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Abstract. In this paper, we first study the connections between sub-
classes of AB-categorial grammars and finite state automata. Using this,
we explain how learnability results for categorial grammars in Gold’s
model from structured positive examples translate into regular grammat-
ical inference results from strings. A closer analysis of the generalization
operator used in categorial grammar inference shows that it is strictly
more powerful than the one used in usual regular grammatical inference,
as it can lead outside the class of regular languages. Yet, we show that
the result can still be represented by a new kind of finite-state generative
model called a recursive automaton. We prove that every unidirectional
categorial grammar, and thus every context-free language, can be repre-
sented by such a recursive automaton. We finally identify a new subclass
of unidirectional categorial grammars for which learning from strings is
not more expensive than learning from structures. A drastic simplifica-
tion of Kanazawa'’s learning algorithm from strings for this class follows.

1 Introduction

Grammatical inference deals with the problem of how to infer a grammar from
examples of sentences it generates - and from sentences it does not generate, if
negative examples are available. In the grammatical inference community (see
the ICGI conference), many efforts have concerned the learnability of subclasses
of regular grammars, represented by finite state automata [1,13,8,7].

The inference of context-free grammars is more difficult and has received
less attention. The most achieved work in this domain is Kanazawa’s [12], who
proved learnability results of large subclasses of AB-categorial grammars in
Gold’s model from positive examples [9]. These results concern two kinds of
input data: strings and structural examples, i.e. syntactic analysis structures
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where intermediate categories are deleted. But these results are hardly useful,
because (except in very restricted cases) the corresponding algorithms have a
high complexity [5, 6]. Surprisingly enough, nobody seems to have ever tried to
translate these results into the more restricted class of regular grammars. The
main characteristic of this class is that it produces only flat trees. We can prove
easily that, in this context, structural examples are available for free when strings
are available. So, it is worth considering how learnability results for subclasses
of AB-categorial grammars from structural examples translate into learnability
results for subclasses of regular grammars from strings.

In this paper, we first study how finite state automata translate into cate-
gorial grammars, and conversely. We compare learning strategies used in both
domains. Doing so, we compare the relative power of the usual generalization
operator of “state fusion”, used in traditional regular grammatical inference and
the generalization operator of “unifying substitutions on variables” used in cate-
gorial grammar learning. We prove that the latter is strictly more powerful than
the former, as it sometimes allows to transform a categorial grammar generating
a regular language into a categorial grammar generating a context-free grammar.
Yet, in this case, it is still possible to represent the result of the operator as a
generalized automaton. This leads to the definition of a new class of automata,
called recursive automata. This class, which is a natural extension of finite state
automata, has at least the expressive power of unidirectional categorial gram-
mars, and can thus generate every context-free language.

This article thus proposes to unify grammatical inference results coming from
two different traditions: the one focusing on finite state automata, and the one
focusing on AB-categorial grammars, showing that they can both benefit from
ideas coming from the other one.

2 Finite State Automata and Categorial Grammars

In this section, we first recall basic definitions concerning finite state automata
and AB-categorial grammars, and show that there are easy correspondences
between them.

2.1 Finite State Automata and Regular Languages
We recall here the classical notations for automata and regular languages.

Definition 1 (Finite State Automaton (FSA) and their Language). A
finite state automaton (FSA in the following) A is a 5-tuple A = (Q, X, 6, qo, F')
such that Q is the finite set of states of A, X its finite vocabulary, qo € Q is the
initial state of A (we restrict ourselves to automata with a unique initial state)
and F C Q 1is the set of its final states. Finally, § is the transition function of
A, defined from Q x X to 29.

The language L(A) recognized by A is defined as: L(A) = {w € X*|6*(go, w)N
F # 0}, where 6* is the natural extension of § on Q x X* such that: for any



a€ X, anyu € X* and any q € Q, §*(q,au) = {6*(¢',u)|q¢’ € d(q,a)}.
The set of languages recognized by FSA is called the set of regqular languages.

Ezample 1. Figure 1 displays a simple FSA A such that L(A4) = a™bt.

a
ab b

Fig. 1. A Simple Finite State Automaton

2.2 Grammars and Categorial Grammars

We recall the classical definitions of a generative grammar, and of categorial
grammars. Here, we restrict ourselves to AB-(or classical) categorial grammars.

