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Abstract. In this paper, we propose a new framework for the computational
learning of formal grammars with positive data. In this model, both syntactic
and semantic information are taken into account, which seems cognitively
relevant for the modeling of natural language learning. The syntactic formalism
used is the one of Lambek categorial grammars and meaning is represented
with logical formulas. The principle of compositionality is admitted and
defined as an isomorphism applying to trees and allowing to automatically
translate sentences into their semantic representation(s). Simple simulations of
a learning algorithm are extensively developed and discussed.

1 Introduction

Natural language learning seems, from a formal point of view, an enigma.
As a matter of fact, every human being, given nearly exclusively positive examples

([25]), is able at the age of about five to master his/her mother tongue. Though every
natural language has at least the power of context-free grammars ([22]), this class is
not computationally learnable with positive data in usual models ([9, 24]).

How can a formal theory of learning give account of such a success ? Various
solutions have been proposed. Following the Chomskian intuitions ([4, 5]), it can be
admitted that natural languages belong to a restricted family and that the human mind
includes an innate knowledge of the structure of this class. For example, context-
sensitive grammars become learnable with positive data if the learner knows a bound
on the number of rules in the grammar ([24]).

Another approach consists in putting structural, statistical or complexity
constraints on the examples proposed to the learner, making his/her induction easier
([15, 21]). This solution formalizes the help provided by a professor ([6]). A
particular family of research, more concerned with the cognitive relevance of its
models, considers that learning a natural language is very different from learning a
formal language, because in natural situations, examples are always provided with
semantic and pragmatic information ([10, 2, 14, 11]). This approach may be seen as
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another interpretation of the previous ones. As a matter of fact, it implies that natural
languages belong to the restricted family of languages with which semantics
compatible with our world can be associated (even if this class is hardly
characterizable), and it also assumes that examples provided to the learner are those
which are semantically coherent. This is the family our research belongs to.

A fundamental property of natural languages is then taken into account here : their
meaningfulness. But this property is computationally tractable only if we have at our
disposal a theory that precisely articulates syntax and semantics. The strongest
possible articulation is known as the Fredge’s principle of compositionality, which
states that the meaning of a sentence only depends on the meaning of its constituents
and of their mode of combination. This principle has acquired an explicit
formalization with the works of Richard Montague ([16, 7]) and his inheritors.

In this paper, we will first expose an up-to-date version of this syntactico-semantic
framework, based on a type of grammars called categorial grammars, and we will
then show how it can been used in a formal theory of natural language learning.

2 Syntactic analysis with categorial grammars

In categorial grammars, each member of the vocabulary is associated with a finite set
of categories characterizing its combinatorial potentialities.

The syntax only depends on the information associated with each word. This
strong lexicalization is well adapted to natural languages ([18]).

2.1 General definition of categorial grammars

A categorial grammar G is a 4-tuple G=<V, C, f, S> where :
- V is the finite alphabet (or vocabulary) of G;
- C is the finite set of basic categories of G;
We define the set of all possible categories of G, noted C' , as the closure of C for

the fractional operators noted / and \. C' is the smallest set of categories verifying :
   * C� C';
   * if X � C' and Y� C' then X/Y� C' and Y\X� C';
- f is a function  : V—>P(C' ) where P(C' ) is the set of f inite subsets of C' , which

associates each element v in V with the finite set f(v)� C' of its categories;
- S� C is the axiomatic category of G.
The operators / and \ can be considered as oriented fractions. In this framework,

the set of syntactically correct sentences is the set of f inite concatenations of elements
of the vocabulary for which there exists an assignment of categories that can be
reduced to the axiomatic category S. There are different classes of categorial
grammars according to the admitted reduction rules. We will use the most general
one, called L-grammars.



