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Abstract. In this paper, we propcse anew framework for the cmmputational
learning o forma grammars with pasitive data. In this model, both syntadic
and semantic information are taken into acourt, which seems cogntively
relevant for the modeling o natural language leaning. The syntadic formalism
used is the one of Lambek categoria grammars and meaning is represented
with logicd formulas. The principle of compositiondlity is admitted and
defined as an isomorphism applying to trees and alowing to automaticdly
translate sentences into their semantic representation(s). Simple simulations of
a learning algorithm are extensively developed and discussed.

1 Introduction

Natural language learning seems, from a formal point of view, an enigma.

Asamatter of fad, every human being, given nealy exclusively pasitive examples
([29)]), is able & the aye of abou five to master hisher mother tongwe. Thoughevery
natural language has at least the power of context-free grammars ([22)]), this classis
not computationallyearnable with positive data in usual mode®s ¢4).

How can a formal theory of leaning gve acourt of such a success ? Various
solutions have been proposed. Foll owing the Chomskian intuitions ([4, 5]), it can be
admitted that natural languages belongto arestricted family and that the human mind
includes an innate knowledge of the structure of this class For example, context-
sensitive grammars bemme learnable with pasitive data if the leaner knows a bound
on the number of rules in the gramma4{).

Ancther approach consists in puting structural, statisticd or complexity
constraints on the examples proposed to the learner, making hs/her induction easier
([15, 21]). This olution formalizes the help provided by a profesor ([6]). A
particular family of reseach, more concerned with the @gritive relevance of its
models, considers that leaning a natural language is very different from leaning a
formal language, becaise in natural situations, examples are dways provided with
semantic and pragmatic information ([10, 2, 14, 11]). This approach may be seen as
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anacther interpretation o the previous ones. As a matter of fad, it implies that natural
languages belong to the restricted family of languages with which semantics
compatible with our world can be awciated (even if this class is hardly
charaderizable), and it also assumes that examples provided to the leaner are those
which are semantically coherent. This is the family our research belongs to.

A fundamental property of natural languages is then taken into acourt here : their
meaningfulness. But this property is computationally tradable only if we have & our
disposal a theory that predsely articulates gntax and semantics. The strongest
posshle aticulation is known as the Fredge's principle of compositionality, which
states that the meaning d a sentence only depends on the meaning d its constituents
and d their mode of combination. This principle has aoquired an explicit
formalization with the works of Richafdontague (16, 7) and his inheritors.

In this paper, we will first expose an upto-date version d this syntadico-semantic
framework, based on a type of grammars cdled categorial grammars, and we will
then show how it can been used in a formal theory of natural language learning.

2 Syntactic analysiswith categorial grammars

In categorial grammars, ead member of the vocabulary is asociated with afinite set
of categories characterizing its combinatorial potentialities.

The syntax only depends on the information associated with ead word. This
stronglexicalization is well adapted to natural languag§)).

2.1 General definition of categorial grammars

A categorial grammar G is a 4-tuple G=<V, C, f, S> where :

- V is the finite alphabet (or vocabulary) of G

- C is the finite set of basic categories of G

We define the set of all posdble caegories of G, noted C' |, as the dosure of C for
thefractionaloperatorsioted/ and \. C' is the smallest set of categories verifying :

* CcCh
*if XeC' and YeC' then X/YeC' and Y\XeC}

- fisafunction : V—>P(C' ) where P(C' ) is the set of finite subsets of C' , which
associates each element v in V with the finite setdG/)of its categories

- SeC is the axiomatic category of G.

The operators / and \ can be mnsidered as oriented fradions. In this framework,
the set of syntadicdly corred sentencesis the set of finite mncaenations of elements
of the vocabulary for which there exists an assgnment of caegories that can be
reduced to the aiomatic caegory S. There ae different clases of caegoria
grammars acording to the almitted reduction rules. We will use the most general
one, called L-grammars.



