Risk of liquidity and contagion of the crisis on the US, UK and Euro Area money markets

Bertrand Blancheton
GREThA, University of Montesquieu-Bordeaux IV
bertrand.blancheton@u-bordeaux4.fr

Christian Bordes
Centre d’économie de la Sorbonne, University of Paris I
christian.bordes@u-paris1.fr

Samuel Maveyraud
GREThA, University of Montesquieu-Bordeaux IV
samuel.maveyraud@u-bordeaux4.fr

Philippe Rous
LAPE, University of Limoges
philippe.rous@unilim.fr

Abstract

The financial crisis has produced a generalized rise of the liquidity risk on the money markets. The purpose of this article is to highlight the mechanisms of contagion between the money markets of the United States, the United Kingdom and the Euro Zone. To give an account of these mechanisms, a BEKK model, in which we introduce a structural break, is adopted. Thus, this model explicitly tests the spillover effects of the liquidity risk premium on money markets before and after August 9, 2007. The results show that before and after the crisis, the spillover effects are observed on money markets.

Code JEL: E4, G15, E58
1 Introduction

The upsurge of the financial crisis stems directly from the solvability crisis of the least well-off American households who took out subprime mortgages. From August 2007, the solvability crisis has turned into a bank liquidity crisis that has contributed to the spillover of international upheaval. The bank liquidity issue has since appeared as the Gordian knot of the financial crisis (suspicion between financial institutions, credit restrictions, etc.).

This paper focuses on the major issue of liquidity on the money markets. It sets out to achieve two purposes. It seeks to analyse the dynamics of bank liquidity problems in the United States, the Euro Zone and the United Kingdom through the evolution of the interest rate spreads between LIBOR (London Interbank Offered Rate) and OIS (Overnight Index Swaps) on the different money markets. It aims to show the growing intensity of difficulties encountered by financial institutions in this matter. In an original way, this paper means to highlight the spreading process of strain on liquidity by testing potential causal connections between the spreads of the three money markets. By extension, it will attempt to reveal the truth about the causes of this liquidity crisis: did it too start in America? Did tensions in American money markets really spread to European markets as suggested by some authors as the Deutschebank? "This week a year ago, on 9 August 2007, a French investment house announced that it would suspend redemption of shares held by investors on a few of its enhanced-return euro money market funds. The reason for this move was that the market for some of the paper in which these funds had invested, US-dollar denominated asset-backed commercial paper, had collapsed. With this announcement, the credit crisis—which was to broaden into a fullblown financial crisis—had started in earnest" (Deutschebank, Global Economic Perspectives, August 4, 2008).

To shed light on these questions, the BEKK model, named after the bivariate
model proposed by Baba et al. (1989), has been adopted. This model reveals in particular the spillovers mechanisms governing the evolution of variances and covariances in spreads between LIBOR and OIS interest rates over time. The originality of this modelling lies with the introduction of a structural break in the equation of central tendency and equations of conditional variances and covariances. Taking this break into account helps to explicitly test the potential modifications of the spillover phenomenon between money markets.

This article is organized in the following way: the second section analyses the meaning of the spreads of interest used, as well as their evolution between January 2007 and November 2008. The third section presents the adopted econometric model (BEKK) and specifies the results obtained. Finally, the last section provides a conclusion to our study.

2 Amplification of liquidity problems on money markets (2007-2008)

Banks make two types of banking operations on the money market to manage liquidity (or cash-flow): unsecured operations and repurchase transactions. These operations lead to risk-taking: credit risk and liquidity risk.

To deal with these risks, banks can resort to the derivatives market, in particular to the overnight index swaps market (OIS) in order to guard against events unforeseen by LIBOR, i.e. the unexpected degradation of the borrower situation and non-anticipated changes in liquidity demand addressed to the creditor and to the market (Kwan, 2009), as well as CDS (credit default swap) to hedge against credit risk.

Of these two types of risks, credit risk for non-secured operations and overnight index swaps operations is almost non-existent, these operations being of short
maturity. Therefore, spread between LIBOR and OIS hardly reflects the credit risk premium. It thus mainly reveals the liquidity premium amount\(^1\). Indeed, the OIS is the fixed-leg rate in the coupon swap. The variable rate is an overnight rate; the interests from the variable leg are capitalized and are subjected to maturity payment in the same way as interests from the fixed-leg. The LIBOR is a cash rate in the sense that the creditor immediately releases (at contract signature) liquidities to transfer them to the borrower whereas there is no immediate cash released with the OIS (cash swap occurs at maturity providing there is a gap between rates). Consequently, the spread between LIBOR and OIS primarily reflects the intensity of bank liquidity problems.

In this paper, we will proceed to analyse three daily series of spread between LIBOR and OIS three months apart, in the United States, the Euro Zone\(^2\) and the United Kingdom.

[Figure 1]

During the first semester of 2007 before the financial crisis arose, spreads seemed quite stable, around 5-6 base points for the Euro Zone, 7-8 base points in the United States and 10 base points in the United Kingdom. None of these markets appeared to be the driving force for the overall dynamics of the three markets.