2.2 L-grammars (from [13])

A Lambek grammar (or L-grammar) is a categorial grammar for which admitted
reduction rules are all the valid sequents of the Lambek-Gentzen calculus defined by :

- an infinite number of axioms : for every category X in C', X —> X  (A)  is valid;
- two couples of inference rules among sequents, written in the Gentzen style (i.e.

if the sequent(s) above the line is (are) valid, then the one under is also valid) :
   *   �  . X —> Y                                                       X . �  —> Y
        �  —> Y/X  (R/)    �  —> X\Y  (R\)
   *  �  —> X            �  . Y . �  —> Z                        �  —> X           �  . Y . �  —> Z
           �  . Y/X . �  . �  —> Z          (L/)      �  . �  . X\Y . �  —> Z       (L\)

where X, Y and Z are in � C' and � , �  and �  are concatenations of categories (� � � ).
The language L(G) defined by G is then :
L(G)={w � V*; � n � N � i � {1,..., n} wi � V, w=w1...wn � � Ci � f(wi), C1...Cn—*—>S}.

Useful valid sequents :
The most simple valid sequents, for any categories X and Y are the following :

 R1 :  X/Y . Y  —> X R'1 :  Y . Y\X —> X
These rules straightforwardly follow from (L/) and (L\) and explain, if the

concatenation of categories is assimilated to a multiplication, the nature of / and \ (we
use the notational variant of [17]). Other interesting valid sequents are ([17]) :

- R2 :  X/Y . Y/Z  —>  X/Z R'2 :  Z\Y . Y\X  —>  Z\X
- R3 :  (Y\X)/Z —> Y\(X/Z) R'3 :  Y\(X/Z)  —>  (Y\X)/Z
- R4 :  X  —> Y/(X\Y) R'4 :  X —> (Y/X)\Y

Example grammar :
Let us define a L-grammar for the analysis of a small subset of natural language.

The vocabulary is V={ a, every, man, woman, John, Paul, runs, loves, meets, is...} .
The set of usual basic categories needed here is C={ S, T, CN} . In this set, S is the
axiomatic category, T stands for term and is assigned to proper names, while
intransitive verbs receive the category T\S and transitive ones the category (T\S)/T.
CN means common noun and determiners like a and every receive two categories :
(S/(T\S))/CN and ((S/T)\S)/CN, depending on their position as a subject or as a direct
object. This grammar allows to analyze simple sentences as seen in Fig. 1.

   T\S —> T\S (A)       S —> S (A)   T —> T (A) S —> S (A)
CN —> CN (A)    S/(T\S) . T\S —> S (L/)       T —> T (A)      T . T\S —> S (L\)
     S/(T\S))/CN . CN . T\S —> S   (L/) T . (T\S)/T . T —> S (L/)

         a           man  runs            John      is      Paul

Fig. 1. analysis trees of simple sentences

Formal properties of L-grammars :
L-grammars have been deeply studied. The main results about them are :

- The Lambek-Gentzen calculus is decidable. As a matter of fact, in each of its
inference rules, there is one more operator / or \ under the line than there are above.
To decide if a given sequent is valid, one only has to test on it each possible inference



rule in backward chaining, eliminating its operators one after the other, until only
axioms (if the sequent is valid) are left.

- It is impossible to define a finite set of valid sequents (for example, rules R1 to
R'4) equivalent with the complete Lambek-Gentzen calculus ([26]).

- The class of languages defined by L-grammars is the class of context-free
languages ([19]) and the membership problem can be solved in polynomial time ([8]).

3 From syntax to semantics

The key idea of Montague’s work ([16]) was to define an isomorphism between
syntactic trees and semantic ones.

This definition is the formal expression of the principle of compositionality. It
allows to automatically translate sentences in natural language into logical formulas.

3.1 The semantic representation

The logic we will use, called IL, is a simpli fied version of the intensional logic
defined by Montague ([16, 7]). It generalizes first order predicate logic by including
typed lambda-calculus.

