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Abstract
The notion of Structural Example has recently emerged in the domain of

grammatical inference. It allows to solve the old difficult problem of learning
a grammar from positive examples but seems to be a very had hoc structure
for this purpose. In this article, we first propose a formal version of the
Principle of Compositionality based on Structural Examples. We then give a
sufficient condition under which the Structural Examples used in
grammatical inference can be inferred from sentences and their semantic
representations, which are supposed to be naturally available in the
environment of children learning their mother tongue. Structural Examples
thus appear as an interesting intermediate representation between syntax and
semantics. This leads us to a new formal model of language learning where
semantic information play a crucial role.

1. Introduction
The problem of grammatical inference from positive examples consists in

the design of algorithms able to identify a formal grammar from sentences it
generates. It is the computational version of the problem of children language
learning and is then of great cognitive interest.

But strings of words are not informative enough to specify a grammar : it
has been proved that even the class of regular languages is not learnable from
positive examples in usual models of learning ([4, 14]).

To overcome this difficulty, a recently investigated solution consists in
providing Structural Examples to the learner instead of strings of words ([2,
6, 7, 10, 11]). A Structural Example is a more or less simplified version of
the syntactic (or analysis) tree.

But this solution is not very satisfying from a cognitive point of view, as
Structural Examples seem to be very unnatural species. The purpose of this
article is to provide a new interpretation of Structural Examples, as a relevant
intermediate level between syntax and semantics. This interpretation allows
to formulate a simple rule-based definition of the Principle of
Compositionality and a semantic-based model of natural language learning.

2. Structural Examples used in Grammatical Inference
Let us call a composition a tree whose leaves are taken among a finite

vocabulary 
�

 and whose internal nodes are indexed by symbols belonging to
a signature � . In the following, we will note � ={g1, …, gm}, for some integer
m.



For any (context-free) grammar G, let us partition the set of rules of G and
associate a unique symbol taken among �  with each class. A composition
built on the vocabulary �  of G is said to be a Structural Example for G iff
there exists a syntactic tree generating the corresponding sentence in G so
that the composition is obtained by replacing every non terminal symbol of
this syntactic tree by the symbol class of the rule used to rewrite it �

Example 1 :
It is well know ([1]) that AB-Categorial Grammars are equivalent with

context-free grammars, so the previous definitions can straightforwardly be
adapted to this class. Let us define a basic AB-Categorial Grammar G' for the
analysis of a small subset of English. Let � '={a, man, John, Mary, runs,
loves} be the vocabulary and {S, T, CN} the set of basic categories. In this
set, S is the axiom, T stands for "term" and CN for "common nouns". The
assignment function f is then defined by : f(John)=f(Mary)={T},
f(runs)={T\S}, f(loves)={(T\S)/T}, f(man)={CN} and f(a)={(S/(T\S))/CN}.

The only admitted reduction rules, as usual, are called R1 and R'1 and are
defined by : for any category A and B, R1[A/B, B]=A and R'1[B, B\A]=A.

This grammar allows to recognize sentences like : "John runs", "a man
runs" or "John loves Mary" as follows (with a little abuse of notation, for
readability, rules R1 and R’1 are used as if they applied on couples
(word, category) instead of on categories alone) :

R’1[(John, T).(runs, T\S)]=(John . runs, S)
R1[R1[(a, (S/(T\S))/CN).(man, CN)].(runs, T\S)]

=R1[(a . man, S/(T\S)).(runs, T\S)]=(a . man . runs, S)
R’1[(John, T).R1[(loves,(T\S)/T).(Mary, T)]]

=R’1[(John, T).(loves . Mary, T\S)]=(John . loves . Mary, S)
Let � '={g1, g2}. In AB-Categorial Grammars, the most natural partitioning

of the set of rules is based on the distinction between the two directions of
functional application : let then R1 be indexed by g1 and R'1 by g2. The
Structural Examples for our grammar corresponding with the previous three
analysis trees are then respectively : g2(John, runs), g1(g1(a, man)), runs) and
g2(John, g1(loves, Mary))

When �  is reduced to a unique symbol, Structural Examples only display
the branching of the syntactic trees without indication about the intermediate
non terminal symbols, and are called skeletons.

The problem of grammatical inference from Structural Examples consists
in identifying a formal grammar from Structural Examples. It has been
recently studied and partly solved when the set of rules is partitioned into one
class (i. e. with skeletons) in [10, 11] or, like in the example, into two classes
for Classical Categorial Grammars (or AB-Categorial Grammars) in [2, 6, 7].