2.2 L-grammars (from [13])

A Lambek grammar (or L-grammar) is a categorial grammar for which admitted
reduction rules are all the valkgquents of theambek-Gentzen calculus defined by :
- an infinite number of axioms : for every category X in C5=>% X (A) is valid
- two coupes of inference rules among sequents, written in the Gentzen style (i.e.
if the sequent(s) above the line is (are) valid, then the one under is alsa valid)

* — X.IT—>Y
I —> Y/X (R) r—>X\Y (R)

* —>X AY.®—>7 r—>X AY. ®O—>7
AYIX.T.®—>Z (L) AT .X\YY.0O—>Z (L)

where X Y and Z are ireC' andA, ® andI” are concatenations of categoriEg®).
The language L(G) defined by G is then :
L(G)={weV*; dneN Vie{l,..., n} wjeV, w=w1...wp, 3Cjef(w;j), C1...Ch—*—>S}.

Useful valid sequents:
The most simple validequents, for any categories X and Y are the following :
R1: XIY.Y —>X R1:VY.YX—>X
These rules graightforwardly follow from (L/) and (L\) and explain, if the
concdenation d categoriesis asgmilated to a multi plicaion, the nature of / and \ (we
use the notational variant of [L7{pther interesting validequents are (7) :

“R2: XIY.YIZ —> X/Z R2: Z\Y . Y\X —> 2\X
“R3: (Y\X)IZ—> Y\(X/Z) R'3: Y\(X/Z) —> (Y\X)/Z
“R4: X —> YI(X\Y) R'4: X—> (YIX)\Y

Example grammar :
Let us define a L-grammar for the analysis of a small subset of natural language.
The vocabulary is V={a, every, man, woman, John, Paul, runs, loves, meds, is...}.
The set of usual basic caegories needed here is C={S, T, CN}. In this st, Sis the
axiomatic caegory, T stands for term and is asdgned to proper names, while
intrangitive verbs recave the cdegory T\S and transitive ones the caegory (T\S)/T.
CN means common noun and ceterminers like a and every recave two caegories :
(S/(T\S))/CN and ((S/T)\S)/CN, depending ontheir position as a subjed or asa dired
object This grammar allows to analyze simple sentences as séan in

TS—>T\S(A) S—>S(A) T—>T(A) S—>S(A)
CN—>CN@A) 9JmMs). Ts—S/) T—T@A T.MS—SL)
SIMS))CN.CN.T\S— S (L)) T.(MSYT.T—>S(L)
a man runs John is Paul

Fig. 1. analysis trees of simple sentences

Formal propertiesof L-grammars:
L-grammars have been deeply studied. The main results about them are :

- The Lambek-Gentzen cdculus is deddable. As a matter of fad, in eat o its
inference rules, there is one more operator / or \ uncer the line than there ae aove.
To deddeif agiven sequent isvalid, one only hasto test onit ead passhble inference



rule in badkward chaining, eliminating its operators one dter the other, until only
axioms (if thesequent is valid) are left.

- It isimposgble to define afinite set of valid sequents (for example, rules R1 to
R'4) equivalent with the completeambek-Gentzen calculus2g)).

- The dass of languages defined by L-grammars is the dass of context-free
languages ([9]) and the membership problem can be solved in polynomial tije ([

3 From syntax to semantics

The key idea of Montague’'s work ([16]) was to define an isomorphism between
syntactic trees and semantic ones.

This definition is the formal expresson d the principle of compositiondlity. It
allows to automatically translate sentences in natural languagegntal formulas

3.1 The semantic representation

The logic we will use, cdled IL, is a smplified version d the intensional logic
defined by Montague ([16, 7]). It generalizes first order predicae logic by including
typed lambda-calculus.
- IL is a typed language : the set | of all possible types of IL includes
* elementary typesec| (type ofentities) andtel (type oftruth values);
* for any types uel and vel, <u,v>el (<u,v> is the type of functions taking an
argument of type u and giving a result of type v).
- semantics : a denotation §&fis associated with every type=| as follows:
* D.=E where E is the denumerable set of all entities of the world
*D={0,1};
* D_, =D : the denotation set of a composed type is a function.

