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Abstract
This paper presents learnability results from Typed Examples for some classes of

Lambek Grammars, in the context of Gold’s model of identification in the limit. A
learning strategy is then presented and exemplified.
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1 Introduction

Although categorial grammars have been known for a long time, the study of
their learnability is only a recent issue. Kanazawa (9), continuing the work
of Buzskowski and Penn (3), opened new ways of research in this domain.
He proved that large subclasses of AB-Categorial Grammars (or CGs) are
learnable in Gold’s model of identification in the limit (8). These classes are
called k-valued: they contain every CG assigning at most k distinct categories
to each member of their vocabulary. For any &£ > 1, the class of k-valued
CGs is learnable from Structural Examples (i.e. syntactic analysis structures
where rules are preserved but intermediate categories are deleted) and from
strings (or sentences). Unfortunately, the only tractable (polynomial) case is
the learning of rigid (i.e. 1-valued) CGs from Structural Examples.

The question naturally arose of the adaptation of these results to known vari-
ants of k-valued Lambek Grammars (or LGs). But these results are not easily
adaptable. It has been proved that it is possible to learn the class of rigid LGs
from proof structures of a certain normal form (2) but, on the contrary, this
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class is not learnable from strings alone (7). Thus, for LGs, learnability results
crucially rely on the available input data. Another learnability result relies on
additional restrictions on grammars (1).

We have introduced the concept of learnability from Typed Examples in the
context of CGs (5). Typed Examples can be considered as intermediary input
data, richer than strings but less informative than Structural Examples. They
can also be interpreted as coming from semantic information. We identified
interesting subclasses of CGs learnable from Typed Examples (6). But this re-
sult was a trivial consequence of the learnability of rigid CGs from strings. For
LGs, the situation is different as rigid LGs are learnable from Structural Ex-
amples but not from strings. Furthermore, the learnability result for CGs was
associated with a learning algorithm inspired by syntactic analysis procedures.
This strategy can also be applied to LGs. For all these reasons, learnability
from Typed Examples is worth being studying in the context of LGs.

After some preliminary definitions, this paper concentrates on subclasses of
LGs. The learnability of this class in the Gold’s model is proved and a learning
strategy is proposed. It is illustrated in detail on an example.

2 Preliminaries

2.1 Categorial Grammars

Every categorial grammar share the same notion of categories we recall here.

Definition 1 (Categories) Let B be a countably infinite set of basic cate-
gories containing a distinguished category S € B, called the axiom. We note
Cat(B) the term algebra built over the two binary symbols /, \ which is the
smallest set such that B C Cat(B) and for any A,B € Cat(B) we have:
/(A, B) € Cat(B) and \(A, B) € Cat(B)"*.

Definition 2 (AB-Categorial Grammars and Lambek Grammars) For
every finite vocabulary ¥ and for every set of basic categories B (S € B), a
categorial grammar is a finite relation G over ¥ x Cat(B).

AB-Categorial Grammars (CGs) are categorial grammars where the syntactic
rules take the form of two rewriting schemes: VA, B € Cat(B)

e A (Forward Application) : /(A,B) A — B

1 for reasons that will become clear further, we give up here the classical notations
B/A and A\B: in our notation, terms /(A, B) and \(A, B) are both functors whose
first component A is the argument and whose second component B is the result



e BA (Backward Application) : A \(A,B) — B

The language generated by a CG G is: L(G)={u;y ... u, € ¥* |Vi € {1,...,n},
JA; € Cat(B) such that (u;, A;) € G and Ay, ..., A, —* S}.

Lambek Grammars (LGs) are categorial grammars in which syntactic analysis
s described by a logical calculus defined by:

® arioms:
[ID] AF A ;
e inference rules:
INAFB ATFB
VR v 704 By N v A By
/L] rFAABIIFC L] '-AA BIIEC
A /(A B),IIIFC AT\(A,B),IIFC

where A, B,C € Cat(B) and ', A1l are finite concatenations of categories
from Cat(B), T' # 0. The language L(G) generated by G is: L(G)={u; ... u,
e X |Vie{l,...,n}, JA; € Cat(B) such that (u;, A;) € G and Ay, ..., A,
S}. In the following, elements of 2 will be called words and elements of L(G)
will be called sentences.

