each required term occurs in the required argument,
which will necessarily happen because there are only finitely many permutations. So, for
each variable x occurring in the non-variable terms, we have σ(x) = x.

4. From the previous item, we deduce that the variable x found in item 2 is one of the terms
t1, . . . , tp, say tk. We can assume that y is t′k.

If in the (ii) derivation we replace all non-variable terms by new variables, we obtain a new
derivation : (iii) : P2(x1, . . . , xp) ;k

σ G
′′
1 , P2(x′1, . . . , x′p), G′′2 and there exists i, k such that

σ(xi) = x′i (at least one non-variable term in the (ii) derivation), σ(xk) = tk, and x′k is a
variable of tk. We conclude that Prog is empty-recursive. J
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Deciding the empty-recursiveness of a CS-program seems to be a difficult problem (un-
decidable?). Nevertheless, we propose a sufficient syntactic condition to ensure that a CS-
program is not empty-recursive.

I Definition 21. The clause P (t1, . . . , tn) ← A1, . . . , Q(. . .), . . . , Am is pseudo-empty over
Q if there exist i, j s.t.

ti is a variable,
and tj is not a variable,
and ∃x ∈ V ar(tj), x 6= ti ∧ {x, ti} ⊆ V ar(Q(. . .)).

Roughly speaking, when making a resolution step issued from the flat atom P (y1, . . . , yn),
the variable yi is not instantiated, and yj is instantiated by something that is synchronized
with yi (in Q(. . .)).

The clause H ← B is pseudo-empty if there exists some Q s.t. H ← B is pseudo-empty
over Q.

The CS-clause P (t1, . . . , tn) ← A1, . . . , Q(x1, . . . , xk), . . . , Am is empty over Q if for all
xi, (∃j, tj = xi or xi 6∈ V ar(P (t1, . . . , tn))).

I Example 22. The CS-clause P (x, f(x), z)← Q(x, z) is both pseudo-empty (thanks to the
second and the third argument of P ) and empty over Q (thanks to the first and the third
argument of P ).

I Definition 23. Using Definition 21, let us define two relations over predicate symbols.

P1 �Prog P2 if there exists in Prog a clause empty over P2 of the form P1(. . .) ←
A1, . . . , P2(. . .), . . . , An. The reflexive-transitive closure of �Prog is denoted by �∗Prog.
P1 >Prog P2 if there exist in Prog predicates P ′1, P ′2 s.t. P1 �∗Prog P

′
1 and P ′2 �∗Prog P2,

and a clause pseudo-empty over P ′2 of the form P ′1(. . .) ← A1, . . . , P
′
2(. . .), . . . , An. The

transitive closure of >Prog is denoted by >+
Prog.

>Prog is cyclic if there exists a predicate P s.t. P >+
Prog P .

I Example 24. Let Σ = {f\1, h\1, a\0} Let Prog be the following CS-program:

Prog = {P (x, h(y), f(z))←Q(x, z), R(y). Q(x, g(y, z))←P (x, y, z). R(a)← . Q(a, a)← .}

One has P >Prog Q and Q >Prog P . Thus, >Prog is cyclic.

The lack of cycles is the key point of our technique since it ensures the finiteness of the
number of critical pairs.

I Lemma 25. If >Prog is not cyclic, then Prog is not empty-recursive, consequently the
number of critical pairs is finite.

Proof. By contrapositive. Let us suppose that Prog is empty recursive. So there exist P
and distinct variables x1, . . . , xn s.t. P (x1, . . . , xn) ;+

σ A1, . . . , P (x′1, . . . , x′n), . . . , Ak where
x′1, . . . , x

′
n are variables and there exist i, j s.t. x′i = σ(xi) and σ(xj) is not a variable and

x′j ∈ V ar(σ(xj)). We can extract from the previous derivation the following derivation which
has p steps (p ≥ 1). P (x1, . . . , xn) = Q0(x1, . . . , xn) ;α1 B

1
1 . . . Q

1(x1
1, . . . , x

1
n1

) . . . B1
k1

;α2

B1
1 . . . B

2
1 . . . Q

2(x2
1, . . . , x

2
n2

) . . . B2
k2
. . . B1

k1
;α3 . . .;αp

B1
1 . . . B

p
1 . . . Q

p(xp1, . . . , xpnp
) . . . Bpkp

. . . B1
k1

where Qp(xp1, . . . , xpnp
) = P (x′1, . . . , x′n).