<u,v>

IL also includes usual quantifiers and lambda-expressions.

3.2 Trandation as an isomor phism

Each analysis tree produced by aategorial grammar can beanslated into IL :
- translation of the categories into logical types (function k=—€'l) :
* basic categories : k(S)=t and in our example : k(T)=e, k(Chl}=<
* derived categories : for anyeC' and YeC', k(X/Y)=k(Y\X)=<k(Y),k(X)>.
- trandation d the words (function q: V x C'—> IL) : ead coude (v,U) where
veV andUef(v)cC' is associated with a logical formulavdd) of IL of type k(UklI.
The most usual and useful translations are :
* g(a,(S/(T\S))/ICN)=q(a,((SIT)\S)/CN)PLQIX[P (X)AQ(X)]
gevery,S/(T\S))/CN)=q(every,((S/ITI\S)/CNYBAQVX[P (X)~>Q(X)]
where x and y are variables of type e, P and Q variables ofdytpe <
* the verbto be, as a transitive verb is translated by
q(be,(T\S)/T)xxAy[y=x] with x and y variables of type e.



* Every other word w istranglated into alogical constant noted w'.
- trand ation of the rules of the Lambek-Gentzen calculus :
* the axioms X —> X aretranslated by the identity function : Ax.x;
* the inference rules are respectively translated by rules applying to IL formulas :

t X—>§l X |—>§[

t—>2x[y] t—>Ax[y]

t—>X u.fx).v—>z t—>X u.fx).v—>z
u.f.t.v—>z u.t.f.v—>1z

As dl rules Ri (1<i<4) can be proved in the Lambek calculus, the corresponding
translation rules called Wi can be deduced from our translations ([17]) :

-W1l: f.a—> f(a Wil: a.f —> f(a)

-W2: f.g —> Adf(g(a)] W2: g.f —> Ad[f(g(a)]

-W3: f —> raib[(f(b))(a)] W'3: f —> Aaib[(f(b))(d)]

-W4: a —> M[f(a)] W4 : a—> M[f(3)]
Examples

Fig. 2 displays the trandation of the first tree of Fig. 1. The unknown trandation of

the sentence is first noted M. From the isomorphism, we obtain :

M=APAQIX[P(X) AQ(X)](man") (run’)=AQ3x[man'(x) AQ(x)] (run")
=3Ax[man’(x)Arun'(x)]

T\S—>T\S(A) S—>S(A) run—>b APAQIX[P(X)AQ(X)](8)(b)—>M
CN—>CN (A) J(T\S).T\S—>S(L/) man'—>a PAQIX[P(X)AQ(X)](a).run—>M

(J(MS)/ICN.CN.T\S—>S (L) =>  APAQIX[PX)AQ(X)].man’.run—>M
a man runs

Fig. 2. trandation of thefirst analysistree of Fig. 1

Similarly, the second tree of Fig. 1 istrandated into : [John' =Paul: This system
gives account of ambiguities : ambiguous sentences give rise to several different trees
translated into several different formulas.

4 First approach to thelearning model

Our purpose is to provide a computational model of natural language learning. Now
that the linguistic framework is given, it remains to fix what is supposed to be known
by the learner and what is to be learned, under which conditions.

4.1 Innate knowledge and conceptsto be lear ned

When a human being learns a natural language, we suppose that he has at his disposal
sentences syntactically correct and semantically relevant.

The corresponding situation in our model is an algorithm which takes as inputs a
syntactically correct sentence together with itslogical trandationinto IL.



The innate knowledge supposed is reduced to the inference rules of the Lambek
calculus and the corresponding trandlation rules. As opposed to usual semantic-based
methods of learning, no word meaning is supposed to be initially known.