Definition 2 (Generative Grammars and their Language). A gener-
ative grammar (or simply a grammar in the following) is a 4-tuple G =
(X,N,P,S) with X the finite terminal vocabulary of G, N its finite non ter-
minal vocabulary, P C (YU N)T x (XU N)* its finite set of rules and S € N
the aziom.

The language generated by a grammar G is L(G) = {w € X*|S —* w}
where —™ is the reflexive and transitive closure of the relation defined by P.

Definition 3 (Categories, AB-Categorial Grammars and their Lan-
guage). Let B be a set (at most countably infinite) of basic categories containing
a distinguished category S € B, called the axiom. We note Cat(B) the smallest
set such that B C Cat(B) and for any A, B € Cat(B) we have: A/B € Cat(B)
and B\A € Cat(B).

For every finite vocabulary X and for every set of basic categories B (S € B),
a categorial grammar is o finite relation G over X x Cat(BB). We note (v, A) €
G the assignment of the category A € Cat(B) to the element of the vocabulary
v € X. AB-categorial grammars (CGs in the following) are categorial grammars
where the syntactic rules take the form of two rewriting schemes: VA, B € Cat(B)

— FA (Forward Application) : A/B B — A
— BA (Backward Application) : B B\A — A

The language generated (or recognized) by a CG G is:
LG)={w=wv1...v, € X7 |Vie{1,...,n}, JA; € Cat(B) such that (v;, A;) €
G and Ay ... A, —* S}, where —* is the reflexive and transitive closure of —.

Ezample 2. For example, let B = {S,T,CN} (where T stands for “term” and
CN for “common noun”), X' = {John, runs,loves, a,cat} and G be defined by:
G = {(John,T), (runs,T\S), (loves, (T\S)/T), (loves, T\(S/T)), (cat, CN),

(a, (S/(T\S))/CN), (a, ((S/T)\S)/CN)}.

This CG generates sentences like “John runs”, “John loves a cat”, etc.



Definition 4 (FA-Structures, Structural Examples, Structured Lan-
guage). A functor-argument (or FA-) structure over an alphabet X is
a binary-branching tree whose leaf nodes are labeled by elements of X and whose
internal nodes are labeled either by BA or FA. The set of FA-structures over X
is denoted ¥ .

For any AB-categorial grammar G C X x Cat(B), a structural ezample for G is
an element of X which can be obtained from the analysis tree resulting from a
syntactic parsing of a string w € L(G) in G by deleting each of its categories.
For any CG G C X x Cat(B), the structured language F L(G) associated with G
is the set of structural examples for G.

G denotes the class of CGs. For every integer k£ > 1, the set of CGs assigning
at most k distinct categories to each member of the vocabulary is the class of
k-valued CGs denoted by G,. When k = 1 the grammars are also called rigid.

2.3 From Automata to Categorial Grammars and Back

The expressive power of CGs is the one of e-free (e is the empty string) context-
free languages [2]. So, of course, they can also generate e-free regular languages.
Correspondences between FSA and CGs are easy to define.

Definition 5 (Regular CGs). We call a regular CG a CG G C X x Cat(B)
that only contains assignments of the form (v, A) or (v, A/B) withv € ¥ and
A, B € B. The set of regular CGs is noted G,..

Property 1 (Transformation of an Automaton). Let A = (Q, X, 4, qo, F) be a
FSA. Let B = (Q\{qo}) U {S} (where S ¢ Q). It is possible to define a regular
CG G C ¥ x Cat(B) such that L(G) = L(A)\{e}.

Proof (Proof of Property 1). This property is the consequence of sequentially ap-
plying the classical transformation of a FSA A into a left-linear regular grammar
G1 =(X,Q, P, S), then applying the transformation of Gy into a CG: Va € X
and Vg, ¢’ € Q such that ¢’ € §(g,a) do:

— if ¢’ € F then
e ¢ — ais arule of Gy (element of P1) and (a,q) € G (replace ¢ by S);
o if Ju e X, 3¢" € 6(¢’,u) then ¢ — aq’ is a rule of G; and (a,¢/¢') € G
(replace qo by S);
— else ¢ — aq’ is a rule of G; and (a,q/q’) € G (replace gg by 5).