The variant of the Lambek calculus we will deal with is the associative one,
without product and with non-empty antecedent. This variant is the one which
has received the greatest linguistic attentions. The Lambek calculus can also
be expressed with the help of natural deduction, but here we only use the
sequent calculus which can be easier linked with parse algorithms.

Example 1 Let ¥ = {a, song, sings, John} be a vocabulary and let G be
a Lambek Grammar over ¥ x Cat(B) with B = {S,T,CN} the set of basic
categories (where T stands for “term” and CN for “common noun”). G is
defined by the following assignments: {{(a, /(CN,\(/(T,S5),S))), (song, CN),
(sings,\(T,9)), (sings, [(T,\(T,S))), (John,T)}. G recognises sentences like
“John sings” or “John sings a song”, as displayed by the following proof:

T-T SES
T\(T,9FS
/L T, /(T,\(T,5)), TFS
L /(T\(T.S) F /(T.5)
L./TAT.S)A\((T.5). )+ S

T, J(T\(T,5)), (CNA(/T,S),5)), CNF S

THT [\L]

[/ R] SES

CNFCN [\
[/L]

John s1ngs a song



It is easy to observe that this sentence is not recognized by the CG with the
same assignment of categories. To be able to analyse this example in this
context, a solution would be to assign an extra category to the word “sings”,
for example: \ (7, /(T S)). The inference rules of the Lambek calculus simulate
multiple category assignments. But the price to pay for this higher flexibility is
a higher complexity of parse algorithms. Pentus proved that the membership
problem for LGs is NP-complete (13), whereas it is polynomial for CGs.

We denote by G the class of CGs and by LG the class of LGs. For every
non null integer k, the set of CGs (resp. LGs) assigning at most & distinct
categories to each of its word is the class of k-valued CG (resp. LG) and is
noted Gy (resp. £LGi). When k = 1 the grammars are also called rigid.

2.2  Semantic Types

Montague (11) was the first to propose a typed logic to represent natural
language semantics. The associated notion of semantic type became so forth
classical. It is this (generalised) notion of type that will be considered here.

Definition 3 (Semantic Types) O is a finite set of basic types which con-
tains a distinguished type t € ©. The set of all possible types Types(O) is
the smallest set such that : © C Types(©) and for any u,v € Types(O),
(u,v) € Types(©). The type (u,v) is a functor expecting as argument the type
u and providing as result the type v.

Example 2 The usual set of basic types is © = {e,t}, where e is the type of
elementary entities of an associated model and t is the type of truth values. In
a logical-based semantic representation, identifiers for individuals like “John”
can be represented by a logical constant of type e while common nouns like
“man” and intransitive verbs like “run” both denote one place predicates, of
type (e,t). Transitive verbs like “loves” denote two-place predicates, of type
(e, (e, t)). Verbs like “sing” can have both a transitive and an intransitive use.

There is a very close connection between categories used in categorial gram-
mars and semantic types. Both are represented by binary terms. This connec-
tion can be characterized by the notion of typing function.

Definition 4 (Typing Function) For any set of basic categories B (S € B)
and any set of basic types © (t € ©), a typing function h is a morphism from
Cat(B) to Types(©) satisfying the following conditions:

(1) h(S) =t;
(2) VA, B € Cat(B): if h(A) = h(B) € © then A = B;
(3) VA, B € Cat(B): h(/(A )) =h(\(4, B)) = (h(A), h(B)).



As h is a morphism and Cat(B) is built over the set B, it is enough to define
h on B to deduce its values on Cat(B).