For each k, αk ◦ αk−1 . . . ◦ α1(xi) is a variable of Qk(xk1 , . . . , xknk
) and αk ◦ αk−1 . . . ◦

α1(xj) is either a variable of Qk(xk1 , . . . , xknk
) or a non-variable term containing a variable

of Qk(xk1 , . . . , xknk
).
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Each derivation step issued from Qk uses either a clause pseudo-empty over Qk+1 and
we deduce Qk >Prog Qk+1, or an empty clause over Qk+1 and we deduce Qk �Prog Qk+1.
At least one step uses a pseudo-empty clause otherwise no variable from x1, . . . , xn would
be instantiated by a non-variable term containing at least one variable in x′1, . . . , x

′
n. We

conclude that P = Q0 op1 Q
1 op2 Q

2 . . . Qp−1 opp Q
p = P with each opi is >Prog or �Prog

and there exists k such that opk is >Prog. Therefore P >+
Prog P , so >Prog is cyclic. J

So, if a CS-program Prog does not involve >Prog to be cyclic, then all is fine. Otherwise,
we have to transform Prog into another CS-program Prog′ such as >Prog′ is not cyclic and
Mod(Prog) ⊆Mod(Prog′).

The transformation is based on the following observation. If >Prog is cyclic, there is
at least one pseudo-empty clause over a given predicate that participates in a cycle. Note
that this remark can be checked in Example 24 where P (x, h(y), f(z)) ← Q(x, z), R(y) is
a pseudo-empty clause over Q involving the cycle. To remove cycles, we transform some
pseudo-empty clauses into clauses that are not pseudo-empty anymore. It boils down to
unsynchronize some variables. The process is mainly described in Definition 28. Definitions
26 and 27 are intermediary definitions involved in Definition 28.

I Definition 26 (simplify). Let H ← A1, . . . , An be a CS-clause, and for each i, let us write
Ai = Pi(. . .).
If there exists Pi s.t. L(Pi) = ∅ then simplify(H ← A1, . . . , An) is the empty set, otherwise
it is the set that contains only the clause H ← B1, . . . , Bm such that
{Bi | 0 ≤ i ≤ m} ⊆ {Ai | 0 ≤ i ≤ n} and
∀i ∈ {1, . . . , n}, (¬(∃j, Bj = Ai) ⇔ V ar(Ai) ∩ V ar(H)=∅).

In other words, simplify deletes unproductive clauses, or it removes the atoms of the body
that contain only extra-variables.

I Definition 27 (unSync). Let P (t1, . . . , tn)← B be a pseudo-empty CS-clause.
unSync(P (t1, . . . , tn) ← B) = simplify(P (t1, . . . , tn) ← σ0(B), σ1(B)) where σ0, σ1 are sub-
stitutions built as follows:

σ0(x) =
{
x if ∃i, ti = x

a fresh variable otherwise σ1(x) =


x if ∃i, ti 6∈ V ar ∧ x ∈ V ar(ti)

∧¬(∃j, tj = x)
a fresh variable otherwise

I Definition 28 (removeCycles). Let Prog be a CS-program.

removeCycles(Prog) =
{
Prog if >Prog is not cyclic

removeCycles({unSync(H ← B)} ∪ Prog′) otherwise

where H ← B is a pseudo-empty clause involved in a cycle and Prog′ = Prog \ {H ← B}.