€ € L(A) if and only if go € F. This situation gives rise to a new rule § — ¢
in P;. But in CGs, it is impossible to assign a category to ¢, so this rule has no
counterpart in G. So, we have: L(A)\{e} = L(G1)\{e} = L(G).O

Example 3. Let us apply the previous process to the FSA given in Example
1. The rules of the corresponding left-linear regular grammar are the following
(where the state of number i is associated with a non terminal symbol noted
Qi, with Qo = 5): S — aQ1, Q1 — aQ1, Q1 — b, Q1 — bQ2, Q2 — b,



Q2 — bQ2. And the CG G is:
G = {<a7 S/Q1>7 <CL, Ql/Q1>7 <b7 Q1>7 <b7 Ql/Q2>7 <b7 Q2>3 <b7 QQ/Q2>}

So, FSA can easily be lexicalized. Note that the only operator used in cate-
gories of a regular CG is / and the only useful rule is F'A (it would have been
\ and BA if we had first transformed the automaton into a right-linear regular
grammar). In fact, the previous transformation preserves not only the string lan-
guage, but also the structured language. A crucial consequence is that structural
examples in the sense of Definition 4 are available for free from the correspond-
ing strings: underlying structures produced by automata are always flat, and the
only label for internal nodes is FA.

Ezxample 4. Figure 2 displays two analysis trees produced by the CG obtained
in Example 3, and (on the right) the corresponding structural examples.

A

FA

S/an le N b
s ”
ANEEVAN
@ g S
/\
Q1/aQ1 612"/% a A
/\
Q1/bQ2 6%2 b b

Fig. 2. Syntactic Analyses and the corresponding Structural Examples

Property 2 (Transformation of a Regular AB-Categorial Grammar). Every reg-
ular CG G C XY x Cat(B) can be transformed into a FSA A = (Q, X, §, qo, F)
recognizing the same (e-free) language.

Proof (sketch of the proof of Property 2). This transformation is the reverse of
the one described in Property 1: the only thing to pay attention to is to add
a unique final state Fy in A. Let Q = BU{F4} with F4 ¢ B, ¢o = S and
F = {F4}. Each assignment (a,U/V) € G corresponds to a transition labelled



by a between the states U and V in A (so: §(U,a) = V) and each assignment
(a,U) € G to a transition labeled by a between U and Fy4 (6(U,a) = Fa).O

Example 5. The automaton built by applying this operation to the CG obtained
in Example 3 is given in Figure 3. It is not exactly the same as the initial one
(in Example 1), because of the final state added to the states coming from basic
categories. The result is, usually, nondeterministic.

Fig. 3. The Automaton Obtained from the AB-Categorial Grammar

Remark 1. Properties 1 and 2 do not mean that only the CGs that are regular
generate a regular language. The CG of Example 2 is not regular in the sense
of Definition 5 but it generates a finite (and thus regular) language. But the
structures it produces are not flat.

Property 8 (Language Associated with a State). Let G be a regular CG and
A be the automaton obtained from it. Then for any basic category @ of G
(corresponding to a non-final state @ of A, S = ¢p), we have two equivalent
ways to define the language L(Q) associated with Q:

LQ)={w=wv1...v, € T |Vie{l,...,n} FA; € Cat(B) such that (v;, A;) €
Gand A ... A, —* Q}and L(Q) ={w € YT |F4 € 67 (Q,w)}.

Proof (sketch of proof of Property 3). The proof is an easy consequence of Prop-
erties 1 and 2, where @ replaces S.[1

The second definition of state language slightly differs from the classical one,
because it excludes € (we know that @ # F4 so € ¢ L(Q)) and uses the fact
that there is only one terminal state F4 in A. So, strings in L(Q), which can be
associated with the category @ in G, also correspond in A to strings produced
by following a path starting from the state () and reaching the final state Fj.
Of course, if Q = g9 = S, we have: L(S) = L(A) = L(G).

Ezample 6. In the automaton of Figure 3, L(Q1) = a*b™ and L(Q2) = b™.

3 Inference of CGs from Positive Examples

The learnability of CGs in Gold’s model from positive examples has received
great attention in the last years. Now that we have an easy translation of a
subclass of such grammars (the subclass of the regular ones) into automata, it
is natural to see how these results translate into regular language learning, to
compare them with known results in this domain.