- IL is a typed language : the set I of all possible types of IL includes
  * elementary types : e � I (type of entities) and t � I (type of truth values);
  * for any types u � I and v � I, <u,v> � I (<u,v> is the type of functions taking an

argument of type u and giving a result of type v).
- semantics : a denotation set Dw is associated with every type w � I as follows :
  * De=E where E is the denumerable set of all entities of the world;
  * Dt={0,1} ;
  *  D<u,v>=Dv

Du : the denotation set of a composed type is a function.
IL also includes usual quantifiers and lambda-expressions.

3.2 Translation as an isomorphism

Each analysis tree produced by a L-categorial grammar can be translated into IL :
- translation of the categories into logical types (function k : C' —> I) :
   * basic categories : k(S)=t and in our example : k(T)=e, k(CN)=<e,t>;
   * derived categories : for any X� C' and Y� C', k(X/Y)=k(Y\X)=<k(Y),k(X)>.
- translation of the words (function q : V �  C' —> IL) : each couple (v,U) where

v � V and U � f(v) � C' is associated with a logical formula q(v,U) of IL of type k(U)� I.
The most usual and useful translations are :
   * q(a,(S/(T\S))/CN)=q(a,((S/T)\S)/CN)=� P� Q� x[P(x)� Q(x)]
      q(every,S/(T\S))/CN)=q(every,((S/T)\S)/CN)=� P� Q� x[P(x)� Q(x)]
      where x and y are variables of type e, P and Q variables of type <e,t>.
   * the verb to be, as a transitive verb is translated by
      q(be,(T\S)/T)=� x � y[y=x]  with x and y variables of type e.



   * Every other word w is translated into a logical constant noted w'.
- translation of the rules of the Lambek-Gentzen calculus :
   * the axioms X —> X are translated by the identity function : � x.x;
   * the inference rules are respectively translated by rules applying to IL formulas :

     t . x —> y                                                      x . t —> y
     t —> � x[y]                                                     t —> � x[y]
     t —> x             u . f(x) . v —> z                     t —> x              u . f(x) . v —> z
                u . f . t . v —> z                                              u . t . f . v —>  z

As all rules Ri (1 � i � 4) can be proved in the Lambek calculus, the corresponding
translation rules called Wi can be deduced from our translations ([17]) :

- W1 :  f . a  —>  f(a) W'1 :  a . f  —>  f(a)
- W2 :  f . g  —>  � a[f(g(a))] W'2 :  g . f  —>  � a[f(g(a))]
- W3 :  f  —>  � a � b[(f(b))(a)] W'3 :  f  —>  � a � b[(f(b))(a)]
- W4 :  a  —>  � f[f(a)] W'4 :  a —>  � f[f(a)]

Examples
Fig. 2 displays the translation of the first tree of Fig. 1. The unknown translation of
the sentence is first noted M. From the isomorphism, we obtain :
M= � P � Q � x[P(x) � Q(x)](man')(run')= � Q � x[man'(x) � Q(x)](run')

   = � x[man'(x) � run'(x)]

         T\S —> T\S (A)    S —> S (A)      run'—>b  � P � Q � x[P(x) � Q(x)](a)(b)—>M
CN—>CN (A)  S/(T\S).T\S—>S (L/)   man'—>a  P � Q � x[P(x) � Q(x)](a).run'—>M

  (S/(T\S))/CN . CN . T\S —> S  (L/)      =>         � P � Q � x[P(x) � Q(x)].man'.run'—>M
          a         man   runs

Fig. 2. translation of the first analysis tree of Fig. 1

Similarly, the second tree of Fig. 1 is translated into : [John' =Paul' ]. This system
gives account of ambiguities : ambiguous sentences give rise to several different trees
translated into several different formulas.

4 First approach to the learning model

Our purpose is to provide a computational model of natural language learning. Now
that the linguistic framework is given, it remains to fix what is supposed to be known
by the learner and what is to be learned, under which conditions.

4.1 Innate knowledge and concepts to be learned

When a human being learns a natural language, we suppose that he has at his disposal
sentences syntactically correct and semantically relevant.

The corresponding situation in our model is an algorithm which takes as inputs a
syntactically correct sentence together with its logical translation into IL.