Finally, what does the learner have to learn ? In our linguistic framework, all
syntactic and semantic information are attached to the members of the vocabulary.
More precisely, the knowledge to be learned can be represented as a finite list of
triplets of the form (v,U,w) whereveV, Uef(v)cC' and w=q(v,U)elL.

Example:
Learning the example grammar of 2.2 and its logical translation means learning the
following set :
{ (a (SI(T\S))/CN, APLQIX[P(X)AQ(X)]), (& ((STI\S)/CN, APALQIX[P(X)AQ(X)]),
(man, CN, man’), (woman, CN, woman'), (John,T,John’), (Paul,T,Paul’),
(runs, T\S,run’),(meets,(S\T)/T,meet’),(is,(S\T)/T,AxAy[y=X])...}

Fig. 3. shows the components of our model.

innate knowledge
Lambek-calculus
and itstrandation

|

utterance R
(correct sentence) ] learning syntax and semantics :
algorithm » (word,category,trangl ation)
meaning >
(logical formula)

Fig. 3. thelearning model

4.2 Thelearning algorithm

The learning strategy we propose is the following one :

- current hypothesis := &;
- For every couple <p, I> where pisasentenceand | isalogical formulado :
- For every wordinpdo:
* if it belongs to the current hypothesis, affect it the corresponding category;
* else affect it the categories allowing the analysis of p;
- For every possible analysistreefor p do :
- for every couple (word category) in thistree do :
* if it belongs to the current hypothesis, affect it the corresponding
tranglation
* else, find the simplest translation allowing to provide |
- Update the current hypothesis.




4.3 Simulation of the algorithm

Let us suppose that the first given exampleis: <John runs, run'(John’)>.

- the syntactic hypotheses : as both words of p are unknown, we cal A the
category associated with John and B the one associated with runs. As p is a correct
sentence, we know that A . B ——> S and we want to infer values for A and B. The
only applicable rulesin backward chaining are (L/) and (L\), as shown in Fig. 4 :

B-—>v [U—>s a—>v Uu—>s
A=U/V.B ——>S (L)) A.B=V\WU ——>S (L))
Fig. 4. the syntactic hypothesis

In these trees, sequents inside rectangles can only be axioms (because the category
on the right side is a basic one) and there are ovals around sequents that could be
developed further by decomposing the right side category and by applying rules (R/)
or (RY), but which are cut at thislevel. So, the two possible solutions are :

* f(John)=A=U/V=S/B and f(runs)=B where B can be any category, basic or not;

* f(John)=A and f(runs)=B=V\U=A\S where A can be any category.

- the semantic tranglation :

* Fig. 5 shows the trandation of the first hypothesis

B—>B S—>S g(runsB) —>a q(John,SB)(a) —> M
SB.B—>S (L) => g(John,S/B) . g(runs,B) —> M
John runs

Fig. 5. trandlation of the first hypothesis

From M=q(John,S/B)(a)=g(John,S/B)(q(run,B))=run' (John' ) we infer that
d(John,S/B)=run’ and gn,B)=John" . Another solution would be : qun,A\S)=run’
and q(John,S/B)=AP[P(John")] but we strictly stick to the simplest solution.

* Fig. 6 shows the trandation of the second hypothesis

A—>A S—>S gd(John,A) —>a g(runs,A\S)(a) —> M
A.AS—S (L)) => g(John,A) . q(runs,A\S) —M
John runs

Fig. 6. trandlation of the second hypothesis

Similarly, we infer that g(runs,A\S)=run' and q(John,A)=John'".

At this stage, we have no reason to prefer one hypothesis to the other. The current
hypothesisisthen :

H={(John,S/B,run’),(runs,B,John")} OR {(John,A,John’),(runs,A\S,run’)}.

Now, let us suppose that a second given example is <Paul runs, run' (Paul' )>. The
same process applies, except that runs now belongs to the current hypothesis.

