Nash Type Inequalities for Fractional Powers of Non-Negative Self-adjoint Operators

(Wroclaw 2006)

P.Maheux (Orléans. France)

joint work with A.Bendikov.

European Network (HARP)

(to appear in T.A.M.S)

Classical example:

Heat semigroup on \mathbb{R}^n with dx the Lebesgue measure:

$$T_{t}f(x) = h_{t} * f(x) = \int_{\mathbb{R}^{n}} h_{t}(x, y) f(y) \, dy$$

$$h_{t}(x, y) = \frac{1}{(4\pi t)^{n/2}} \exp\left(-\frac{|x - y|^{2}}{4t}\right)$$

$$Af = \Delta f, \quad f \in \mathcal{C}_{0}^{\infty}(\mathbb{R}^{n}) \subset \mathcal{D}$$

$$||T_{t}||_{1 \to \infty} := \sup\{||T_{t}f||_{\infty}, \quad ||f||_{1} = 1\}$$

$$(Ult) \quad ||T_{t}||_{1 \to \infty} = h_{t}(0, 0) = \frac{1}{(4\pi t)^{n/2}}, \quad \forall t > 0$$

$$(Sob) \quad ||f||_{2n/n-2}^{2} \le c(\Delta f, f),$$

$$(Nash) \quad ||f||_{2}^{2+4/n} \le c(\Delta f, f) ||f||_{1}^{4/n},$$

Let $(T_t)_{t>0}$ be a symmetric submarkovian semigroup acting on $L^2(X,\mu)$ with μ a σ -finite measure on X and let -A be its generator with domain \mathcal{D} .

$$T_{t+s} = T_t T_s \quad t, s > 0$$

$$\lim_{t \to 0^+} T_t f = f \quad (\text{in } L^2)$$

$$0 \le f \le 1 \quad \Rightarrow \quad 0 \le T_t f \le 1 \qquad \forall t > 0$$

$$f \in \mathcal{D} \Leftrightarrow \qquad Af = \lim_{t \to 0^+} \frac{T_t f - f}{t} \in L^2$$

 $T_t = e^{-tA}$ acts on L^p $(1 \le p \le +\infty)$ space as a contraction semigroup:

$$||T_t f||_p \le ||f||_p, \quad t > 0$$

Theorem[V,C-K-S] Let $\nu > 2$. The following conditions are equivalent :

(Sob)
$$||f||_{2\nu/\nu-2}^2 \le c(Af, f),$$
 $\forall f \in \mathcal{D}$

(Nash)
$$||f||_2^{2+4/\nu} \le c(Af, f) ||f||_1^{4/\nu},$$

$$\forall f \in \mathcal{D} \cap L^1$$

$$(Ult) || T_t ||_{1\to\infty} \le c t^{-\nu/2}, \forall t > 0$$

Fact: Nash inequality for A implies Nash inequality for all $\alpha \in (0,1)$ (by subordination):

$$||f||_{2}^{2+4\alpha/\nu} \le c(A^{\alpha}f, f) ||f||_{1}^{4\alpha/\nu}$$

Nash-type (or generalized) inequality(Def)

Let $B: [0, +\infty[\to [0, +\infty[$ be a non-decreasing function.

A satisfies a Nash-type inequality if

$$||f||_2^2 B(||f||_2^2) \le (Af, f), \quad \forall f \in \mathcal{D} \quad ||f||_1 \le 1$$

Classical case in \mathbb{R}^d

$$(Nash) \quad c||f||_2^2 \left(||\,f\,||_2^2\right)^{2/n} \, \leq \, (Af,f)$$
 with

$$B(x) = cx^{2/n}$$

Theorem [T.Coulhon. J.F.A 141]

$$(Ult) \quad || T_t ||_{1\to\infty} \le m(t), \quad \forall t > 0.$$

implies Nash type inequality

$$||f||_{2}^{2} B(||f||_{2}^{2}) \le (Af, f), \quad \forall f \in \mathcal{D}, \ ||f||_{1} \le 1$$

$$B(x) = \sup_{s>0} [s \log x - sG(s)]$$

with

$$G(s) = \log m(1/2s)$$

Classical example: Polynomial decay:

Under the general assumptions above on the semigroup:

$$||T_t||_{1\to\infty} \le \frac{c}{t^{\nu/2}} =: m(t)$$

then

$$B(x) = cx^{2/\nu}$$

Another example: One exponential decay

Proposition Let $\gamma > 0$. Assume that

$$||T_t||_{1\to\infty} \le c \exp(1/t^{\gamma}) \quad \forall t > 0$$

Then for all $f \in \mathcal{D}$ with $||f||_1 \le 1$,

$$||f||_{2}^{2} \left[\log_{+}\left(||f||_{2}^{2}\right)\right]^{1+1/\gamma} \le (Af, f)$$

Example: On \mathbb{T}^{∞} ,

$$A = \sum_{k=1}^{+\infty} k^{\frac{1}{\gamma}} \frac{\partial^2}{\partial_k^2}$$

Another example: Double exponential decay

Proposition Let $\beta > 0$. Assume that

$$||T_t||_{1\to\infty} \le c e^{e^{1/t^{\beta}}} \quad \forall t > 0$$

Then for all $f \in \mathcal{D}$ with $||f||_1 \le 1$,

$$||f||_{2}^{2} \log_{+}(||f||_{2}^{2}) \left[\log_{+}(||f||_{2}^{2})\right]^{1/\beta} \le (Af, f)$$

Example: On \mathbb{T}^{∞} ,

$$A = \sum_{k=1}^{+\infty} (\ln k)^{\gamma} \frac{\partial^2}{\partial_k^2}$$

An example of Nash-type inequality **without Ultracontractivity**:

The Ornstein-Uhlenbeck operator $A = \Delta + x\nabla$ on $L^2(\mathbb{R}^n, \gamma_n)$ with the Gaussian measure:

$$\gamma_n(x) = \frac{1}{(2\pi)^{n/2}} \exp\left(\frac{-|x|^2}{2}\right) dx$$

Proposition

$$||f||_2^2 \log_+ (||f||_2^2) \le (Af, f), \qquad ||f||_1 \le 1$$
 then

$$\Theta(x) = x \log_+(x)$$

But (T_t) is not ultracontractive!