Example 3 If we set: h(T) = e, h(S) =t, h(CN) = (e, t), we define a typing
function for the categories of the grammar of Example 1 perfectly compati-
ble with its semantics, defined in Example 2. Note that a basic category (for
example CN ) can be associated with a non-basic type and that two different

categories can correspond to an identical (non-basic, otherwise it would con-
tradicts condition (2)) type as: h(\(T,5)) = (h(T), h(S)) = (e,t) = h(CN).

The Principle of Compositionality asserts that the meaning of a sentence only
depends of the meaning of its parts and of its syntactic structure (12) (where
the “parts” are more or less assimilated to words). This principle is usually
translated as a similarity of structure between syntactic and semantic trees.
As categories and types are lexicalised structures, the typing function can be
considered as the lexicalised version of the Principle of Compositionality.

Definition 5 (The h-Typed Language of a Lambek Grammars) For any
sets ¥, B and ©, any LG G € ¥ x Cat(B) and any typing function h from
Cat(B) to Types(©), we define the h-Typed Language of G by: TL,(G) =
{{ur, 7). (up, 1) |Vi € {1,...,n}3A; so that (u;, A;) € G, 7, = h(A;) and
Ay, .. Ap B S} An element of TLy(G) is called a h-Typed Example of G.

Example 4 The h-Typed Example corresponding with the sentence analysed
in Example 1 and the typing function of Example 3 is the following:

(John, e)(sings, (¢, (e, 1))){a, ((e,1), (e, 1), 1)) (song, (¢, 1))

Definition 6 (Lengths) For any category A € Cat(B) (resp. for any type
T € Types(©)), the length of A, noted |A| (resp. the length of T noted |7|) is
the number of basic categories (resp. of basic types) it contains:

o if Ac B (resp. T € ©) then |A| =1 (resp. |7| =1);
e VA, B € Cat(B) (resp. Vu,v € Types(©)) |/(A, B)| = |\(A, B)| = |A| + |B|
(resp. |(u,v)| = |u| + |v]).

Lemma 1 For any set of basic categories B, any set of basic types © and any
typing function h from Cat(B) to Types(©) we have:
vC € Cat(B), |C] < |h(C)]

Proof 1 The proof is trivial and relies on an induction on the length of C':

e if |C| =1 then C € B and we always have 1 < |h(C)|: the property is true;

e if the property is supposed to be true for every category of length at most
n, then let C' € Cat(B) with |C| = n + 1. Necessarily, C = /(A, B) or
C = \(A, B) with |A| < n and |B| < n. We thus have |C| = |A| + |B| <
[h(A)] + |(B)| = [R(C)].



2.8  Grammar Systems and Learnability Theory

To deal with questions of learnability, Kanazawa (9) introduced the notion
of grammar system, allowing a reformulation of the classical Gold’s model of
identification in the limit from positive examples (8). We recall this notion
here and known learnability results concerning categorial grammars.

Definition 7 (Grammar System) A grammar system is a triple (2, A, L):

e O is the hypothesis space (here, Q0 will be a set of grammars),

e The sample space A is a recursive subset of A*, for some fired alphabet A
(elements of A are sentences and subsets of A are languages);

o L:Q — pow(A) is a naming function. The question of whether s € L(G)
holds between s € A and G € Q, is supposed to be computable.

The main grammar systems we will deal with in the following of this paper
are (LG,>*, L) and (LG, (X x Types(©))*, T Ly).

Definition 8 (Learnability Criterion) Let (Q, A, L) be a grammar system
and ¢ : Ug>1 A* — Q be a computable function. We say that ¢ converges to
G € Q on a sequence (s;)ien of elements of A if G; = ¢({so, ..., ;) is defined
and equal to G for all but finitely many i € N - or equivalently if there exists
ng € N such that for all 1 > ng, G; is defined and equal to G. Such a function
¢ is said to learn G C Q if for every language L in L(G) = {L(G)|G € G}
and for every infinite sequence (s;);en that enumerates the elements of L (i.e.
so that {s;|i € N} = L), there ezists some G in G such that L(G) = L and ¢
converges to G on (S;)ien-

A useful sufficient condition of learnability is known as finite elasticity.