The innate knowledge supposed is reduced to the inference rules of the Lambek
calculus and the corresponding translation rules. As opposed to usual semantic-based
methods of learning, no word meaning is supposed to be initially known.

Finally, what does the learner have to learn ? In our linguistic framework, all
syntactic and semantic information are attached to the members of the vocabulary.
More precisely, the knowledge to be learned can be represented as a finite list of
triplets of the form (v,U,w) where v � V, U � f(v) � C' and w=q(v,U) � IL.

Example :
Learning the example grammar of 2.2 and its logical translation means learning the
following set :

{ (a, (S/(T\S))/CN, � P � Q � x[P(x) � Q(x)]), (a, ((S/T)\S)/CN, � P � Q � x[P(x) � Q(x)]),
 (man, CN, man'), (woman, CN, woman'), (John,T,John'), (Paul,T,Paul'),
(runs,T\S,run'),(meets,(S\T)/T,meet'),(is,(S\T)/T, � x � y[y=x])...}

Fig. 3. shows the components of our model.

          innate knowledge :
          Lambek-calculus
          and its translation

         utterance
    (correct sentence)    learning             syntax and semantics :

  algorithm        (word,category,translation)
         meaning
    (logical formula)

Fig. 3. the learning model

4.2 The learning algorithm

The learning strategy we propose is the following one :

- current hypothesis := � ;
- For every couple <p, l> where p is a sentence and l is a logical formula do :

- For every word in p do :
* if it belongs to the current hypothesis, affect it the corresponding category;
* else affect it the categories allowing the analysis of p;
- For every possible analysis tree for p do :

- for every couple (word category) in this tree do :
* if it belongs to the current hypothesis, affect it the corresponding
   translation
* else, find the simplest translation allowing to provide l

- Update the current hypothesis.



4.3 Simulation of the algorithm

Let us suppose that the first given example is : <John runs, run'(John')>.
- the syntactic hypotheses : as both words of p are unknown, we call A the

category associated with John and B the one associated with runs. As p is a correct
sentence, we know that A . B  ——> S and we want to infer values for A and B. The
only applicable rules in backward chaining are (L/) and (L\), as shown in Fig. 4 :

  B —> V U —> S A —> V  U —> S
A=U/V . B  ——> S   (L/)               A . B=V\U   ——> S    (L\)

Fig. 4. the syntactic hypothesis

In these trees, sequents inside rectangles can only be axioms (because the category
on the right side is a basic one) and there are ovals around sequents that could be
developed further by decomposing the right side category and by applying rules (R/)
or (R\), but which are cut at this level. So, the two possible solutions are :

* f(John)=A=U/V=S/B and f(runs)=B where B can be any category, basic or not;
* f(John)=A and f(runs)=B=V\U=A\S where A can be any category.
- the semantic translation :

*  Fig. 5 shows the translation of the first hypothesis

 B —> B             S —> S              q(runs,B) —> a     q(John,S/B)(a) —> M
        S/B  .  B  —>  S     (L/)    =>       q(John,S/B) . q(runs,B) —> M
       John   runs

Fig. 5. translation of the first hypothesis

From M=q(John,S/B)(a)=q(John,S/B)(q(run,B))=run' (John' ) we infer that
q(John,S/B)=run' and q(run,B)=John' . Another solution would be : q(run,A\S)=run'
and q(John,S/B)= � P[P(John')] but we strictly stick to the simplest solution.

*  Fig. 6 shows the translation of the second hypothesis

 A —> A        S —> S               q(John,A) —> a      q(runs,A\S)(a) —> M
       A  .  A\S  —>  S    (L\)   =>         q(John,A) . q(runs,A\S) —> M
     John   runs

Fig. 6. translation of the second hypothesis

Similarly, we infer that q(runs,A\S)=run' and q(John,A)=John'.
At this stage, we have no reason to prefer one hypothesis to the other. The current

hypothesis is then :
H={(John,S/B,run'),(runs,B,John')} OR {(John,A,John'),(runs,A\S,run')}.
Now, let us suppose that a second given example is <Paul runs, run' (Paul' )>. The

same process applies, except that runs now belongs to the current hypothesis.
- the syntactic hypotheses :
* if runs is assigned the category B, then Paul must receive S/B;
* if runs is assigned the category A\S, then Paul can receive either A or S/(A\S).