On August 9, 2007, the spread between LIBOR and OIS increased in all the markets. In the United States, it rose by 13 base points on the 8th to 34 on the 9th and 49 on the 10th. In the Euro Zone, it rose by a smaller proportion by 11 to 18 points and 27 points on the 10th. In the United Kingdom, the increase was even more moderate, from 20 to 25 then 32 points. This

---

\(^1\)The discrepancy between IBOR and REPO from which is subtracted the CDS discrepancy also helps to measure the liquidity premium. The liquidity premium thus obtained is very close to the IBOR-OIS discrepancy that we have adopted in this study. (cf. ECB, 2008, p. 144)

\(^2\)For an analysis of the Euro Area money market we may refer to the article published by the ECB in February 2009.
rise in liquidity price can be linked to upheavals that were then affecting the
pricing system of sophisticated financial products. Indeed, the growing rise of
uncertainty (and thus of the liquidity premium) came from the implementation
of an increasingly complex securitization system that made risk pricing more
and more difficult (Gonzalez-Paramo (2008); Zagaglia (2008)). As a result, the
first American defaults warned operators that they were short of information for
risks associated with these new financial products: they began to have doubts.
On August 9, 2007, uncertainty was so acute that BNP-Paribas suspended the
calculation of the net asset values of three of its funds.

From August 9, the European Central Bank reacted by injecting liquidities
(€94.8 billion) and the Fed injected in turn $24 billion. On August 13, both
banks again injected €48 billion and $2 billion respectively into banks. These
measures had limited impact on the liquidity risk: the spread increased until
September 12, 2007.

[Figure 2]

Over this period, the liquidity risk appeared to be more significant in the
United States and the United Kingdom than in the Euro Zone, for the situation
of banks in the Euro Zone appeared to offer better security against liquidity
issues.

Subsequently, the liquidity risk fell in the United Kingdom by about 50
points: this fall could be related to the emergency aid granted on September
14 by the Bank of England to Northern Rock, the fifth largest bank in Great
Britain. Spreads stabilized to similar levels between September 21 and Novem-

Spreads shot up again from November 15: the rise was halted on December
7 for the dollar, December 11 for the pound and December 7 for the euro. This
reversal could be explained by the concerted support measure from five central
banks (the European Central Bank, the Fed, the Bank of England, the Bank of
Canada and the Bank of Switzerland) which injected liquidities on December
12. Over this period, as shown by the figure above, the euro spread seemed to
lag behind the movements affecting the dollar and pound sterling.

Spreads reached minimum levels on January 29 for the euro and the pound
and on January 30 for the dollar. Subsequently, they rose until April 16 for
the pound, April 30 for the dollar and May 14 for the euro. Then, until mid-
September 2008, spreads stabilized around 70 base points. This relative stability
was certainly linked to the support measures from the Fed and the American
Treasury to help a number of the organisations in difficulty (Fannie Mae and
Freddie Mac on July 13, 2008).

[Figure 3]

September 15, 2008 marked a break in the trajectory of liquidity risk. The
announcement of the failure of Lehman Brothers (the fourth largest investment
bank on Wall Street) led to a sharp rise in spreads. The “too big to fail” principle
that seemed to be governing rescue actions from authorities on an international
level was abandoned. It then put an end to the moral hazard induced by sys-
tematic rescue. This option made operators think that other institutions were
not shielded from a similar sanction. After this episode, interbank loans were
considered riskier, rates on money markets shot up and liquidity problems grew
worse. Unsecured loans seemed frozen as suspicion became widespread amongst
bankers. As shown in figure 3, the LIBOR-OIS spread soared after the failure of
Lehman Brothers. It peaked on October 10 with 366 base points for the dollar
and 194 base points for the euro. For the pound, the spread kept on increasing
until November 6, 2008 (it then reached 298 base points), while it fell in the
United States and stabilized in the Euro Zone. During this period of extreme
tension, risk remained lower for the euro.
This description of the evolution of liquidity risk suggests that support from central banks had, at best, helped to stabilize the liquidity premium level rather than sharply reduce it. Each period of tension on money markets implied a long-term and cumulative rise between LIBOR and OIS. This hysteresis effect may be explained by the observed substitution between repurchase transactions and non-secured operations (LIBOR). Indeed, on money markets, repurchase transactions were preferred to non-secured actions as they naturally offer better security. Considering the increase of counterparty risk, it was more precisely repurchased transactions on Treasury bills that were preferred to non-secured transactions (without guaranty). Accordingly, the interest rate on repurchase transactions with Treasury bills security decreased so much that it dropped below the LIBOR or the OIS (Hördahl and King, 2008). The absorption of liquidity on the interbank market led to a rise in the LIBOR in such a way that the spread between the LIBOR and OIS rose.

The liquidity crisis associated with the financial crisis gives food for thought over the existence of contagion mechanisms that could have been set between the different money markets. We would like to determine more particularly, the extent to which the periods of strain on money markets in the Euro Zone and Great Britain together with the subsequent BCE and Bank of England’s support actions, may be primarily explained by the rise in the liquidity risk on the American money market or whether the absorption of liquidity was simultaneous on the markets we are studying.

3 Frame of analysis and findings

To highlight the potential links between three variables Y1, Y2 and Y3, representing more specifically the daily variances in spread rates observed in the United States, the United Kingdom and the Euro Zone over the period from
January 3, 2002 to November 28, 2008, the BEKK model (Beirne, Caporale, Schulze-Ghattaz et Spagnolo, 2008) has been adopted. This model helps to evidence propagation mechanisms that govern the evolution of variances and covariances of these variables over time.

Considering the acute instability that existed in money markets after the failure of Lehman Brothers and therefore the unstable character of series of spreads, this period cannot be included in our econometric analysis. Then, we will only focus on the period from January 3, 2002 to September 12, 2008.

Can the three series be directly modelized over this period with a multi-variate autoregressive BEKK-type model? To do so, unit-root tests must conclude with the rejection of H0 (chart 1). Yet, as shown by tests performed on level series (ADF test with constant) and over the period from January 3, 2002 to September 12, 2008, this hypothesis can never be rejected irrespective of the chronicle studied.