Some of the algorithms providing a solution to this new problem are
computationally efficient. But, when provided with sentences, trying every
possible composition based on these sentences is computationally highly
expensive in space and time and the result is a set of many compositions
among which the Structural Example(s) is(are) indistinguishable.



3. The Principle of Compositionality
Since Montague’s work ([8]), the Principle of Compositionality is often

formally stated as a rule-based correspondence between syntactic and
semantic trees ([5]). The interesting point to notice is that this
correspondence between rules is independent of the nature of the
intermediate non terminal symbols (or categories) appearing at the nodes of
the syntactic tree. This means that the full syntactic tree is not necessary to
obtain the semantic tree : the corresponding Structural Example is enough,
provided that the partition of the syntactic rules made to define it coincide
with the distinct useful semantic functions.

To formalize this idea, let a Compositional Set <G, � , K, H> be composed
of a (context-free) grammar G, a signature � , a mapping K associating each
rule of G with a symbol of �  (defining the partition of the set of rules of G)
and a compositional meaning assignment H=<L, t, T> defined as follows :�

 L is a semantic representation language ;�
 t is a mapping associating each member of the vocabulary �  of G with a

unique meaning in L : as, in Structural Examples, we give up the categories
of the analysis tree, t only depends on the vocabulary, so we have to admit
here a non ambiguous meaning assignment for words ;�

 T is a bijective mapping associating each symbol gj in �  with a semantic
function noted hj, 1 � j � m.

H is a morphism applying on compositions. For any sentence w=u1...un
generated by G and any composition on w noted g*(w), H is defined by :
H[g*(u1...un)]=T(g*)[t(u1)...t(un)], obtained from g*(u1...un) by replacing
each ui by t(ui), 1 � i � n and each gj by T(gj)=hj, 1 � j � m. For every Structural
Example g*(w), the evaluation of the expression H(g*(w)) represents the (or,
in case of syntactic ambiguity, one of the) meaning(s) of w.

Example 2 :
Let <G', � ', K', H'> be a Compositional Set assigning meaning

representations to the sentences generated by the grammar G' of Example 1.
K' associates R1 and R'1 respectively with g1 and g2 and H'=<L', t', T'>. For
sake of simplicity, L' is a typed (the typing system cannot be developed here)
first order predicate logic augmented with lambda-calculus (i.e. an
unintensional version of Montague’s intensional logic). Furthermore :�

 t' associates each word u in �  with a logical formula t'(u) in L'
(respecting the types). The logical translations of individual words are :

    * t'(a)=	 P1 	 Q1 
 x[P1(x) � Q1(x)]
 where x and y are individual variables and P1 and Q1 variable predicates of

arity 1 (as indicated by the indexes).
    * every other word u in �  is translated into a logical constant noted

t'(u)=ui’ where i is the arity, only noted when i � 1 (conjugated verbs are first
reduced to their infinitive form).�

 T' is defined by :
    * T'(g1)=h1 where for every couple (a, b) in L', h1(a, b)=a(b) ;
    * T'(g2)=h2 where for every couple (a, b) in L', h2(a, b)=b(a) ;



 The application of H' to the Structural Examples of Example 1 gives :
 H'[g2(John, runs)]=T'(g2)[t'(John), t'(runs)]

          =h2[John’, run 1’]=run 1’(John’)
 H'[g1(g1(a, man)), runs)]=T'(g1)[(T'(g1)[t'(a), t'(man)]), t'(runs)]
         =h1[h1( 
 P1 
 Q1 � x[P1(x) � Q1(x)], man1’), run 1’]

         = ��
 P1 
 Q1 � x[P1(x) � Q1(x)](man1’))(run 1’)
         = � x[man1’(x) � run1’(x)]

 H'[g2(John,g1(loves, Mary))]=T'(g2)[t'(John),T'(g1)[t'(loves),t'(Mary)]]
                                              =h2[John’, h 1(love2’, Mary’)]
                                              =love2’(Mary’)(John’).
 
 Note that skeletons may not be precise enough to specify compositional

semantics because as � ={g1}, only one semantic function T(g1)=h1 is
allowed. But, in the vast domain of computational linguistics, compositional
logical-based meaning are classical and extensions of the basic version of
Example 2 -to Lambek grammars for instance ([12])- can be defined. In some
cases, the Curry-Howard correspondence specifies the mapping T.

 Structural Examples can thus be considered as the minimal basis
necessary for the definition of compositional semantics. This link between
Structural Examples and semantics can now help us interpreting where
Structural Examples come from in the learning domain.