3.1 Gold’s model

To deal with questions of learnability, Kanazawa [12] introduced the notion of
grammar system, allowing a reformulation of Gold’s model of identification in
the limit from positive examples [9]. We recall this notion here.

Definition 6 (Grammar System). A grammar system is a triple (2, A, L)
made of a hypothesis space {2 (here, 2 will be a set of grammars), a sample space
A, which is a recursive subset of A*, for some fized alphabet A (elements of A
are sentences and subsets of A are languages) and L : {2 — pow(A) is a naming
function. The question of whether w € L(G) which holds between w € A and
G € 12, is supposed to be computable.

The main grammar systems we deal with in the following of this paper are
(G,X* L) and (G, XF  FL). The first one concerns the learnability of CGs from
strings and the second one the learnability of CGs from structural examples.

Definition 7 (Learnability Criterion). Let (2, A, L) be a grammar system
and ¢ : Up>1A%¥ — 2 be a computable function. We say that ¢ converges to
G € 2 on a sequence (s;)ien of elements of A if G; = ¢({sq, ..., si)) is defined
and equal to G for all but finitely many i € N - or equivalently if there exists
ng € N such that for all i > ng, G; is defined and equal to G. Such a function ¢
is said to learn G C £2 if for every language L in L(G) = {L(G)|G € G} and for
every infinite sequence (s;);cn that enumerates the elements of L (i.e. such that
{sili € N} = L), there exists some G in G such that L(G) = L and ¢ converges
to G on <5i>ieN-

Theorem 1 (Learnability of Gy [12]). For any k > 1, the class Gy of k-
valued CGs is learnable in the grammar systems (G, X* L) (i.e. from strings)
and (G, X FL) (i.e. from structural ezamples).

3.2 Categorial Grammars and Regular Grammatical Inference

Of course, Theorem 1 holds for k-valued regular CGs. In this section, we first
translate Kanazawa’s results into regular grammatical inference. We then show
the equivalence between two other known results in the case of regular CGs.

Theorem 2 (Learnability of k-valued Regular CGs). For every k > 1, the
class of k-valued regular CGs Gy, NG, is learnable from structural ezamples and
from strings.

Proof (Sketch of Proof of Theorem 2). This is a direct consequence of Theorem
1, restricted to the class G,.. To learn regular k-valued CGs from strings, you just
have to apply the BP learning strategy from structural examples that are flat
trees with F'A internal nodes, then to select among the output the CGs that are
isomorph with a regular CG (which is decidable) before performing the inclusion
tests.[]



It is interesting to notice that, in the case of regular CGs, unlike in the case
of general CGs, strings and structures are equivalent - that is, structures are
available for free from strings. This is the idea we will try to generalize for larger
classes of CGs in the following section.

Unfortunately, this class of grammars is not very interesting. As a matter of
fact, if k is given, it is also a bound on the maximal number of transitions labeled
by the same element of vocabulary in the corresponding FSA: there exists a finite
number of distinct automata satisfying this condition, so the learnability result
is in fact trivial.

Nevertheless, the notion of k-valued automaton, i.e. FSA which are the result
of applying the process of Property 2 to k-valued regular CGs is original. As
a matter of fact, it focuses on the total number of transitions labeled by the
same symbol in an automaton, instead of focusing on the total number of states
in this automaton. k-valued automata seem well adapted to large alphabets X’
(especially when k is small), which contrasts with usual classes of automata (and
usual learning algorithms) considered in the field of regular inference.

Other interesting results worth being compared: the one concerning the class
of O-reversible FSA [1] and the one concerning the class of reversible CGs [3].

Definition 8 (0-Reversibility of a FSA [1]). A FSA is said to be 0-reversible
if and only if it is deterministic and the automaton obtained by reversing the
transitions backwards is also deterministic.

Definition 9 (Reversibility of a CG [3]). A CG is said to be reversible
if it does not contain two assignments of categories for the same element of
vocabulary, which are distinct by only one basic category.

Theorem 3 (Equivalence of these Reversibility Notions). Let G be a
reqular CG and A be the FSA obtained from it. A is O-reversible in the sense of
Definition 8 if and only if G is reversible in the sense of Definition 9.