We will next proceed to a unit-root test over the same period from January 3, 2002 to September 12, 2008, introducing a structural break on August 9, 2007, the day the financial crisis began. The technique used is the technique of Westerlund (2006).

\[ Y_t = \alpha + \tau t + \delta D_t + z_t \]  
\[ \Delta z_t = \phi z_{t-1} + \sum_{j=1}^{p} \gamma_j \Delta z_{t-j} + e_t \]  

where \( e_t \) is deemed to be pure noise.
t is a trend variable, $z_t$ a static component if $\phi < 0$ and $D_t$ is a dummy variable equal to 1 from August 9, 2007 or 0 otherwise.

Coefficients $\tau$ and $\delta$ are estimated from the equation in difference:

$$\Delta Y_t = \tau + \delta \Delta D_t + \Delta z_t$$  (3)

and the estimated value of $\alpha$ is determined as:

$$\widehat{\alpha} = Y_1 - \tau$$  (4)

The unit-root test is conducted from the variable $t$, corrected from the structural break:

$$\widehat{S}_t = Y_t - \widehat{\alpha} - \tau t - \widehat{\delta} D_t$$  (5)

Chart 2 reproduces the results of the three tests over the period January 3, 2002 to September 12, 2008 when the reality of the structural break of August 9, 2007 is taken into account.

[Table 2]

The three series are static around a constant if we take the trouble to consider the existence of a break on August 9, 2007.

We then proceed to the multivariate modelling of the three series. The model adopted is a trivariate BEKK model with 1 structural break. In matrix form, this model is written:

**Equations of average values:**

$$Y_t = \Delta_t \alpha + [I - \Delta_t] \beta + \phi Y_{t-1} + \varepsilon_t$$

Where $Y_t$ is a column vector with three components: $Y'_t = [Y^{1}_t, Y^{2}_t, Y^{3}_t]$; $\alpha$ (resp. $\beta$) is likewise the column vector with three components: constants that
prevail from August 9, 2007 (resp., before this date); $\phi$ is the supposed diagonal matrix of autoregressive coefficients to the order of one; finally, $\Delta_t$ is an identity matrix of dimension 3 as from August 9, 2007 and nil before this date.

**Equations of conditional variances – covariances**

We set $H_t$ as the symmetrical matrix of conditional variances and covariances of $\Delta_t$ errors:

$$H_t = \begin{bmatrix} h_{11,t} & h_{12,t} & h_{13,t} \\ h_{12,t} & h_{22,t} & h_{23,t} \\ h_{13,t} & h_{23,t} & h_{33,t} \end{bmatrix}$$

Generically, we modelize these conditional variances and covariances as follows:

$$H_t = C\Delta_tC + D'[I - \Delta_t]D + A'\varepsilon_t\Delta_t\varepsilon'_tA' + B'\varepsilon_t[I - \Delta_t]\varepsilon'_tB + G'H_{t-1}\Delta_tG + F'H_{t-1}[I - \Delta_t]F$$

(6)

Considering the way the $\Delta_t$ matrix is constructed, we note that the C, A and G matrices are those of coefficients governing the evolutions of conditional variances – covariances from the structural break; matrices D, B and F are those prevailing before this break.

Matrices C and D have, whatever the hypothesis made subsequently on the propagation mechanism, a superior triangular structure:

$$C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ 0 & c_{22} & c_{23} \\ 0 & 0 & c_{33} \end{bmatrix}, \quad D = \begin{bmatrix} d_{11} & d_{12} & d_{13} \\ 0 & d_{22} & d_{23} \\ 0 & 0 & d_{33} \end{bmatrix}$$
The structure of matrices $A$, $B$, $F$ and $G$ varies according to the hypothesis made on the spreading mechanism of volatility levels.

The **“complete” model** $M1$ introduces no restrictions on these volatilities propagation mechanisms: the conditional variance in zone $i$ is determined not only by its own lag but also by those of conditional variances of other zones:

$$
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
2 & 2 & 2 \\
a_{31} & a_{32} & a_{33}
\end{bmatrix},
B = \begin{bmatrix}
b_{11} & b_{12} & b_{13} \\
2 & 2 & 2 \\
b_{31} & b_{32} & b_{33}
\end{bmatrix},
G = \begin{bmatrix}
g_{11} & g_{12} & g_{13} \\
g_{31} & g_{32} & g_{33}
\end{bmatrix},
F = \begin{bmatrix}
f_{11} & f_{12} & f_{13} \\
2 & 2 & 2 \\
f_{31} & f_{32} & f_{33}
\end{bmatrix}
$$

The **“triangular” model** $M2$ postulates an oriented propagation $Y3 \rightarrow Y2 \rightarrow Y1$. It is materialized by a restriction of nullity concerning the superior triangle of each $A$, $B$, $G$ and $F$ matrices:

$$
A = \begin{bmatrix}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33}
\end{bmatrix},
B = \begin{bmatrix}
b_{11} & 0 & 0 \\
b_{21} & b_{22} & 0 \\
b_{31} & b_{32} & b_{33}
\end{bmatrix},
G = \begin{bmatrix}
g_{11} & 0 & 0 \\
g_{21} & g_{22} & 0 \\
g_{31} & g_{32} & g_{33}
\end{bmatrix},
F = \begin{bmatrix}
f_{11} & 0 & 0 \\
f_{21} & f_{22} & 0 \\
f_{31} & f_{32} & f_{33}
\end{bmatrix}
$$