I Example 29. Let Prog be the CS-program of Example 24. Since Prog is cyclic, let us com-
pute removeCycles(Prog). The pseudo-empty CS-clause P (x, h(y), f(z)) ← Q(x, z), R(y) is
involved in the cycle. Consequently, unSync is applied on it. According to Definition 27, one
obtains σ0 and σ1 where σ0 = [x/x, y/x1, z/x2] and σ1 = [x/x3, y/y, z/z]. Thus, one ob-
tains the CS-clause P (x, h(y), f(z)) ← Q(x, x2), R(x1), Q(x3, z), R(y). Note that according
to Definition 27, simplify has to be applied on the CS-clause above-mentioned. Following
Definitions 26 and 28, one has to remove P (x, h(y), f(z))← Q(x, z), R(y) from Prog and to
add P (x, h(y), f(z))← Q(x, x2), Q(x3, z), R(y) instead. Note that the atom R(x1) has been
removed using simplify. Note also that there is no cycle anymore.
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Lemma 33 describes that our transformation preserves at least and may extend the initial
least Herbrand Model.

In order to prove this result, we need to use intermediary lemmas.

I Lemma 30. Let Prog ∪ {cl} be a CS-program.
Then Mod(Prog ∪ {cl}) = Mod(Prog ∪ {simplify(cl)}).

Proof. Obvious. J

I Lemma 31. Let cl be a CS-clause. Then unSync(cl) is a CS-clause that is not pseudo-
empty. Moreover, if cl is normalized and preserving, then so is unSync(cl).

Proof. To write the proof, as well as the proof of Lemma 32, we need to define precisely
what the fresh variables are. Moreover the proof goes easier if every variable is renamed
by σ0 and by σ1, which is not the case in Definition 27. This is why we consider another
expression of Definition 27:
Function UnSync(P (t1, . . . , tn)← B)
- let us write X = V ar(P (t1, . . . , tn)← B) = {x1, . . . , xk} = X0 ]X1 ]X2 where

X0 = {ti | ti is a variable}
X1 = {x | ∃ti, ti is not a variable and x ∈ V ar(ti)}\X0
X2 = V ar(B)\V ar(P (t1, . . . , tn))

- we consider sets of variables Y = {y1, . . . , yk} ] {y′1, . . . , y′k} ] {y′′1 , . . . , y′′k}
Z = {z1, . . . , zk} ] {z′1, . . . , z′k} ] {z′′1 , . . . , z′′k}

- let σ0 and σ1 defined on X by σ0(xi) =
yi if xi ∈ X0
y′i if xi ∈ X1
y′′i if xi ∈ X2

and σ1(xi) =
zi if xi ∈ X0
z′i if xi ∈ X1
z′′i if xi ∈ X2

- let σ defined on X0 ]X1 by σ(xi) = σ0(xi) if xi ∈ X0
σ1(xi) if xi ∈ X1

- return simplify(σ(P (t1, . . . , tn))← σ0(B), σ1(B))

Note that the images of σ0 and σ1 are disjoint. Moreover σ0 (resp. σ1) is an injection
going from X to Y (resp. Z). Therefore the body of unSync(cl) is linear and flat, hence cl
is a CS-clause.
Let xi ∈ X0 and xj ∈ X1, and let us write cl = (H ← B), and unSync(cl) = (H ′ ← B′).
Recall that σ(xi) = yi and σ(xj) = z′j , and H ′ = σ(H). However B′ = σ0(B), σ1(B), and
V ar(σ0(B)) ⊆ Y , and V ar(σ1(B)) ⊆ Z. Consequently yi and z′j cannot occur in the same
atom of H ′, hence unSync(cl) is not pseudo-empty.
Now, suppose that cl is normalized and preserving. Since σ, σ0, σ1 are substitutions,
unSync(cl) is normalized. Any variable vv occurring in H ′ is equal to σ0(xi) or σ1(xi) for
some xi ∈ X. Necessarily xi occurs in B, then vv occurs in σ0(B) or σ1(B), hence in B′. J

I Lemma 32. Let Prog ∪ {cl} be a CS-program.
Then Mod(Prog ∪ {cl}) ⊆Mod(Prog ∪ {unSync(cl)}).