 4. A new learning model
 It is natural to suppose that when a child learns a language, she has at her

disposal (heard) syntactically correct sentences together with their meaning,
available in the environment (and pointed by the speaker). The corresponding
computational situation is an algorithm which takes as input both
syntactically correct sentences and (one of) their semantic representation(s).

 Let us suppose that the underlying linguistic system is a Compositional
Set <G, � , K, H> where H=<L, t, T> and that the innate knowledge includes
the semantic language L, the set � ={gj}1 � j � m and the corresponding set of
semantic functions {hj}1 � j � m. The rule translation mapping T is then
considered as universal and independent of the language to be learned. As in
usual semantic-based methods of learning ([3]), word meanings (i.e. the
mapping t) are also supposed to be already known when the grammatical
inference starts. Only G and K remain to be learned.

 But to make use of the input data, we need more than the Principle of
Compositionality : we need a property that we suggest to call Fully
Compositionality. A Compositional Set <G, � , K, H> will be said Fully
Compositional if for every sentence w generated (or recognized) by G and
every composition g*(w) built on w, we have : if there exists a Structural
Example g'*(w) for G satisfying : eval(H(g*(w)))=eval(H(g'*(w))) then
g*(w) is also a Structural Example.

 To help intuition, this new definition can be considered as stating that if w
is a syntactically correct sentence then any composition based on w and
translated by H into a correct meaning for w (i.e. any compositionally-



obtained meaning) is also a Structural Example for G. In other words, in a
Fully Compositional framework, the evaluation of the image by H of a
composition can be used as a criterion for deciding if this composition is in
fact a Structural Example.

 In this case, from input couples made of a sentence and (one of) its
meaning(s), it is possible to infer Structural Examples. Figure 3 shows two
strategies for this, called forward and backward inference because of their
similarity with usual forward and backward chaining in deduction theory.

 
 for any <w, m> where w=u1...un is a
sentence and m (one of) its meaning
representation(s) do :

 �  found <- false ;
 �  while NOT (found) do 
   * try a composition e=g*(w) based

on w ;
   * if eval(H(e))=m then found <-true ;
 �  return(e).
 

 for any <w, m> where w=u1...un is a
sentence and m (one of) its meaning
representation(s) do :

 �  found <- false ;
 �  while NOT (found) do :
   * try a composition on the semantic

translations : k=h*(t(u1)...t(un)) ;
   * if eval(k)=m then found <- true ;
 �  return((T-1(h))*(w))

 Figure 3 : forward and backward inference of Structural Examples
 
 Both algorithms are in the worst case exponential in time but only linear

in space, since only one candidate Structural Example is stored and checked
at the same time. The total number of different possible compositions g*(w)
defined from a signature � ={gj}1 � j � m where each gj is of arity 2 based on a
sentence w=u1...un composed of n words with n � 1 equals : C(n-1)*mn-1

where C(k) is the Catalan number defined by C(k)=(2k)!/(k!(k+1)!) for any
k � �  (the Catalan number C(k) counts the number of binary trees with k
internal nodes, that is with k+1 leaves).

 But much better efficiency can be obtained by taking into account the
arities of word meanings in the backward inference algorithm, as follows.

 
 Example 3 :
 A natural simple heuristic is the following : "when trying a composition

on a sequence of semantic expressions, first try the functional applications
between two logical expressions whose arities are in decreasing order". Let
us apply it to our examples sentences :

�  from the sequences of word meanings  : "John’, run’ 1", and
" � P1 � Q1 � x[P1(x) � Q1(x)] , man1’, run 1’", the only semantic compositions
respecting the heuristic are the only ones which are also Structural Examples.

�  from the sequence : "John’, love 2’, Mary’", the heuristic selects two
semantic compositions among eight possible, including the correct one.

5. Interpretation
 The learning strategy for natural languages proposed here applies in two

steps. The first step, where semantic information play a crucial role, is the



 

inference of Structural Examples. Although it remains to be proved, usual
compositional syntactico-semantic frameworks seem to satisfy the Fully
Compositionality property. In this case, Structural Examples can be inferred
from strings of words and semantic representations. The second step is the
inference of a grammar from Structural Examples which has already received
interesting partial solutions. Structural Examples thus appear as a crucial
intermediate representation between syntax and semantics.

Note that when the full target is reached, the system applying this strategy
will be able not only to parse a syntactically correct sentence with G, but also
to associate a meaning with it, which is the exact cognitive definition of
learning to understand ([13]). This new conception of language learning is a
formal alternative to usual purely syntactic theories and it meets the
psycholinguistic opinion that : " knowing a language is knowing how to
translate mentalese into strings of words and vice-versa " ([9]).
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