According to this scheme, the conditional variance in zone 3 can only depend on its own lags while the one in zone 1 depends both on its own lag and on lags of the conditional variances of zones 2 and 3.
Lastly, the “diagonal” model supposes that each variance and covariance never depends only on its own lags and squares or cross-products of corresponding lagged-innovations. The structure of matrices $A$, $B$, $G$ and $F$ is of a diagonal type:

$$A = \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & 0 & 0 \\ 0 & b_{22} & 0 \\ 0 & 0 & b_{33} \end{bmatrix}$$

$$G = \begin{bmatrix} g_{11} & 0 & 0 \\ 0 & g_{22} & 0 \\ 0 & 0 & g_{33} \end{bmatrix} \quad F = \begin{bmatrix} f_{11} & 0 & 0 \\ 0 & f_{22} & 0 \\ 0 & 0 & f_{33} \end{bmatrix}$$

The equations of variances and covariances associated with each of these three models are reproduced in annex 1.

Chart 3 provides the values obtained for the log-likelihood function of the sample associated with the triangular model for each potential scheme of propagation.

From this table it ensues that if a “triangular”-type model should challenge the complete model, the UK → EuroZone → USA scheme would be favoured. It is thus on the basis of this scheme that several series of tests have been conducted:

- Stability tests focusing on each of the three models (allowing a decision on the reality of the structural break as far as volatilities propagation mechanisms are concerned)
Tests on various restrictions that may be added to coefficients and correspond to different propagation schemes.

When these tests involve model M2, we always work with a “triangular” propagation scheme UK $\rightarrow$ EuroZone $\rightarrow$ USA.

Chart 4 indicates that whatever the model considered the models’s null hypothesis of stability must be rejected in favour of instability around August 9, 2007.

[Table 4]

We will now test a number of restrictions relating to the values of the different coefficients (chart 5). Are tested:

- $H_0$: model M2 versus $H_A$: model M1
- $H_0$: model M3 versus $H_A$: model M2
- $H_0$: triangular structure before the break and complete after versus $H_A$: complete model over the whole period
- $H_0$: triangular structure after the break and complete before versus $H_A$: complete model over the whole period.

[Table 5]

We can firmly deduce that the “complete” model must be favoured. Therefore, the results of this valuation are reproduced in annex 2.

Charts 6 and 7 recap for each equation of the variance and for each period (before and after the break) the coefficients connecting the $h_{ii\, t}$ variance.

- To its $h_{ii\, t-1}$ lag
- To those of other conditional variances $h_{jj\, t-1}$
4 Conclusion

This paper, focused on the major issue of liquidity on money markets, has set out to highlight several phenomena and produce several findings. The analysis of the dynamics of bank liquidity issues in the United States, the Euro Zone and the United Kingdom through the evolution of the interest rate spread between LIBOR and OIS in various money markets indicates the growing intensity of the liquidity risk as suspicion grew between financial institutions. From this perspective, the failure of Lehman Brothers marked a break: after September 15, 2008 the price of liquidity shot up. Support actions from central banks only served to contain tensions around liquidity between August 2007 and September 2008 and they seemed overwhelmed by the growing distrust amongst financial institutions thereafter.

Then, in an original and novative manner, the article has highlighted the propagation process of the liquidity crisis by testing, with a trivariate BEKK model in which a break was introduced, the causal links between spreads in the three money markets. Tests could evidence the following results. Over the period of analysis chosen for the econometric study (i.e. from January 3, 2002 to September 12, 2008), we see that before and after the rise of the financial crisis, the overspill between money markets was manifold: interest spreads interacted. On this basis, the bank liquidity crisis would not have come specifically from America and would not have spread from the United States to Europe.

\[ \text{Tables 6 and 7} \]

---

\footnote{We deliberately leave aside the interpretation of coefficients associated with covariances and cross-products of past innovations.}
References


<table>
<thead>
<tr>
<th>Spread</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spread_us_3M</td>
<td>-0.940</td>
<td>0.776</td>
</tr>
<tr>
<td>Spread_euro_3M</td>
<td>-1.335</td>
<td>0.615</td>
</tr>
<tr>
<td>Spread_bp_3M</td>
<td>-2.146</td>
<td>0.227</td>
</tr>
</tbody>
</table>

Unit-root tests: the number of lags is automatically determined on the basis of the Min(SIC) criterion. The Prob. column provides the risk threshold from which it becomes possible to reject H0.
Table 2
Unit-root tests (ADF) for each series of spreads taking into account structural breaks
(From January 3, 2002 to September 12, 2008)

<table>
<thead>
<tr>
<th>Spread</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spread_us_3M</td>
<td>-3.23</td>
<td>0.018</td>
</tr>
<tr>
<td>Spread_euro_3M</td>
<td>-2.944</td>
<td>0.041</td>
</tr>
<tr>
<td>Spread_bp_3M</td>
<td>-3.022</td>
<td>0.033</td>
</tr>
</tbody>
</table>

Unit-root tests: the number of lags is automatically determined on the basis of the Min(SIC) criterion. The Prob. column provides the risk threshold from which it becomes possible to reject H0.
Table 3
Log likelihood function of the “triangular” type BEKK model