But the sequent A —> S/(A\S) is valid in the Lambek-Gentzen calculus (see rule R4),
so S/(A\S) is in fact a particular case of A and is not to be taken into account.



- the semantic translation :
* the translation of the first tree, similar to the one of Fig. 6, gives rise to :

M=q(Paul,S/B)(John' )=run' (Paul' ) which is an equation without solution. So, the first
subset of the current hypothesis is given up. It can be noticed that the hypothesis
concerning John in this subset is also given up, although it was not concerned by the
new example. A similar conclusion would have followed if the second example had
been <John sleeps, sleeps' (John' )>. Any other example sentence including one of the
words concerned by the current hypothesis is enough to discard the wrong subset.

* the translation of the second tree, similar to the one of Fig. 7, gives rise to :
M=run'(q(Paul,A))=run'(Paul') and allows to infer q(Paul,A)=Paul'.

The new current hypothesis is then :
H={(John,A,John'),(runs,A\S,run'),(Paul,A,Paul')}.
Without semantics, it would have been impossible to decide between the two

initial possibilities. The only reason why runs must receive a fractional category is
that its translation behaves like a function, a predicate.

In the appendix is given the analysis of <a man runs, � x[man' (x)� run' (x)])> given
as a new example. There are eleven syntactical possibilities, reduced to six really
different ones. The semantic translation allows to abandon three of them and only
four syntactico-semantic hypotheses are built, among which three will clearly be
discarded very easily at the next repetition.

4.4 Treatment of polymorphism :

How can our algorithm assign several different categories to a unique word (as it
seems necessary for determiners) ? A special module needs to be added. It becomes
active when a new sentence example contains no new word but is impossible to
analyze with the current hypothesis.

In this case, each word in the sentence, one after the other, should be treated as if it
were the only one unknown so as to find out its other possible categories.
Nevertheless, heuristics can help us chose the words more likely to be assigned
several different categories :

- grammatical words, easy to recognize because they are the ones translated by
lambda expressions (whereas lexical words are nearly always translated by a logical
constant) are treated in priority.

- even if a word needs several categories, most of the time a unique logical
translation is enough for all of them : this is true for determiners but also for
pathological ambiguous words like fly, which can be either a common noun or a verb
but is in both cases translated by fly'.

Further experiments, varying the order in which the examples are proposed, need
to be performed to test if they are enough to treat every case of polymorphism.

5 Evaluation and conclusion

The algorithmic complexity of our algorithm is clearly exponential. More complex
sentences would have entailed the multiplication of hypotheses and could have been



intractable. More precisely, our model seems to be particularly sensitive to the
complexity of a new example relatively to the current hypothesis. This complexity
can be measured by the number of new words appearing in an example. To master
this complexity, we suggest to put a priori a bound on the number of new words
appearing in a new sentence. An example which does not respect this bound is not
treated but saved so as to be treated later, when the current hypothesis is developed
enough. It is reasonable to think that children also learn from simple examples to
more complex ones.

But our work also provides new insights on previous ones.
First, categorial grammars seem to be particularly adapted to the learning process.

Recent research has found conditions under which the syntax of these grammars is
learnable with positive examples ([3, 1, 12]). But, in these frameworks, only a simpler
version of categorial grammars (restricted to rules R1 and R' 1) is considered. The
main interest of L-categorial grammars is that they allow to restrict the number of
different categories associated with each word. This number is a crucial parameter for
the complexity of the syntactic analysis and for the treatment of polymorphism.
Furthermore, in most previous work ([3, 12]), tree structures are provided as input
data. In our model, thanks to the tree isomorphism, the semantics translation plays a
similar role but in a weaker and more cognitively relevant fashion, as the functional
structure of the logical formula gives indication about the functional syntactic
structure of the sentence. Adriaans ([1]) also proposed a learning algorithm for
categorial grammars using both syntax and semantics but he treated them separately :
the semantic learning only started when the syntax learning was achieved instead of
helping it as we propose.