Proof. Suppose A ;∗δ ∅. The proof is by induction on the length of the derivation. Let
cl = (H ← B) and cl′ = unSync(cl) = (H ′ ← B′), and suppose that the first step of
the derivation uses cl. Then δ(A) →cl G →∗Prog∪{cl} ∅. There exists a substitution θ s.t.
δ(A) = θ(H) and G = θ(B). Then θ(H)→cl θ(B).
Note that σ0 and σ1 going from X to theirs images, are bijective. σ going from X0]X1 to its
image is also bijective. Let σ−1

0 , σ−1
1 , σ−1 theirs converse mappings. Note that σ−1

0 , σ−1
1 are

defined on disjoint sets, and (σ−1
0 ]σ

−1
1 )|V ar(H′) = σ−1. Let γ = σ−1

0 ∪σ
−1
1 . ThenH = γ(H ′)
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and the first part of γ(B′) is equal to B, as well as the second part of γ(B′). Therefore
δ(A) = θ(H) = θ(γ(H ′)) and G = θ(B) = θ(fp(γ(B′))) = θ(sp(γ(B′))) where fp and sp

mean first part and second part respectively. Consequently δ(A) →cl′ G,G →∗Prog∪{cl} ∅.
By induction hypothesis, we get δ(A)→cl′ G,G→∗Prog∪{cl′} ∅. Thus A;∗Prog∪{cl′} ∅. J

I Lemma 33. Let Prog be a CS-program and Prog′ = removeCycles(Prog).
Then >Prog′ is not cyclic, and Mod(Prog) ⊆Mod(Prog′). Moreover, if Prog is normalized
and preserving, then so is Prog′.

Proof. Because of the loop condition, if removeCycles terminates, > is not cyclic. In the
loop, one pseudo-empty clause is removed and replaced by a non-pseudo-empty one (from
Lemma 31). Thus, the number of pseudo-empty clauses decreases, until > is not cyclic
(which necessarily happens because if there are no pseudo-empty clauses anymore, > is not
cyclic), and removeCycles terminates. Thanks to Lemma 32, Mod(Prog) ⊆Mod(Prog′).
On the other hand, thanks to Lemma 31, Prog′ is normalized and preserving if Prog is. J

At this point, given a CS-program Prog, if >Prog is not cyclic then the number of critical
pairs is finite. Otherwise, we transform Prog into another CS-program Prog′ in such a way
that >Prog′ is not cyclic and Mod(Prog) ⊆ Mod(Prog′). Since Prog′ is not cyclic, the
finiteness of the number of critical pairs is ensured.

3.3 Normalizing critical pairs
In Section 3.1, we have defined the notion of critical pair and we have shown in Theorem
14 that this notion is useful for a matter of rewriting closure. Moreover, as mentioned at
the very beginning of Section 3, non-convergent critical pairs correspond to the CS-clauses
that we would like to add in the current CS-program. Unfortunately, these CS-clauses are
not necessarily in the expected form (normalized).

Definition 37 describes the normalization process that transforms a non-normalized
CS-clause into several normalized ones. For example, consider the non-normalized CS-
clause P (f(g(x)), b) ← P ′(x). We want to generate a set of normalized CS-clauses cov-
ering at least the same Herbrand model. The following set of CS-clauses {P (f(x1), b) ←
Pnew1(x1). Pnew1(g(x1))← P ′(x1).} is a good candidate with Pnew1 a new predicate symbol.

Definition 34 introduces tools for manipulating parameters of predicates (tuple of terms).
Definition 35 formalizes a way for cutting a clause head, at depth 1. An example is given
after Definition 37.

I Definition 34. A tree-tuple (t1, . . . , tn) is normalized if for all i, ti is a variable or contains
only one function-symbol.
We define tuple concatenation by (t1, . . . , tn).(s1, . . . , sk) = (t1, . . . , tn, s1, . . . , sk).
The arity of the tuple (t1, . . . , tn) is ar(t1, . . . , tn) = n.