<table>
<thead>
<tr>
<th>Propagation scheme</th>
<th>Log L</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA → EURO → UK</td>
<td>14303</td>
</tr>
<tr>
<td>USA → UK → EURO</td>
<td>14558</td>
</tr>
<tr>
<td>EURO → USA → UK</td>
<td>13468</td>
</tr>
<tr>
<td>EURO → UK → USA</td>
<td>14464</td>
</tr>
<tr>
<td>UK → EURO → USA</td>
<td>14681</td>
</tr>
<tr>
<td>UK → USA → EURO</td>
<td>14480</td>
</tr>
</tbody>
</table>
Table 4
Stability hypothesis tests of conditional variance – covariance equations

<table>
<thead>
<tr>
<th>Model</th>
<th>Chi2 Stat</th>
<th>P – Value</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complet</td>
<td>658.98</td>
<td>0.0000</td>
<td>{c_{ii} = d_{ii} \forall i} ; {c_{ij} = d_{ij} \forall i, j, j &gt; i} ; {a_{ij} = b_{ij}, f_{ij} = g_{ij} \forall i, j}</td>
</tr>
<tr>
<td>Triangulaire(^1)</td>
<td>272.51</td>
<td>0.0000</td>
<td>{c_{ii} = d_{ii} \forall i} ; {c_{ij} = d_{ij} \forall i, j, j &gt; i} ; {a_{ij} = b_{ij}, f_{ij} = g_{ij} \forall i, j, i \geq j}</td>
</tr>
<tr>
<td>Diagonal</td>
<td>856.95</td>
<td>0.0000</td>
<td>{c_{ii} = d_{ii} \forall i} ; {c_{ij} = d_{ij} \forall i, j, j &gt; i} ; {a_{ii} = b_{ii}, f_{ii} = g_{ii} \forall i}</td>
</tr>
</tbody>
</table>

\(^1\) For the “triangular” model, we suppose that the propagation scheme starts from the UK zone, passing through the Euro Zone to finally reach the USA zone.
Table 5
Tests on restrictions that may be added to the different models

<table>
<thead>
<tr>
<th>Null hypothesis</th>
<th>Alternative hyp.</th>
<th>Chi2 – Stat</th>
<th>P – Value</th>
<th>Restrictions : nullity of coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2 (triangular)</td>
<td>M1 (complete)</td>
<td>144.44</td>
<td>0.0000</td>
<td>$a_{12}$, $a_{13}$, $a_{23}$, $b_{12}$, $b_{13}$, $b_{23}$, $g_{12}$, $g_{13}$, $g_{23}$, $f_{12}$, $f_{13}$, $f_{23}$</td>
</tr>
<tr>
<td>M3 (diagonal)</td>
<td>M2 (triangular)</td>
<td>136.54</td>
<td>0.0000</td>
<td>$a_{21}$, $a_{31}$, $a_{32}$, $b_{21}$, $b_{31}$, $b_{32}$, $g_{21}$, $g_{31}$, $g_{32}$, $f_{21}$, $f_{31}$, $f_{32}$</td>
</tr>
<tr>
<td>Triangular then complete</td>
<td>M1 (complete)</td>
<td>109.42</td>
<td>0.0000</td>
<td>$f_{12}$, $f_{13}$, $f_{23}$, $b_{12}$, $b_{13}$, $b_{23}$</td>
</tr>
<tr>
<td>Complete then triangular</td>
<td>M1 (complete)</td>
<td>34.35</td>
<td>0.0000</td>
<td>$g_{12}$, $g_{13}$, $g_{23}$, $a_{12}$, $a_{13}$, $a_{23}$</td>
</tr>
</tbody>
</table>
Table 6
Coefficients connecting conditional variances to their past values and past innovation squares

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
<th>Before</th>
<th>After</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{11 \cdot 1}$</td>
<td>$f_{11}$</td>
<td>$g_{11}$</td>
<td>$f_{12}$</td>
<td>$g_{12}$</td>
<td>$f_{13}$</td>
<td>$g_{13}$</td>
</tr>
<tr>
<td>$h_{22 \cdot 1}$</td>
<td>$f_{21}$</td>
<td>$g_{21}$</td>
<td>$f_{22}$</td>
<td>$g_{22}$</td>
<td>$f_{23}$</td>
<td>$g_{23}$</td>
</tr>
<tr>
<td>$h_{33 \cdot 1}$</td>
<td>$f_{31}$</td>
<td>$g_{31}$</td>
<td>$f_{32}$</td>
<td>$g_{32}$</td>
<td>$f_{33}$</td>
<td>$g_{33}$</td>
</tr>
<tr>
<td>$\varepsilon_{1 \cdot 1}$</td>
<td>$b_{11}$</td>
<td>$a_{11}$</td>
<td>$b_{12}$</td>
<td>$a_{12}$</td>
<td>$b_{13}$</td>
<td>$a_{13}$</td>
</tr>
<tr>
<td>$\varepsilon_{2 \cdot 1}$</td>
<td>$b_{21}$</td>
<td>$a_{21}$</td>
<td>$b_{22}$</td>
<td>$a_{22}$</td>
<td>$b_{23}$</td>
<td>$a_{23}$</td>
</tr>
<tr>
<td>$\varepsilon_{3 \cdot 1}$</td>
<td>$b_{31}$</td>
<td>$a_{31}$</td>
<td>$b_{32}$</td>
<td>$a_{32}$</td>
<td>$b_{33}$</td>
<td>$a_{33}$</td>
</tr>
</tbody>
</table>

Note: the coefficient appears in standard character; it must be squared. The test statistics for the hypothesis of coefficient nullity is in brackets and italics.
Table 7
Values and significativity of coefficients linking conditional variances to their past values and past innovation squares before and after the break of August 9, 2007
(1 = USA, 2 = Euro Zone, 3 = UK)

