" Soutenance de thèse de Charlotte RIEUX. | Université d'Orléans

Université d'Orléans

Soutenance de thèse de Charlotte RIEUX.

20/12/2017 - 09:30 - 20/12/2017 - 13:00

URL: http://www.univ-orleans.fr/actus/soutenances

Nom du contact: Etudes Doctorales

Courriel du contact: etudes.doctorales@univ-orleans.fr

Lieu: Auditorium Charles Sadron - 3E avenue de la Recherche Scientifique - campus CNRS Orléans

Titre : Étude des ADN glycosylases de la superfamille structurale Fpg/Nei par modélisation moléculaire, de nouvelles cibles thérapeutiques potentielles dans les stratégies anti-cancer.

Discipline : Biologie structurale et fonctionnelle

ECOLE DOCTORALE SSBCV

Résumé :

L’ADN, support de l’information génétique, est constamment altéré par des agents physiques ou chimiques d’origines endogènes (métabolisme) et exogènes (UV, radiations ionisantes, produits chimiques) dont les effets sont génotoxiques. Ces modifications structurales délétères de l’ADN sont éliminées par de nombreux mécanismes de réparation. Parmi eux, le système de réparation par excision de bases (BER) est initié par les ADN glycosylases qui reconnaissent et éliminent les bases endommagées. Dans certaines stratégies anti-cancéreuses, l’utilisation de la chimiothérapie et la radiothérapie ont pour but la destruction des cellules cancéreuses en altérant leur ADN. Dans ce contexte, les ADN glycosylases réparent l’ADN des cellules traitées et induisent une résistance non désirée au traitement, faisant de ces enzymes des cibles thérapeutiques intéressantes. Le but de ces travaux est d’approfondir la compréhension des mécanismes de réparation des ADN glycosylases de la superfamille structurale Fpg/Nei grâce à la modélisation moléculaire et de pouvoir identifier et concevoir des inhibiteurs de ces enzymes. Les simulations de dynamique moléculaire (DM) nous ont permis d’étudier la « Lesion Caping Loop » (LCL) et de l’associer à la stabilisation de la base endommagée positionnée dans le site actif. Nous avons également étudié les chemins de sortie possibles de la base après coupure par l’enzyme et l’implication de la boucle LCL dans ce phénomène grâce à des simulations de DM ciblée (TMD-1). De plus, les simulations de DM couplées à un protocole d’amarrage moléculaire « aveugle » nous ont permis d’identifier 2 sites de fixations possibles majoritaires pour des petites molécules potentiellement inhibitrices. Un de ces sites correspondant au site actif de hNEIL1 a fait l’objet d’un criblage virtuel d’une partie de la base de molécules Ambinter. Ceci nous a permis d’identifier des molécules potentiellement inhibitrices dont les effets seront prochainement testés in vitro dans l’équipe sur la protéine humaine hNeil1.