I Definition 35. Consider a tree-tuple −→t = (t1, . . . , tn). We define :

−→
t cut = (tcut1 , . . . , tcutn ), where tcuti =

x′i,1 if ti is a variable
ti if ti is a constant
ti(ε)(x′i,1, . . . , x′i,ar(ti(ε))) otherwise

and variables x′i,k are new variables that do not occur in −→t .
for each i, −−→V ar(tcuti ) is the (possibly empty) tuple composed of the variables of tcuti (taken
in the left-right order).
−−→
V ar(−→t cut) = −−→V ar(tcut1 ) . . .−−→V ar(tcutn ) (concatenation of tuples).



Yohan Boichut Jacques Chabin Pierre Réty 13

for each i, tresti is the tree-tuple tresti =
(ti) if ti is a variable
the empty tuple if ti is a constant
(ti|1, . . . , ti|ar(ti(ε))) otherwise

−→
t rest = (trest1 . . . trestn ) (concatenation of tuples).

I Example 36. Let −→t be a tree-tuple such that −→t = (x1, x2, g(x3, h(x1)), h(x4), b) where
xi’s are variables. Thus,
−→
t cut = (y1, y2, g(y3, y4), h(y5), b) with yi’s new variables;
−−→
V ar(−→t cut) = (y1, y2, y3, y4, y5);
−→
t rest = (x1, x2, x3, h(x1), x4).

Note that −→t cut is normalized, −−→V ar(−→t cut) is linear, −−→V ar(−→t cut) and −→t rest have the same arity.

Notation: card(S) denotes the number of elements of the finite set S.

I Definition 37 (norm). Let Prog be a normalized CS-program.
Let Pred be the set of predicate symbols of Prog, and for each positive integer i, let
Predi = {P ∈ Pred | ar(P ) = i} where ar means arity.
Let arity-limit and predicate-limit be positive integers s.t. ∀P ∈ Pred, arity(P ) ≤ arity-limit,
and ∀i ∈ {1, . . . , arity-limit}, card(Predi) ≤ predicate-limit. Let H ← B be a CS-clause.
Function normProg(H ← B)
Res = Prog
If H ← B is normalized
then Res = Res ∪{H ← B} (a)
else If H →Res A by a synchronizing and non-empty clause

then (note that A is an atom) Res = normRes(A← B) (b)
else let us write H = P (−→t )

If ar(−−→V ar(−→t cut)) ≤ arity-limit
then let c′ be the clause P (−→t cut)← P ′(−−→V ar(−→t cut))

where P ′ is a new or an existing predicate symbol6

Res = normRes∪{c′}(P ′(
−→
t rest)← B) (c)

else choose tuples −→vt1, . . . ,
−→
vtk and tuples −→tt1, . . . ,

−→
ttk s.t.

−→
vt1 . . .

−→
vtk = −−→V ar(−→t cut) and −→tt1 . . .

−→
ttk = −→t rest,

and for all j, ar(−→vtj) = ar(−→ttj) and ar(−→vtj) ≤ arity-limit
let c′ be the clause P (−→t cut)← P ′1(−→vt1), . . . , P ′k(−→vtk)

where P ′1, . . . , P ′k are new or existing predicate symbols7

Res = Res ∪{c′}
For j=1 to k do Res = normRes(P ′j(

−→
ttj)← B) EndFor (d)

EndIf
EndIf

EndIf
return Res

I Example 38. Consider the CS-program Prog =

{P0(f(x))←P1(x). P1(a)← . P0(u(x))←P2(x). P2(f(x))← P3(x). P3(v(x, x))←P1(x).}

6 If card(Pred
ar(−−→V ar(−→t cut))(Res)) < predicate-limit, then P ′ is new, otherwise P ′ is arbitrarily chosen in

Pred
ar(−−→V ar(−→t cut))(Res).