Definition 9 (Infinite and Finite Elasticity) A class of languages L has
infinite elasticity iff there exists an infinite sequence of sentences (Sn)nen
and an infinite sequence of languages of L : (Ly,)nen such that for all n € N,
Sp & Ly, and {so,...,s,} C Lyy1. A class of languages has finite elasticity
iff it has not infinite elasticity.

The finite elasticity of a class of languages implies the learnability of the
corresponding class of grammars. Kanazawa (9), proved that for every k >
1, the class Gy is learnable in the grammar system (G,>* L). As a conse-
quence subclasses of CGs are also learnable in the grammar system (G, (X x
Types(©))*,TLy) (6). For LG, we also know that the class of rigid LGs is
learnable in the grammar system (£G, %7, FL) (i.e. from Structural Examples
where the structure is provided by a special normal form of proofs (2)) but is
not learnable in the grammar system (£G, ¥*, L) (7). We will now concentrate
on the learnability of LGs in the grammar system (LG, (X x Types(©))*, T Ly,).



3 Learning Lambek Grammars from Typed Examples

In this section, we first prove a learnability result for subclasses of LG from
Typed Examples. We then describe an algorithm which provides the set of
LGs compatible with a set of Typed Examples.

3.1 Learnability Theorem

Definition 10 (h-typed Lambek Grammars) For every vocabulary ¥, ev-
ery set of basic categories B, every set of basic types © and every typing func-
tion h from Cat(B) to Types(©), the class of h-typed LGs LGty is the set
of LGs G over ¥ x Cat(B) satisfying the condition:

V{(a,A) € G and (a,A’) € G, h(A) =h(A") = A=A

These classes are similar to the ones we have studied in the context of CGs,
called Gj,_ype- In this context, we have proved interesting language theoretical
results concerning the class Gj_4,,. for the special case where h defines a
one to one correspondence between B and ©. As a matter of fact, for every
CG, there exists a member of this class Gj,_,,. recognizing the same structure
language (6). We do not have any similar result for LGs and any class £Gj,—spe
but note that for any h, the class £G;_yype is larger than L£G;. For example,
the LG of Example 1 is 2-valued but still in £G),_;,,. because the distinct
categories assigned to the word “sings” are associated with distinct types.
Nevertheless the restriction expressed in Definition 10 prohibits to assign both
J(CN,\(/(T,S),S5)) and /(CN,/(\(T,S),S)) to determinants (the first one
for determinants introducing direct objects, the second one for determinants
introducing subjects) because both lead to the same type ((e, ), ((e,t),1)).
We will evoke at the end of the paper how to extend our results (and our
algorithm) to treat such cases.

Theorem 1 The class LGy _iype 1S learnable from h-Typed Examples, i.e. in
the grammar system (LG, (X x Types(©))*, T Ly).

Lemma 2 For every vocabulary 3, every sets B and ©, every typing function
h from Cat(B) to Types(O), every LG G € LGp,_yype without useless category
(i.e. without any category never appearing as a node in any syntactic parse),
every infinite sequence (S;)ien that enumerates the elements of T Ly (G), AN €
N such that from {s;|0 <1i < N} it is possible to compute:

o the least integer k such that G is k-valued;

e a bound on the mazimal length of categories assigned to elements of G;

e a bound on the mazimal number of distinct basic categories used to define
the categories assigned to elements of G.



Proof 2 (proof of the lemma) Let us compute each of these values:

e To compute the least integer k such that G s k-valued, it is enough to
note that, as G has no useless category, the condition for G to belong to
LGh_type 18 precisely that there are exactly the same number of distinct cou-
ples (word, category) in G than there are corresponding distinct couples
(word, type = h(category)) in elements of TLy(G). After all such couples
have been presented at least once in elements of (s;)ien, k is equal to the
mazimal number of distinct types associated with the same word.

e To compute a bound on the maximal length of categories assigned to elements
of G it is, similarly, enough to take the mazimal length of types appearing
in elements of (s;)ien. Lemma 1 ensures that the bound on the lengths of
types is also a bound on the lengths of categories. Let us call L such a bound.

o Finally, to compute a bound on the mazimal number of distinct basic cate-
gories used to define the categories assigned to elements of G, it is enough to
take advantage of both previous results. This number is bounded by kx L x |X|
where |X| stands for the number of words in the vocabulary of G, available
as soon as each word has been presented at least once.