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
<th>Before</th>
<th>After</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_{11t-1}$</td>
<td>0.877</td>
<td>0.094</td>
<td>0.0103</td>
<td>0.014</td>
<td>0.149</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(94.59)</td>
<td>(88.34)</td>
<td>(2.19)</td>
<td>(4.07)</td>
<td>(6.16)</td>
<td>(0.56)</td>
</tr>
<tr>
<td>$h_{22t-1}$</td>
<td>-0.017</td>
<td>-0.008</td>
<td>0.845</td>
<td>0.909</td>
<td>0.017</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(-1.27)</td>
<td>(-0.38)</td>
<td>(113.64)</td>
<td>(104.31)</td>
<td>(0.433)</td>
<td>(-0.05)</td>
</tr>
<tr>
<td>$h_{33t-1}$</td>
<td>0.035</td>
<td>-0.007</td>
<td>0.018</td>
<td>0.020</td>
<td>0.810</td>
<td>0.718</td>
</tr>
<tr>
<td></td>
<td>(3.81)</td>
<td>(-0.28)</td>
<td>(3.42)</td>
<td>(1.32)</td>
<td>(26.81)</td>
<td>(45.95)</td>
</tr>
<tr>
<td>$\varepsilon_{1t-1}^2$</td>
<td>0.464</td>
<td>0.437</td>
<td>-0.030</td>
<td>0.006</td>
<td>-0.247</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>(28.04)</td>
<td>(17.26)</td>
<td>(-3.99)</td>
<td>(0.69)</td>
<td>(-5.06)</td>
<td>(0.71)</td>
</tr>
<tr>
<td>$\varepsilon_{2t-1}^2$</td>
<td>0.024</td>
<td>-0.152</td>
<td>0.486</td>
<td>0.319</td>
<td>0.089</td>
<td>-0.049</td>
</tr>
<tr>
<td></td>
<td>(0.92)</td>
<td>(-4.29)</td>
<td>(30.43)</td>
<td>(12.46)</td>
<td>(1.33)</td>
<td>(-2.78)</td>
</tr>
<tr>
<td>$\varepsilon_{3t-1}^2$</td>
<td>-0.019</td>
<td>0.057</td>
<td>0.016</td>
<td>0.028</td>
<td>0.397</td>
<td>0.481</td>
</tr>
<tr>
<td></td>
<td>(-1.88)</td>
<td>(1.67)</td>
<td>(4.33)</td>
<td>(1.53)</td>
<td>(15.25)</td>
<td>(21.62)</td>
</tr>
</tbody>
</table>

Note: the coefficient appears in standard character; it must be squared. The test statistics for the hypothesis of coefficient nullity is in brackets and italics.
Figure 1:
Spreads between the LIBOR and OIS over the whole period

![Graph showing spreads between the LIBOR and OIS over time.](image-url)
Figure 2:
Spreads between the LIBOR and OIS between August 1, 2007 and September 12, 2008
Figure 3:
Spreads between the LIBOR and OIS between September 15, 2008 and November 28, 2008
Annex 1: conditional variances and covariances in the different models

“Complete” model M1

$$h_{1t} = \delta_{1t} c_{1t}^2 + \delta_{2t} d_{1t}^2 + \delta_{3t} \varepsilon_{1t} \varepsilon_{1t} + \delta_{4t} a_{1t} e_{1t} + \delta_{5t} a_{2t} e_{2t} + \delta_{6t} a_{3t} e_{3t}$$

$$h_{2t} = \delta_{1t} c_{2t}^2 + \delta_{2t} c_{2t}^2 + \delta_{3t} d_{2t}^2 + \delta_{4t} d_{2t}^2 + \delta_{5t} \varepsilon_{2t} \varepsilon_{2t} + \delta_{6t} a_{2t} e_{2t} + \delta_{7t} a_{3t} e_{3t}$$

$$h_{3t} = \delta_{1t} c_{3t}^2 + \delta_{2t} c_{3t}^2 + \delta_{3t} d_{3t}^2 + \delta_{4t} d_{3t}^2 + \delta_{5t} d_{3t}^2 + \delta_{6t} \varepsilon_{3t} \varepsilon_{3t} + \delta_{7t} a_{3t} e_{3t}$$

$$h_{12t} = \delta_{1t} c_{1t} c_{2t} + \delta_{2t} c_{1t} c_{2t} + \delta_{3t} d_{1t} d_{2t} + \delta_{4t} d_{1t} d_{2t} + \delta_{5t} \varepsilon_{1t} \varepsilon_{2t} + \delta_{6t} a_{1t} e_{1t} + \delta_{7t} a_{2t} e_{2t}$$

$$h_{13t} = \delta_{1t} c_{1t} c_{3t} + \delta_{2t} c_{1t} c_{3t} + \delta_{3t} d_{1t} d_{3t} + \delta_{4t} d_{1t} d_{3t} + \delta_{5t} \varepsilon_{1t} \varepsilon_{3t} + \delta_{6t} a_{1t} e_{1t} + \delta_{7t} a_{3t} e_{3t}$$

$$h_{23t} = \delta_{1t} c_{2t} c_{3t} + \delta_{2t} c_{2t} c_{3t} + \delta_{3t} d_{2t} d_{3t} + \delta_{4t} d_{2t} d_{3t} + \delta_{5t} \varepsilon_{2t} \varepsilon_{3t} + \delta_{6t} a_{2t} e_{2t} + \delta_{7t} a_{3t} e_{3t}$$

$$h_{123t} = \delta_{1t} c_{1t} c_{2t} c_{3t} + \delta_{2t} c_{1t} c_{2t} c_{3t} + \delta_{3t} d_{1t} d_{2t} d_{3t} + \delta_{4t} d_{1t} d_{2t} d_{3t} + \delta_{5t} \varepsilon_{1t} \varepsilon_{2t} \varepsilon_{3t} + \delta_{6t} a_{1t} e_{1t} + \delta_{7t} a_{2t} e_{2t} + \delta_{8t} a_{3t} e_{3t}$$