Learning a natural language is certainly not equivalent to learning a formal
grammar. Natural words and sentences refer to things and situations and can only be
learned in their presence. Cognitive models built in this spirit ([10, 2, 14, 11]) already
assumed this, but the syntaxes considered were more traditional and the semantic
representations used were too close to syntactic structures ([21]) : they failed to
represent complex logical relations like quantification or Boolean operators. Logical
languages are more powerful and a priori independent from linguistic structures. Our
model suggests that the acquisition of a conceptual representation of the world is
necessary before the acquisition of the syntax of a natural language can start.

Fundamentally, what makes natural languages learnable in our model is the
presupposition that there exists an isomorphism between the syntax of sentences and
their semantics. This strong principle of compositionality is contested by linguists
working on discourse phenomena but remains an interesting approximation. The
graph deformation condition used in [2] was a weaker version of it.

The work presented here is more a program of research than a full achievement,
but seemed interesting enough to be exposed because our choices have theoretical,
linguistic and cognitive motivations. The algorithm is being implemented and the
search for a characterization of the languages it allows to learn is being explored.
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APPENDIX



In this tree, unknown categories associated with a and man are noted C and D.
- semantic translation : let us call � =q(a, C) and 

�
=q(man,D)

  * the translation of solution 1 leads to � (run'(
�

))= � x[man'(x) � run'(x)].
The identification of both formulas imposes to define : 

�
=x. But we forbid to

introduce free variables into the logical translations of the words, so this solution is
abandoned.

  * the translation of solution 2 leads to run'( � (
�

))= � x[man'(x) � run'(x)].
This equation is impossible to solve, so this solution is abandoned.
  * the translation of solution 3 leads to run'(

�
( � ))= � x[man'(x) � run'(x)].

As in the previous case, this solution is abandoned.
  * the translation of solution 4 leads to ( � (

�
))(run')= � x[man'(x) � run'(x)].

To identify both formulas, we have to perform lambda-abstractions on the second
one (they are only possible on logical constants) :

� x[man'(x) � run'(x)]= � P � x[man'(x) � P(x)](run') so � (
�

)= � P � x[man'(x) � P(x)]
and � P � x[man'(x) � P(x)]= � Q � P � x[Q(x) � P(x)](man')
so the simplest solution is : � = � Q � P � x[Q(x) � P(x)] and 

�
=man'.

* the translation of solution 7 leads to � (
�

(run'))= � x[man'(x) � run'(x)].
with � x[man'(x) � run'(x)]= � P � x[man'(x) � P(x)](run') we obtain two solutions :
- � = � x.x and 

�
= � P � x[man'(x) � P(x)]

- � = � P � x[man'(x) � P(x)] and 
�

= � x.x
(solutions using the constant function : � x.x are only considered in the cases where

no other are possible, this is the reason why they were not proposed earlier).
* the translation of solution 9 leads to (

�
(run'))( � )= � x[man'(x) � run'(x)].

After abstractions, the only solution left is : � =man' and 
�

= � P � Q � x[Q(x) � P(x)].
So, the hypotheses brought by this new example are :
{ (a, (S/(A\S))/D, � Q � P � x[Q(x) � P(x)]), (man, D, man') }
OR { (a, S/W, � x.x), (man, W/(A\S), � P � x[man'(x) � P(x)]) }
OR { (a, S/W, � P � x[man'(x) � P(x)])), (man, W/(A\S), � x.x) }
OR { (a, C, man'), (man, (C\S)/(A\S), � P � Q � x[Q(x) � P(x)]) }.
It is obvious that only the first subset will resist to new examples using one of

these words.