Proof 3 (proof of the theorem) The theorem is a direct consequence of
lemma 2. As a matter of fact, the lemma implies that there is a finite com-
putable number of LGs without useless categories (up to a renaming of basic
categories) compatible with any sequence enumerating the elements of some
TLy(G) and that this set is recursively enumerable. This situation implies fi-

nite elasticity and thus learnability of the class LGy _type in the grammar system
(LG, ( x Types(©))",TLy).

The proof suggests an enumerative learning algorithm. This is not, of course,
a tractable strategy. We define in the following another algorithm.

3.2 Learning Strategy

The strategy proposed to infer LGs from Typed Examples takes as input a set
of h-Typed Examples and provides as output the set of LGs compatible with
the input. The key point of the entire strategy is to observe that types provide
indications on the functor or argument nature of the elements of vocabulary
with which they are associated, but where the directions of the operators / and
\ are lost. So, types are “poor” versions of categories with which the typing
function link them and the goal of the learning strategy is to rebuild the
categories from the available types. This will be done in three steps described
below: variabilisation, constraint inference and categories deduction.



3.2.1 Variabilisation

First, a step of variabilisation is necessary to introduce variables in type ex-
pressions at the operator positions, i.e. before every opening parenthesis of
every type. This step is applied once for all Typed Examples in the input.
The introduction of variables respects the following constraint: all occurrences
of the same word with the same associated type receive the same variables.
This constraint is a direct consequence of the fact that the target grammar
of the algorithm belongs to £G_yyp.: each time the same couple (word, type)
is present in a Typed Example, we know that it refers to a unique couple
(word, category) in this target grammar.

Definition 11 (types with variables) Let X be a infinite countable set of
variables. The set of types with variables over the set of basic types? © is de-
noted VarType(©) and is defined as the smallest set such that: © C VarType(O)
and for any u,v € VarType(©) and x; € X U{/,\}, xi(u,v) € VarType(O).

The variables take their value in XYU{/, \ }. Note that, because of the constraint
on the introduction of identical variables, this variabilisation step can only be
defined relatively to a set of Typed Examples.

Example 5 We illustrate the variabilisation step for the h-Typed Example
given in Example 4:

John 8ings a song

€ $0(€7x1(evt)) :172(33‘3(6,t),x4($5(€,t),t)) xﬁ(evt)

3.2.2  Constraint Inference

This step consists in deducing constraints over the variables introduced. These
constraints will be stored in substitutions.

Definition 12 A substitution is a mapping from X to X U{/,\}. For any
substitution o, o is extended over the set VarType(O) as follows: (1) o(u) = u,

Vu € Types(©) U{/,\}; (2) o(wi(u,v)) = o(xi)(o(u),a(v)).

For any substitution o : VarType(©) — VarType(©), the sequences of the
Typed Examples are proved one by one to deduce the special type ¢t € © using
an adapted o-dependant Lambek-inspired sequent calculus defined by:

e axioms : [[D]? T4 iff 0(A) = o(A’), for any A, A’ € VarType(O);

2 For the examples in this presentation of the learning strategy we consider the set
of basic types © = {e, t}



e inference rules :

AT I, B

e watKd O R FE By @) =\

VRl 7 a0

T, AABIIIF, C . T, AABIIIF, C . _
VN xzaprare @=/ Mxrsapar.c 7@ =\

where A, B,C € VarType(©) and I', A II are concatenations of types with
variables from VarType(©), I' # (). Making a proof in this system implies
defining constraints on the values of a substitution on a subset of X.