26
\[ h_{11} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{22} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{33} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{12} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{23} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{31} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{21} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{32} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{33} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{13} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{12} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{23} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{31} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{21} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{32} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]

\[ h_{33} = \delta_1 t + \delta_2 t + \delta_3 t - 1 + \delta_4 t \]
h_{23,t} = \delta_{11}^2 c_{12} c_{13} + \delta_{11}^2 c_{22} c_{23} + \delta_{21}^2 d_{12} d_{13} + \delta_{21}^2 d_{22} d_{23} + \delta_{11}^2 a_{22} a_{33} e_{23,1} e_{33,1} + \delta_{21}^2 b_{22} b_{33} e_{23,1} e_{33,1} + \delta_{21} f_{22} f_{33} h_{23,t-1} + \delta_{11} g_{22} g_{33} h_{23,t-1}
### Annex 2: estimation of the complete model (1 = USA, 2 = EURO, 3 = UK)

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1(1)</td>
<td>0.002301</td>
<td>0.001102</td>
<td>2.087082</td>
<td>0.0369</td>
</tr>
<tr>
<td>D1(1)</td>
<td>0.003088</td>
<td>0.000242</td>
<td>12.76605</td>
<td>0.0000</td>
</tr>
<tr>
<td>A1(1)</td>
<td>0.436948</td>
<td>0.025318</td>
<td>17.25871</td>
<td>0.0000</td>
</tr>
<tr>
<td>A2(1)</td>
<td>-0.152294</td>
<td>0.035490</td>
<td>-4.291212</td>
<td>0.0000</td>
</tr>
<tr>
<td>A3(1)</td>
<td>0.056764</td>
<td>0.034024</td>
<td>1.668353</td>
<td>0.0952</td>
</tr>
<tr>
<td>B1(1)</td>
<td>0.464620</td>
<td>0.016569</td>
<td>28.04094</td>
<td>0.0000</td>
</tr>
<tr>
<td>B2(1)</td>
<td>0.023861</td>
<td>0.025997</td>
<td>0.917846</td>
<td>0.3587</td>
</tr>
<tr>
<td>B3(1)</td>
<td>-0.018778</td>
<td>0.010001</td>
<td>-1.877543</td>
<td>0.0604</td>
</tr>
<tr>
<td>F1(1)</td>
<td>0.877383</td>
<td>0.009275</td>
<td>94.59528</td>
<td>0.0000</td>
</tr>
<tr>
<td>F2(1)</td>
<td>-0.017475</td>
<td>0.013659</td>
<td>-1.279401</td>
<td>0.2008</td>
</tr>
<tr>
<td>F3(1)</td>
<td>0.035517</td>
<td>0.009307</td>
<td>3.815932</td>
<td>0.0001</td>
</tr>
<tr>
<td>G1(1)</td>
<td>0.904504</td>
<td>0.010238</td>
<td>88.34540</td>
<td>0.0000</td>
</tr>
<tr>
<td>G2(1)</td>
<td>-0.008332</td>
<td>0.021806</td>
<td>-0.382087</td>
<td>0.7024</td>
</tr>
<tr>
<td>G3(1)</td>
<td>-0.006805</td>
<td>0.024472</td>
<td>-0.278088</td>
<td>0.7809</td>
</tr>
<tr>
<td>C1(2)</td>
<td>-0.000963</td>
<td>0.001144</td>
<td>-0.841498</td>
<td>0.4001</td>
</tr>
<tr>
<td>C2(2)</td>
<td>0.002015</td>
<td>0.000741</td>
<td>2.719864</td>
<td>0.0065</td>
</tr>
<tr>
<td>D1(2)</td>
<td>3.28E-05</td>
<td>0.000181</td>
<td>0.180762</td>
<td>0.8566</td>
</tr>
<tr>
<td>D2(2)</td>
<td>0.001498</td>
<td>0.000102</td>
<td>14.68051</td>
<td>0.0000</td>
</tr>
<tr>
<td>A1(2)</td>
<td>0.066395</td>
<td>0.009233</td>
<td>6.92630</td>
<td>0.4885</td>
</tr>
<tr>
<td>A2(2)</td>
<td>0.319416</td>
<td>0.025638</td>
<td>12.45866</td>
<td>0.0000</td>
</tr>
<tr>
<td>A3(2)</td>
<td>0.028422</td>
<td>0.018578</td>
<td>1.529901</td>
<td>0.1260</td>
</tr>
<tr>
<td>B1(2)</td>
<td>-0.029601</td>
<td>0.007424</td>
<td>-3.987024</td>
<td>0.0001</td>
</tr>
<tr>
<td>B2(2)</td>
<td>0.485696</td>
<td>0.015962</td>
<td>30.42873</td>