7 For all j, P ′j is new iff card(Pred
ar(−→vtj )(Res)) + j − 1 < predicate-limit.
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Let arity-limit = 1 and predicate-limit = 5. Let P2(u(f(v(x, x))))← P3(x) be a CS-clause to
normalize. According to Definition 37, we are not in case (a) nor in (b), we are in case (c).
Then, according to Definition 35,

−−−−−−−−−→
u(f(v(x, x)))cut = u(x1) with x1 a new variable. Since for

now the number of predicates with arity 1 is equal to 4 < predicate-limit, a new predicate
P4 can be created and then one has to add the CS-clause P2(u(x1)) ← P4(x1). Then we
have to solve the recursive call normProg∪{P2(u(x1))←P4(x1)}(P4(f(v(x, x))) ← P3(x)). The
same process is applied except for the creation of a new predicate, because predicate-limit
would be exceeded. Consequently, no new predicate with arity 1 can be generated. One
has to choose an existing one. Let us try with P3. So, the CS-clause P4(f(x2))← P3(x2) is
added into Prog (because

−−−−−−→
f(v(x, x))cut = f(x2)) and then, norm is called with the parameter

P3(v(x, x))← P3(x). Finally, P3(v(x, x))← P3(x) is also added into Prog since this clause is
already normalized. To summarize, the normalization of the CS-clause P2(u(f(v(x, x))))←
P3(x) has produced three new clauses, which are P2(u(x1))← P4(x1), P4(f(x2))← P3(x2)
and P3(v(x, x))← P3(x).

Obviously, termination of norm is guaranteed according to Lemma 39.

I Lemma 39. Function norm always terminates.

Proof. Consider a run of normProg(H ← B), and any recursive call normProg′(H ′ ← B′).
We can see that |H ′|Σ < |H|Σ. Consequently a normalized clause is necessarily reached,
and there is no recursive call in this case. J

Given a normalized CS-program Prog, Theorem 40 raises two important points:
1. given a non-normalized clause H ← B, one obtains H →normP rog(H←B) B, and 2. adding
the CS-clauses provided by norm into Prog may increase the least Herbrand model of Prog.

I Theorem 40. Let c be a critical pair in Prog. Then c is convergent in normProg(c).
Moreover for any CS-clause c′, we have Mod(Prog ∪ {c′}) ⊆Mod(normProg(c′)).

Proof. The second item of the theorem is a consequence of the first item.
Let us now prove the first item. Let c = (H ← B) and let us prove that H →∗Res B. The
proof is by induction on recursive calls to Function norm (we write ind-hyp for “induction
hypothesis”). We consider items (a), (b),... in Definition 37 :

(a) From Lemma 33.
(b) We have H → A→∗ind−hyp B.
(c) H=P (−→t )→c′ P ′(−→t rest)→∗ind−hyp B.
(d) H=P (−→t )→c′ (P ′1(−→tt1), . . . , P ′k(−→ttk))→∗ind−hyp (B, . . . , B) (up to variable renamings).

J

3.4 Completion
In Sections 3.1 and 3.3, we have described how to detect critical pairs and how to convert
them into normalized clauses. Moreover, in a given finite CS-program the number of critical
pairs is finite as shown in Section 3.2. Definition 41 explains precisely our technique for
computing over-approximation using a CS-program completion.

I Definition 41 (comp). Let R be a left-linear rewrite system, and Prog be a finite and
normalized CS-program s.t.

>Prog is not cyclic (otherwise apply removeCycles to remove cycles),
and ∀P ∈ Pred, arity(P ) ≤ arity-limit,
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and ∀i ∈ {1, . . . , arity-limit}, card(Predi) ≤ predicate-limit.
where card(Predi) is the number of predicate symbols of arity i.

Function compR(Prog)
while there exists a non-convergent critical pair H ← B do
Prog = removeCycles(normProg(H ← B))

end while
return Prog

Theorem 45 and Corollary 46 illustrate that our technique leads to a finite CS-program
whose least Herbrand model over-approximates the descendants obtained by a left-linear
rewrite system R. In order to prove this theorem, we need to use intermediary lemmas.

I Lemma 42. Let Prog′ be a normalized CS-program. Then each clause H ← A1, . . . , An
in removeCycles(Prog′) satisfies n ≤ arity-limit ∗max-arity(Σ).