- the syntactic hypotheses :

* if runsis assigned the category B, then Paul must receive S/B;

* if runsis assigned the category A\S, then Paul can receive either A or SI(A\S).
But the sequent A —> S/(A\S) isvalid in the Lambek-Gentzen calculus (see rule R4),
so S/(A\S) isin fact a particular case of A and is not to be taken into account.



- the semantic tranglation :

* the trandation of the first tree, similar to the one of Fig. 6, gives rise to :
M=q(Paul,S/B)(John" )=run' (Paul' ) which is an equation without solution. So, the first
subset of the current hypothesis is given up. It can be noticed that the hypothesis
concerning John in this subset is aso given up, athough it was not concerned by the
new example. A similar conclusion would have followed if the second example had
been <John sleeps, sleegps (John' )>. Any other example sentence including one of the
words concerned by the current hypothesis is enough to discard the wrong subset.

* the trandation of the second tree, similar to the one of Fig. 7, gives rise to :
M=run'(g(Paul ,A))=run'(Paul") and allows to infer g(Paul ,A)=Paul".

The new current hypothesisisthen :

H={ (John,A ,John"),(runs,A\S,run),(Paul ,A,Paul")} .

Without semantics, it would have been impossible to decide between the two
initial possibilities. The only reason why runs must receive a fractiona category is
that its trandlation behaves like a function, a predicate.

In the appendix is given the analysis of <a man runs, 3x[man’ (run’ (x)])> given
as a new example. There are eleven syntactical possibilities, reduced to six redly
different ones. The semantic trandation alows to abandon three of them and only
four syntactico-semantic hypotheses are built, among which three will clearly be
discarded very easily at the next repetition.

4.4 Treatment of polymorphism :

How can our algorithm assign severa different categories to a unique word (as it
seems necessary for determiners) ? A special module needs to be added. It becomes
active when a new sentence example contains no new word but is impossible to
analyze with the current hypothesis.

In this case, each word in the sentence, one after the other, should be treated as if it
were the only one unknown so as to find out its other possible categories.
Nevertheless, heuristics can help us chose the words more likely to be assigned
severa different categories :

- grammatical words, easy to recognize because they are the ones trandated by
lambda expressions (whereas lexical words are nearly always trandated by a logical
constant) are treated in priority.

- even if a word needs several categories, most of the time a unique logica
trandation is enough for al of them : this is true for determiners but also for
pathological ambiguous words like fly, which can be either a common noun or a verb
but isin both cases translated by fly'.

Further experiments, varying the order in which the examples are proposed, need
to be performed to test if they are enough to treat every case of polymorphism.

5 Evaluation and conclusion

The agorithmic complexity of our algorithm is clearly exponential. More complex
sentences would have entailed the multiplication of hypotheses and could have been



intractable. More precisely, our model seems to be particularly sensitive to the
complexity of a new example relatively to the current hypothesis. This complexity
can be measured by the number of new words appearing in an example. To master
this complexity, we suggest to put a priori a bound on the number of new words
appearing in a new sentence. An example which does not respect this bound is not
treated but saved so as to be treated later, when the current hypothesis is devel oped
enough. It is reasonable to think that children aso learn from simple examples to
more complex ones.

But our work also provides new insights on previous ones.

First, categorial grammars seem to be particularly adapted to the learning process.
Recent research has found conditions under which the syntax of these grammars is
learnable with positive examples ([3, 1, 12]). But, in these frameworks, only asimpler
version of categoria grammars (restricted to rules R1 and R' )Lis considered. The
main interest of L-categorial grammars is that they alow to restrict the number of
different categories associated with each word. This number is a crucial parameter for
the complexity of the syntactic analysis and for the treatment of polymorphism.
Furthermore, in most previous work ([3, 12]), tree structures are provided as input
data. In our model, thanks to the tree isomorphism, the semantics transation plays a
similar role but in a weaker and more cognitively relevant fashion, as the functional
structure of the logical formula gives indication about the functional syntactic
structure of the sentence. Adriaans ([1]) aso proposed a learning algorithm for
categorial grammars using both syntax and semantics but he treated them separately :
the semantic learning only started when the syntax learning was achieved instead of
helping it as we propose.