Proof (Sketch of Proof of Theorem 3). This property is a direct consequence
of Theorem 2. As we only considered automata with a unique initial state and
no ¢ transition, the conditions for A to be deterministic only concern transitions
starting from the same state and labeled by the same symbol. They are equivalent
for G with the following ones: Va € X'

— VQ1,Q2,Q3 € B: (a,Q1/Q2) € G and (a,Q1/Q3) € G & Q2 = Q.
= VQ1,Q2 € B: (a,Q1) € G and (a,Q1/Q2) € G & Q2 = Fa (in fact, (a, Q1)
stands for (a,Q1/F4));

Similarly, as A has only one final state, the conditions for the reversed automaton
to be deterministic are equivalent with the following ones: Va € ¥

- VQ1,Q2 € B: (a,Q1) € G and (a,Q2) € G & Q1 = Q2
— VQ1,Q2,Q3 € B: (a,Q1/Q2) € G and (a,Q3/Q2) € G & Q1 = Q3.

For regular CGs, these conditions coincide with the one of Definition 9.01



So, the learnability of the class of 0-reversible FSA from strings [1] is equiv-
alent with the one concerning the class of reversible CGs [3] from structures, in
the special case of regular CGs. The corresponding learning algorithms should
be more carefully compared, but they also seem equivalent.

3.3 Learning Algorithm

The learnability results of Theorem 1 are not only theoretical ones. The original
algorithm BP able to identify the set of k-valued CGs without useless category
compatible with a set of structural examples is due to Buszkowki & Penn [4].
We briefly recall it here, exemplifying it on a set of flat structural examples.

To identify every k-valued CG compatible with a given sample D of structural
examples, the first steps are the following for each element of D:

1. introduce a label S at the root of each structural example;

2. introduce a distinct variable z; at each argument node (i.e. at the left daugh-
ter of each BA node and at the right daughter of each FA node);

3. introduce a fractional category at every other node, respecting the labels of
the functional application (FA or BA) to be applied.

The result of collecting all the categories associated with each distinct mem-
ber of the vocabulary after these steps is a CG called the general form of D
and noted GF (D).

Example 7. Let D be the couple of structural examples given in Example 4. The
previous process gives the result of Figure 4, and GF(D) is defined as follows:

— a: S/x1, S/w4, 14/73;

— b: 1, $3/(E2, Z2.

The corresponding FSA is given in Figure 5: it very much looks like what is
known in regular grammatical inference as the maximal canonical automaton
MCA(D): the only difference is that the FSA corresponding to GF(D) has a
unique initial state and a unique final state. It is generally not deterministic.

Then, substitutions that unify category assignments are searched for.

Definition 10 (Variable Categories and Substitutions). Let x be an enu-
merably infinite set of variables and B = x U {S}. A substitution is a function
o :x — Cat(B) that maps variables to categories (it is initialized by the Iden-
tity function on x). A substitution is extended to a function from categories
to categories as follows: (i) o(S) = S, (i) 0(A/B) = o(A)/o(B) and (iii)
o(A\B) = o(A)\o(B) for any A, B € Cat(B). Similarly, a substitution is nat-
urally extended to apply to o CG: VG € G, o(G) = {(v,0(A))|(v, A) € G}. For
any CG G, a unifying substitution for G is a substitution that unifies categories
assigned to the same element of the vocabulary in G.

Property 4 (Fundamental Property [4]). For any CG G, the following two prop-
erties are equivalent: (i) D C FL(G) and (ii) 3o such that ¢[GF(D)] C G.
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Fig. 4. First Step of the Learning Algorithm

Fig. 5. The Automaton Corresponding with GF (D)

In other words, CGs whose structured language is compatible with the input
D are those which contain a substitution of GF(D). If the target grammar is
k-valued, the learning strategy BP thus only consists in finding every possible
unifying substitution o such that the grammar o[GF(D)] is k-valued. If k = 1,
the learning process is incremental and the target grammar, if it exists, is unique
and available in the limit. If £ > 1, a remaining problem is to select one grammar
among the set. This is performed by inclusion tests on the structured languages
of the candidates (or by bounded inclusion tests for string languages). We will
not go into further details about this final step.