<td>0.0000</td>
</tr>
<tr>
<td>B3(2)</td>
<td>0.015883</td>
<td>0.003664</td>
<td>4.335251</td>
<td>0.0000</td>
</tr>
<tr>
<td>F1(2)</td>
<td>0.010353</td>
<td>0.004726</td>
<td>2.190507</td>
<td>0.0285</td>
</tr>
<tr>
<td>F2(2)</td>
<td>0.844896</td>
<td>0.007435</td>
<td>113.6437</td>
<td>0.0000</td>
</tr>
<tr>
<td>F3(2)</td>
<td>0.018598</td>
<td>0.005430</td>
<td>3.424898</td>
<td>0.0006</td>
</tr>
<tr>
<td>G1(2)</td>
<td>0.014414</td>
<td>0.003543</td>
<td>4.068507</td>
<td>0.0000</td>
</tr>
<tr>
<td>G2(2)</td>
<td>0.909865</td>
<td>0.008723</td>
<td>104.3116</td>
<td>0.0000</td>
</tr>
<tr>
<td>G3(2)</td>
<td>0.020138</td>
<td>0.015230</td>
<td>1.322256</td>
<td>0.1861</td>
</tr>
<tr>
<td>C1(3)</td>
<td>0.001868</td>
<td>0.002791</td>
<td>0.669134</td>
<td>0.5034</td>
</tr>
<tr>
<td>C2(3)</td>
<td>-0.001700</td>
<td>0.002560</td>
<td>-0.664289</td>
<td>0.5065</td>
</tr>
<tr>
<td>C3(3)</td>
<td>0.007684</td>
<td>0.000555</td>
<td>13.84670</td>
<td>0.0000</td>
</tr>
<tr>
<td>D1(3)</td>
<td>-0.005688</td>
<td>0.001368</td>
<td>-4.159302</td>
<td>0.0000</td>
</tr>
<tr>
<td>D2(3)</td>
<td>-0.010311</td>
<td>0.001807</td>
<td>-5.705053</td>
<td>0.0000</td>
</tr>
<tr>
<td>D3(3)</td>
<td>-0.003115</td>
<td>0.004764</td>
<td>-0.653954</td>
<td>0.5131</td>
</tr>
<tr>
<td>A1(3)</td>
<td>0.008455</td>
<td>0.011921</td>
<td>0.709252</td>
<td>0.4782</td>
</tr>
<tr>
<td>A2(3)</td>
<td>-0.049595</td>
<td>0.017853</td>
<td>-2.777896</td>
<td>0.0055</td>
</tr>
<tr>
<td>A3(3)</td>
<td>0.481515</td>
<td>0.022271</td>
<td>21.62087</td>
<td>0.0000</td>
</tr>
<tr>
<td>B1(3)</td>
<td>-0.246799</td>
<td>0.048736</td>
<td>-5.064038</td>
<td>0.0000</td>
</tr>
<tr>
<td>B2(3)</td>
<td>0.089035</td>
<td>0.066819</td>
<td>1.332480</td>
<td>0.1827</td>
</tr>
<tr>
<td>B3(3)</td>
<td>0.397261</td>
<td>0.026051</td>
<td>15.24955</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>F1(3)</td>
<td>0.148947</td>
<td>0.024155</td>
<td>6.166347</td>
<td>0.0000</td>
</tr>
<tr>
<td>F2(3)</td>
<td>0.017447</td>
<td>0.040254</td>
<td>0.433410</td>
<td>0.6647</td>
</tr>
<tr>
<td>F3(3)</td>
<td>0.809700</td>
<td>0.030202</td>
<td>26.80922</td>
<td>0.0000</td>
</tr>
<tr>
<td>G1(3)</td>
<td>0.003631</td>
<td>0.006464</td>
<td>0.561728</td>
<td>0.5743</td>
</tr>
<tr>
<td>G2(3)</td>
<td>-0.000869</td>
<td>0.017060</td>
<td>-0.050939</td>
<td>0.9594</td>
</tr>
<tr>
<td>G3(3)</td>
<td>0.717851</td>
<td>0.015621</td>
<td>45.95497</td>
<td>0.0000</td>
</tr>
<tr>
<td>ALFA(1)</td>
<td>-0.002139</td>
<td>0.000600</td>
<td>-3.562974</td>
<td>0.0004</td>
</tr>
<tr>
<td>BETA(1)</td>
<td>-0.000828</td>
<td>0.000173</td>
<td>-4.772610</td>
<td>0.0000</td>
</tr>
<tr>
<td>PHI(1)</td>
<td>-0.376594</td>
<td>0.014401</td>
<td>-26.15135</td>
<td>0.0000</td>
</tr>
<tr>
<td>ALFA(2)</td>
<td>-0.000154</td>
<td>0.000404</td>
<td>-0.381695</td>
<td>0.7027</td>
</tr>
<tr>
<td>BETA(2)</td>
<td>-0.000577</td>
<td>7.91E-05</td>
<td>-7.289147</td>
<td>0.0000</td>
</tr>
<tr>
<td>PHI(2)</td>
<td>-0.386478</td>
<td>0.011338</td>
<td>-34.08760</td>
<td>0.0000</td>
</tr>
<tr>
<td>ALFA(3)</td>
<td>8.20E-05</td>
<td>0.000359</td>
<td>0.228298</td>
<td>0.8194</td>
</tr>
<tr>
<td>BETA(3)</td>
<td>-0.007639</td>
<td>0.000540</td>
<td>-14.13751</td>
<td>0.0000</td>
</tr>
<tr>
<td>PHI(3)</td>
<td>-0.248709</td>
<td>0.014444</td>
<td>-17.21825</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Log likelihood 14516.94  Akaike info criterion -16.58250
Avg. log likelihood 8.323931  Schwarz criterion -16.40391
Number of Coefs. 57  Hannan-Quinn criter. -16.51647