For a given Typed Example, the purpose is to prove that the sequent having
the corresponding variabilised sequence of types with variable as antecedent
and the type t as consequent is valid in the o-sequent calculus. As the sequence
of types with variables comes from a Typed Example (i.e. a sequence of cate-
gories provable in the Lambek calculus), it is easy to see that there exists at
least a proof in the o-sequent calculus. Each proof provides a set of constraints
on o. Solutions of this set of constraints are the resulting substitutions.

Example 6 Applied to the variabilised h-Typed Example of Example 5, the
search for a proof in the o-sequent calculus gives rise to the search tree of
Figure 1, where only the branches leading to valid proofs are displayed. In
ovals are given the constraints applying on substitutions and in rectangles the
sequents obtained after applying the rules (not themselves represented in the
Figure). 7 substitutions are obtained, among which only 5 are distinct (we
have: 09 = 03 = 04). They are summed-up in Table 1.

Table 1
The substitutions inferred for the h-Typed Example of Example 5
Variables o1 oo o5 o6 o7
z0 \ \ / \ \
z o1(x3)  o2(xs) \ / \
z2 \ / \ \ \
z3 o1(x1)  o2(xe) / / \
En / \ / / /
x5 oi1(zg) o2(x1) os(wze) oel(zs) o7(we)
z6 o1(x5) o2(z3)  os(ws)  og(xs)  or7(ws)

3.2.8 Category Deduction

Each distinct substitution will give rise to a distinct LG, associated with its
specific typing function. To obtain grammars and typing functions from sub-
stitutions, a last step of category deduction is necessary. As a non-basic type
can be associated by the typing function with a basic category (for example
the type (e,t) and CN) a simple renaming is not enough. The deduction of
categories is performed as follows:



(1) every smallest subtype with variables that is used as argument in the
proof is associated with a new basic category;
(2) the type t, as a result, is associated with the axiomatic category S.

The definition of the typing functions naturally follows from these definitions.

Example 7 For the same previous example, the substitution o, applied to the
variabilised type assignments of Example 5 gives: (John, e), (sings, \(e, z1(e,t))),
(a,\(z1(e,t), /(z5(e,t),1))) and (song, xs(e,t)). The first step of the deduction
assigns a basic category Ay to e (with h(Ay) = e), and two new basic cate-
gories Ay and Az to the chunks x1(e,t) and x5(e,t) respectively (with h(Ay) =
(e,t) = h(Asz)). After the second step of deduction, the final LG obtained is:
G = {(John, Ay), (sings, \(A1, A2)), (a,\(Az, /(A3,9))), (song, A3)}.

In Gold’s model, the learning function takes as input a set of examples, not
a single one. The inference strategy applied to a set of h-Typed Examples is
given in Algorithm 1. At each step are kept only the substitutions that are
compatibles with the new example being analysed. The compatibility relation
is a composition denoted by ©. For any substitutions o; and o, we define:

Vu € Types(©) U{/,\}, (01 © 02)(u) =

o (x;) if Ul(fﬂz) oa(xs)
o1(zs)
oo(x;) if o1(z;) = x4

not defined on X if o1 (x;) # oo(x;)

if oo(z;) = x4
Va; € X, (01 © 02)(z) =

Algorithm 1 Inference strategy for a set of Typed Examples
Require: TE = {tey,...,te,} a set of Typed Examples;
:S= {IdVarTypes(G)}
for every Typed Example te; € TE do
introduce variables respecting the condition of 3.2.1 to obtain tv;;
end for
for every sequence of types with variables tv; do
prove the sequent tv; |-, t in the o-sequent calculus to obtain a set of
substitutions &;;
S={sos|seS,s; €S}
end for
for every substitution s from S do
10:  apply s over types with variables;
11:  apply rules (1) and (2) of deducing categories to obtain the function A
12: end for
Ensure: G.(TFE) = {(G;, h;)|1 <i < |S|}