Proof. When applying removeCycles, simplify is applied, then each Ai contains at least one
variable of H. Moreover the body is linear. Then n is less than or equal to the number of
variables of H, which is normalized. J

I Lemma 43. There are finitely many normalized tree-tuples of arity not greater than arity-
limit (up to a variable renaming).

Proof. Obvious. J

I Lemma 44. There exists k ∈ IN s.t. at all step of Function comp, the number of clauses8
in Prog is not greater than k.

Proof. Because of Function norm, the number of predicate symbols in Prog is necessarily
less than or equal to predicate-limit∗arity-limit. Since clauses in Prog are always normalized
and from Lemmas 42 and 43, we get the result. J

Thus, here we come to Theorem 45 about termination of comp.

I Theorem 45. Function comp always terminates, and all critical pairs are convergent in
compR(Prog). Moreover Mod(Prog) ⊆Mod(compR(Prog)).

Proof. When running normProg(H ← B), either new clauses are added, or not (when the
added clauses already exist in Prog). From Lemma 44 the number of clauses is bounded,
then there exists a step k from which no new clause is added. Moreover, at any step, >Prog
is acyclic. Therefore, from Lemma 25, at step k, the number of existing critical pairs is finite.
However, some of them may be non-convergent. Then, for all (finitely many) non-convergent
critical pairs, norm is run (without adding any clause), which makes them convergent (from
Theorem 40). Then all critical pairs are convergent, and comp terminates.
Moreover, thanks to Theorem 40 and Lemma 33, we getMod(Prog) ⊆Mod(compR(Prog)).

J

Moreover, thanks to Theorem 14, Mod(compR(Prog)) is closed under rewriting by R.
Then:

I Corollary 46. If in addition Prog is preserving, R∗(Mod(Prog)) ⊆Mod(compR(Prog)).

8 Considering that two clauses identical up to a variable renaming, are equal.
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4 Examples

In this section, our technique is applied on several examples. In Examples 47, 48 and 49,
I is the initial set of terms and R is the rewrite system. Moreover, initially, we define a
CS-program Prog that generates I.

I Example 47. In this example, we define Σ as follows: Σ = {c\2, a\0}. Let I be the set of
terms I = {f(t) | t ∈ TΣ}. Let R be the rewrite system R = {f(x) → b(x, x)}. Obviously,
one can easily guess that R∗(I) = {b(t, t) | t ∈ TΣ} ∪ I. Note that R∗(I) is not a regular,
nor a context-free language [1, 12].

Initially, Prog = {P0(f(x)) ← P1(x). P1(c(x, y)) ← P1(x), P1(y). P1(a) ← .}. Using
our approach, the critical pair P0(b(x, x))← P1(x) is detected. This critical pair is already
normalized, then it is immediately added into Prog. Then, there is no more critical pair and
the procedure stops. Note that we get exactly the set of descendants, i.e. L(P0) = R∗(I).
So, given t, t′ ∈ TΣ such that t 6= t′, one can show that b(t, t′) /∈ R∗(I).

The example right above shows that non-context-free descendants can be handled in a
conclusive manner with our approach. Such example cannot be handled by [13] in an exact
way, because they use context-free languages. Actually, the classes of languages covered by
our approach and theirs are in some sense orthogonal. However, the examples below shows
that our approach can also be relevant for other problems.

I Example 48.
Let I be the set of terms I = {f(a, a)}, and R be the rewrite system R = {f(x, y) →
u(f(v(x), w(y)))}. Intuitively, the exact set of descendants is R∗(I) = {un(f(vn(a), wn(a))) |
n ∈ N}. We define Prog = {P0(f(x, y)) ← P1(x), P1(y). P1(a) ← .}. We choose
predicate-limit = 4 and arity-limit = 2.

First, the following critical pair is detected: P0(u(f(v(x), w(y)))) ← P1(x), P1(y). Ac-
cording to Definition 37, the normalization of this critical pair produces three new CS-
clauses: P0(u(x)) ← P2(x) , P2(f(x, y)) ← P3(x, y) and P3(v(x), w(y)) ← P1(x), P1(y).
Adding these three CS-clauses into Prog produces the new critical pair P2(u(f(v(x), w(y))))
← P3(x, y). This critical pair can be normalized without exceeding predicate-limit. So, we
add: P2(u(x))← P4(x). P4(f(x, y))← P5(x, y). and P5(v(x), w(y))← P3(x, y).