Proof. Deduce from Log-Sobolev inequality of Gross (but slightly weaker).

Spectral Theory

Let $A = A^*$ be a non negative self-adjoint

operator (unbounded) on $L^2(X,\mu)$

with μ a positive σ -finite

Spectral theory: $A = \int_0^{+\infty} \lambda \ dE_{\lambda}$ (E_{λ} spectral measure).

Functional calculus: Let $f:[0,+\infty[\to\mathbb{R}]$ be a Borel function,

$$f(A) = \int_0^{+\infty} f(\lambda) dE_{\lambda}$$

Examples:

- $\bullet(t>0)$ $f_t(\lambda)=e^{-t\lambda}$: $T_t=e^{-tA}$ semi-group
- $\bullet f(\lambda) = \lambda^{\alpha}, 0 < \alpha < +\infty$: A^{α} fractional power

•
$$f(\lambda) = \log(1 + \lambda)$$
: $\log(I + A)$

General Question:

• Assume a Nash type inequality holds for A:

$$||f||_{2}^{2} B(||f||_{2}^{2}) \le (Af, f), \quad \forall f \in \mathcal{D}, \ ||f||_{1} \le 1$$

• Is it true that g(A) satisfies a Nash type inequality for some function $g \ge 0$?

If yes: describe the function B_g s.t:

$$||f||_{2}^{2} B_{g}(||f||_{2}^{2}) \le (g(A)f, f)$$

 $\forall f \in \mathcal{D}_{g}, \quad ||f||_{1} \le 1$

In particular with:

$$g(x) = x^{\alpha}$$
, $0 < \alpha < 1$: Fractional powers

$$g(x) = \log(1+x)$$
 : log-semigroup

• Why are we so interested by g(A)?

If $g:[0,+\infty[\to [$ is real and $g\geq 0$ then g(A) is also non negative self adjoint

operator (defined by spectral theory).

Then, we can define the associated semigroup

$$T_t^g = e^{-tg(A)}$$

Locally Compact Abelian Groups Setting

Let G be a l.c.a group with dual group \widehat{G} .

(g is Bernstein function)

• g is a Bernstein function if $g:]0, +\infty[\to [0, +\infty[$

$$g \text{ is } C^{\infty} \quad \text{ and } \quad (-1)^p f^{(p)} \leq 0 \quad \forall p \in \mathbb{N} - \{0\}.$$

• Examples:

 $g(x) = 1 - e^{-sx}$, s > 0: Poisson sgr. with jump s

 $g(x) = x^{\alpha}$, $0 < \alpha < 1$: Fractional powers

 $g(x) = \log(1+x)$: Γ -semigroup

• Why are we so interested by g(A)?

Let μ_t be a convolution semigroup on G given by

$$\widehat{\mu}_t(y) = e^{-t\psi(y)}, \ y \in \widehat{G}$$

with ψ the associated **continuous negative** definite function.

Then $(go\psi)$ is a continuous negative definite function $\Leftrightarrow (\mu_t^g)(y) = e^{-t(go\psi)(y)}, \ y \in \widehat{G}$

is also a convolution semigroup!

Representation formula for Berstein function

$$g(x) = a + bx + \int_0^{+\infty} (1 - e^{-xs}) d\mu(s)$$

with μ a positive measure on $[0, +\infty[$

$$\int_0^1 s \ d\mu(s) < \infty \qquad \int_1^{+\infty} \ d\mu(s) < \infty$$

Examples:

• $g(x) = x^{\alpha}$ (0 < α < 1) then $g(A) = A^{\alpha}$ is the fractional operator.

•
$$g(x) = \log(1+x)$$
 i.e $g(A) = \log(I+A)$.

The operator g(A) generates a Markov semigroup.

Is it true that g(A) satisfies a Nash type inequality?

The answer is yes with A^{α} .

Open problem: Nash inequality for log(I + A)

(Partial results in \mathbb{R}^n and also in the abstract setting)

The Assumptions:

- Let (X, μ) be a measure space with σ -finite measure μ .
- Let A be a non-negative self-adjoint operator with domain $\mathcal{D}(A)\subset L^2(X,\mu)$.
- Suppose that the semigroup $T_t = e^{-tA}$ acts as a contraction on $L^1(X,\mu)$
- Let $B: [0, +\infty[\to [0, +\infty[$ be a non-decreasing function which tends to infinity at infinity.

Theorem (A. Bendikov, P.M)

If the operator A satisfies

$$||f||_{2}^{2} B(||f||_{2}^{2}) \le (Af, f)$$

 $\forall f \in \mathcal{D}(A), ||f||_{1} \le 1$

Then, for any $\alpha > 0$,

$$||f||_{2}^{2} \left[B\left(||f||_{2}^{2} \right) \right]^{\alpha} \leq (A^{\alpha}f, f)$$

$$\forall f \in \mathcal{D}(A^{\alpha}), \quad ||f||_{1} \leq 1.$$

"Picture":

Operators: Functions:

$$A \quad ---->B(x)$$

$$A^{\alpha}$$
 $---->B^{\alpha}(x)$