Learning a natural language is certainly not equivalent to learning a formal
grammar. Natural words and sentences refer to things and situations and can only be
learned in their presence. Cognitive models built in this spirit ([10, 2, 14, 11]) already
assumed this, but the syntaxes considered were more traditional and the semantic
representations used were too close to syntactic structures ([21]) : they failed to
represent complex logical relations like quantification or Boolean operators. Logical
languages are more powerful and a priori independent from linguistic structures. Our
model suggests that the acquisition of a conceptua representation of the world is
necessary before the acquisition of the syntax of a natural language can start.

Fundamentally, what makes natural languages learnable in our model is the
presupposition that there exists an isomorphism between the syntax of sentences and
their semantics. This strong principle of compositionality is contested by linguists
working on discourse phenomena but remains an interesting approximation. The
graph deformation condition used in [2] was aweaker version of it.

The work presented here is more a program of research than a full achievement,
but seemed interesting enough to be exposed because our choices have theoretical,
linguistic and cognitive motivations. The algorithm is being implemented and the
search for a characterization of the languages it allows to learn is being explored.
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APPENDIX
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In thistree, unknown categories associated with a and man are noted C and D.
- semantic translation : let us call a=q(a, C) and B=g(man,D)
* the translation of solution 1 leads to a(run’'(B))=3ax[man’(x)Arun’'(x)].

The identification of both formulas imposes to define : B=x. But we forbid to
introduce free variables into the logical trandations of the words, so this solution is
abandoned.

* the tranglation of solution 2 leads to run’(a.(B))=3x[man’'(x)Arun’(x)].

This equation isimpossible to solve, so this solution is abandoned.

* the translation of solution 3 leads to run’(B(o))=3x[man’'(x)Arun’(x)].

Asin the previous case, this solution is abandoned.

* the translation of solution 4 leads to (ou(B))(run’)=3x[man’(x)Arun’'(x)].

To identify both formulas, we have to perform lambda-abstractions on the second
one (they are only possible on logical constants) :

Ix[man'(x) arun'(x)]=AP3ax[man’'(x) AP(X)] (run’) so o(B)=AP3x[man'(x)AP(x)]

and AP3x[man’'(x) AP(X)]=AQAPAX[ Q(X)AP(X)] (man)

so the simplest solution is : a=AQAPIX[Q(X)AP(X)] and B=man'.

* the translation of solution 7 leads to o(B(run’))=3ax[man’(x)Arun’'(x)].

with Ix[man’(x)Arun'(x)]=APax[man'(x) AP(x)] (run) we obtain two solutions :

- a=AX.x and B=APax[man’'(x)AP(x)]

- o=APIX[man’'(X)AP(X)] and B=Ax.x

(solutions using the constant function : Ax.x are only considered in the cases where
no other are possible, thisis the reason why they were not proposed earlier).

* the translation of solution 9 leadsto (B(run’))(o)=3x[man’(x)Arun’'(x)].

After abstractions, the only solution left is: a=man' and B=APAQIX[Q(X)AP(X)].

So, the hypotheses brought by this new example are :

{ (a (S(A\9)/D, AQAPIX[Q(X)AP(X)]), (man, D, man’) }

OR{ (a, W, Ax.x), (man, W/(A\S), APIx[man’'(x)AP(X)]) }

OR{ (a, /W, APIx[man'(X)AP(X)])), (man, W/(A\S), Ax.X) }

OR{ (a, C, man’), (man, (C\S)/(A\S), APLQIX[Q(X)AP(X)]) }.

It is obvious that only the first subset will resist to new examples using one of
these words.