Once again, a new critical pair has been introduced: P4(u(f(v(x), w(y)))) ← P5(x, y).
Note that, from now, we are not allowed to introduce any new predicate of arity 1. Let us
proceed the normalization of P4(u(f(v(x), w(y))))← P5(x, y) step by step. We choose to re-
use the predicate P4. Thus, we first generate the following CS-clause: P4(u(x))← P4(x). So,
we have to normalize now P4(f(v(x), w(y)))← P5(x, y). Note that P4(f(v(x), w(y)))→+

Prog

P3(x, y). Consequently, the CS-clause P3(x, y)← P5(x, y) is added into Prog.
Note that there is no critical pair anymore.
To summarize, we obtain the final CS-program Progf composed of the following CS-

clauses:

Progf =


P0(f(x, y))← P1(x), P1(y). P1(a)← . P0(u(x))← P2(x)
P2(f(x, y))← P3(x, y). P3(v(x), w(y))← P1(x), P1(y). P2(u(x))← P4(x).
P4(f(x, y))← P5(x, y). P5(v(x), w(y))← P3(x, y). P4(u(x))← P4(x).
P3(x, y)← P5(x, y)


For Progf , note that L(P0) = {un(f(vm(a), wm(a))) | n,m ∈ N} and R∗(I) ⊆ L(P0).

In Example 48, the approximation computed is still a non-regular language. Nevertheless,
it is a strict over-approximation since a synchronization is broken between the three counters.
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Let us also show the application of our technique on an example introduced in [4]. In [4]
authors propose an example that cannot be handled by regular approximations. Example
49 shows that this limitation can now be overcome.

I Example 49. Let I be the set of terms I = {f(a, a)} and R be the rewrite system
R = {f(x, y) → f(g(x), g(y)), f(g(x), g(y)) → f(x, y), f(a, g(a)) → error}. Obviously,
R∗(I) = {f(gn(a), gn(a)) | n ∈ N}. Consequently, error is not a reachable term.

We start with the CS-program Prog = {P0(f(x, y))← P1(x), P1(y). P1(a)← .}. After
applying Function comp, we obtain the following CS-program for any predicate-limit ≥ 2:

Progf =
{

P0(f(x, y))← P1(x), P1(y). P0(f(x, y))← P2(x, y) P1(a)← .
P2(g(x), g(y))← P1(x), P1(y). P2(g(x), g(y))← P2(x, y).

}
Note that L(P0) is exactly R∗(I). Note also that error 6∈ L(P0). Consequently, we have

proved that error is not reachable from I.

5 Further Work

We have presented a procedure that always terminates and that computes an over-approxima-
tion of the set of descendants, expressed by a synchronized tree language. This is the first
attempt using synchronized tree languages. It could be improved or extended:

In Definition 37, when predicate-limit is reached (in items (c) and (d)), an (several in
item (d)) existing predicate of the right arity is chosen arbitrarily and re-used, instead of
creating a new one. Of course, if there are several existing predicates of the right arity,
the achieved choice affects the quality of the approximation. When using regular lan-
guages [7], a similar difficulty happens: to make the procedure terminate, it is sometimes
necessary to chose and re-use an existing state instead of creating a new one. Some ideas
have been proposed to make this choice in a smart way [10]. We are going to extend
these ideas in order to improve the choice of existing predicates.
A similar problem arises when arity-limit is reached (item (d)): a tuple is divided into
several smaller tuples in an arbitrary way, and there may be several possibilities, which
may affect the quality of the approximation.
To compute descendants, we have used synchronized tree languages, whereas context-
free languages have been used in [13]. Each approach has advantages and drawbacks.
Therefore, it would be interesting to mix the two approaches to get the advantages of
both.
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