—




o1(xg) =\

ek e

John sings

a

song

e zo(e, z1(e, t))

z2(z3(e, t), z4(z5(e, t), 1))

zg(e, t)

o3(x2) =/

z1 (e, t), za(xg(e, t), za(ws(e, t),t)), we(e, t) Ft

zg(e, t) - x3(e,t)

e, zg(e, z1(e, t)), wa(zs(e, t),t) Ft

o3(xe) = o3(x3)

o3(z0) =\

o4(xe) = oa(x3)
oa(mg) =\

zi(e, t) F z3(e,t)
zq(z5(e,t),t), wg(e, t) H ¢

zg(e, t) F x3(e, t)
z1(e,t), zq(z5(e,t),t) Ht

ek e

zi(e t), za(z5(e, t),t) Ht

e,zo(e, z1(e, t)) F as(e, t)
thkt

o1(x1) = o1(x3)

o1(zg) =/

zg(e,t) Fas(e, t)
tt

o1 (x6) = o1(x5)

oa(xe) = o2(x3)

oa(zg) =\

z1(e, t) = x5 (e, t)
tht

oa(x1) = o2(xs)

z1(e, t) = x5 (e, t)
tht

o3(x1) = o3(xs)

Fig. 1. The substitution searching tree
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o5(x2) =\

e, zg(e, z1(e,
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) b z3(e,t)
), zgle,t) -t

>
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zg(e, t) F xs(e, t),t -t

1) zs(e,t)

o5(x6) = o5(xs)
o5(z3) =/

e;xole,z1(e ), et

o5(z0) =/

o5(x1) =\

o6(zo) =\
og(x1) =/

o7(xg) = o7(xs5)
o7(z3) =\

e,e,zple,z1(e, t)) -t

o7(zg) =\
o7(x1) =\

ekFetkt
[eretre]

eke,tkt

| eke, tkt |




3.2.4 Exemple of the Global Strategy

John sings a song
e wole,xi(et) wma(wslet), za(zs(et),t)) wele )

Mary follows a man
e wr(exs(et) wma(wslet),za(zs(et),t)) xole )

For this set of h-Typed Examples, the variabilisation has been performed fol-
lowing the constraint explained in section 3.2.1. So, both occurrences of the
determinant “a” receive the same variables. After treating the first h-Typed
Example, the resulting substitutions are those given in Table 1. The second
Example “Mary follows a man” is treated exactly the same way as the first
one and also gives rise to 5 different substitutions (replace zy by z7, z1 by
xg and xg by g in Table 1 to obtain their values). Among the 25 possible
compositions between one o; and one of these new substitutions, only 11 are
defined, and 7 distinct. The 7 distinct LGs of Table 2 are finally obtained:

Table 2
The final Lambek Grammars inferred
John sings a song Mary follows man
G1 Ay \(41,\(41,9))  \(\(A41,8),/(A2,5)) Az Aq \(A41,\(41, 9)) Az
G2 Ay \(A41, A2) \(Az2, /(A3, 5)) Az Aq \(A1, A2) As
G3 Ay \(A1, A2) /(As,\(A2,5)) Ag Ay \(A41, A2) Az
Gy Ay \(41,/(A1,8))  \(/(A1,8),/(A2,5)) Az Aq \(41, /(A1,9)) Az
Gs Aq \(A1,/(A1,8))  \(/(A1,8),/(A2,8)) Ao Ay /(A1,\(A1, S)) Ao
Ge Ay /(A1,\(A1,8))  \(/(A1,8),/(A2,5)) Az Aq /(A1,\(4A1, 5)) Az
G7 Aq /(A1,\(A41,9))  \(/(A1,9),/(A2,5)) Ag Ay \(A41, /(A1, ) Ao

First, note that every solution grammar assigns the same basic category to
“John” and “Mary”. This is a direct consequence of their assignment to the
same basic type (Montague assigns them a more complicated type) and of
condition (2) of Definition 4. More interestingly, every solution grammar also
assigns the same basic category to “song” and “man”. This results from an
equality condition between the values of every substitution on zg and xg, both
equal to their value on x5 or x5. Fundamentally, it is because both words are
introduced by the same determinant “a”, whose type is variabilised only once.
Grammatical categories can thus be defined as equivalence classes between
types that have the same combinatorial behaviour. The substitutability at the
type level is the criterion our algorithm uses to infer grammatical categories.

It can also be noted that the 7 solution grammars obtained can be reduced to
3 classes. G is clearly apart, allowing a non-linguistically valid combination
between the determinant and the verb. Gy and G3 are such that Yw € X,
305, C5 € Cat(B) with: (w,C’2> € G, (w,C3> € Gs, Oy F (5 and C3 +
Cy. It is easy to prove (using the Cut rule) that this condition implies that
Vh, TL,(Gy) = TLy(G3). So, G2 and G are equivalent with respect to the



convergence criterion and it is enough to keep memory of only one of them. The
same situation occurs for the four grammars G4, G5, Gg and G7. Unfortunately,
the previous condition is only a sufficient one for Typed Languages to be equal.

3.8 Properties of the Algorithm and Extensions

Theorem 2 For every sets &, B and ©, every typing function h from Cat(B)
to Types(O), every G € LGp_1ype and every set TE of h-Typed Examples of
G, the result G.(TE) of our algorithm contains every possible couple (G;, h;)
such that G; is without useless category, G; € LGy, —type and TE C T' Ly, (G;).

The proof of this correctness and completeness theorem (not given here) is a
direct adaptation of the one for CGs (4). But it is not enough to make our al-
gorithm a learning algorithm in the sense of Gold, as it does not allow to select
a unique solution grammar. It is possible that 3(G;, h;), (G;, h;) € G.(TE)
such that T'Ly,(G;) & T Ly, (G;) (4). In this case, to avoid over-generalisation,
G, should be chosen. But it is not known whether the inclusion of Typed
Language is computable. The inclusion can nevertheless be checked for every
Typed Example of bounded length (that’s Kanazawa’s strategy for learning
CGs from strings) but, of course, makes the strategy intractable.

The complexity of our strategy is already exponential in the number of words
in the input. To reduce it in practice, a valid heuristics based on a Count
function can be proposed (14). Applied to (sequence of) categories, and sim-
ilarly applicable to (sequences of) types, Count computes the exponent of a
basic category on both sides of a sequent. Count is defined for elements of
VarType(©) as follows: (1) Count.(7) = 1, V7 € ©, (2) Count,(1y) = 0 if
T # 1, V1,11 € O, (3) Count,(x;(a1,az)) = Count,(as) — Count (). It is
naturally extended to sequences: Count.(m.72) = Count (1) + Count, ().
It is easy to prove that for any sequences of types with variables I' and A and
every substitution o: if " I, A then V7 € ©, Count.(I') = Count.(A). This
equality can be checked in linear time and allows to prune unfruitful branches.

Finally, the learnability results exposed in this paper rely on a special kind of
rigidity: a unique correspondence between couples (word,category) and cou-
ples (word,type). Like every other result based on rigidity, it can be extended
to k-valued variants. That is, if it is known that at most k& distinct types can
be associated with a category, learnability results are preserved. Furthermore,
the same algorithm can be adapted to treat this case: only the composition be-
tween substitutions needs to be modified to allow at most &k distinct values for
every set of variables appearing in a unique type. This variant allows to treat
the case of determinants, which need the assignment of two distinct categories
corresponding with a unique type, but it introduces a higher complexity.



4 Conclusion

Before we started our study, positive learnability results in Gold’s model for
LGs were still rare and only concerned rigid LGs (2; 1). We present here a
result of learnability for larger classes of LGs, provided that adapted data
are available. The advantages of our strategy are very similar to the ones we
already argued for CGs: types are lexical information, easier to justify than
structural information. Despite bad theoretical complexity, the algorithm has
been implemented and applied on small sets of natural language sentences.
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