Applying a substitution on a CG is a generalization operation, because we
have the following property [4]: 0(G1) C G2 = FL(G1) C FL(G3). So we
always have: FL(G) C FL(c(G)) and, similarly, L(G) C L(o(G)). But in usual
regular grammatical inference, the most often used generalization operator is
the one of state merging [1,13, 8]. What is the link between these two operators
? In the context of a set D containing only flat structures with internal nodes
FA, GF (D) is necessarily a regular CG (see Example 7). So, only two cases can
occur to unify two categories:

— conditions of the form o(x;) = o(x;) = x; for any z; € x and any z; €
x U {S} specify a state merging: states x; and x; are merged.

— conditions of the form o (x;) = z;/xs, for any x; € x and any z;, z;, € xU{S}
are more difficult to understand. Such a condition means two things:



o the state x; must be renamed as a state called x;/xy;
e every string that could be associated with the category x; in the grammar
GF (D) can now be used as a “transition” between the states x; and zy.

Example 8. For example, let us define a substitution o that unifies some of the
categories assigned to a and b in the grammar GF(D) of Example 7 as follows:
o(x4) = o(x1) = x3/x2 (and o is the identity elsewhere). The resulting CG
o(GF (D)) is the following:

— a: S/((Eg/ﬁg), ((E3/$2)/$3;

— b: x3/x9, x2.

This CG is no longer regular. Nevertheless, it can be represented in a generalized
automaton by adding a “recursive transition”, that is a transition labeled by a
state (here, the state x3/x2). The corresponding automaton is given in Figure 6.

Fig. 6. The Generalized Automaton Corresponding with o(GF (D))

In this automaton, previous states x; and x4 were merged and renamed as
x3/x2, and a new “recursive” transition labeled by z3/x5 replaces the one that
was labeled by b between the states x5 and x3. To use this new transition, you
need to produce a string of category xs/x2, that is a string that belongs to the
state language of x3/xo. According to Property 3, another way to characterize
such a string is that it would be obtained by following a path from the state z3 /2
to the final state F'. To follow such a path, the first possible choice is, of course,
the direct transition labeled by b. But another possible choice is to reach x3 by
a where the previous choice is posed again. Of course, a stack is necessary to
remember the list of recursive transitions used. The language recognized by this
generalized automaton is a™b™, which is not regular. This generalized automaton
can be considered as a special case of Recursive Transition Network.

To understand how such a generalization could occur, let us look at the
analysis tree produced by the grammar for the string aaabbb, given in Figure 7.

This tree is no longer flat. To understand how it was built, look back at the
second tree of Figure 4. The specification of o(z4) = x3/x2 provides an equality
between labels of this tree: the label of an internal node (z4) becomes equal to the
label of a leaf (z3/x2). This equality opens the possibility to insert the subtree
rooted by x4 in the place of the leaf labeled by x3/x2, as is done in Figure 7.
This operation is exactly what is called an adjunction, in the formalism of Tree
Adjoining Grammars [11].
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Fig. 7. Syntactic Analyses Tree for aaabbb

4 Learning CF-Languages from Flat Structures

Example 8 suggested that it is possible to generalize real trees from flat trees
and to represent context-free languages by a recursive automaton. This section
is dedicated to the formalization of these ideas, and to the study of their con-
sequences to improve Kanazawa’s learning algorithm from strings, when it is
possible.

4.1 Recursive Automata an their Expressivity

Definition 11 (Recursive Automaton). A recursive automaton (RA in
the following) R is a 5-tuple R = (Q, X, 7, qo, F) such that Q is the finite set
of states of R, X is its finite vocabulary, qo € Q its (unique) initial state and
F € Q its (unique) final state. v is the transition function of R, defined from
Qx (XUQ) to 29.

The only important difference between FSA and RA is that, in a RA, it is
possible to label a transition by an element of ). We call such a transition a
recursive transition. To use a recursive transition labelled by ¢ € @, you have
to produce an element of L(q). We restrict ourselves to RA with a unique initial
state and a unique final state, but it is not a crucial choice. As we consider e-free
languages, it is supposed that F' £ qo.



Definition 12 (Language Recognized by a RA). Let R = (Q, X, 7, qo, F)
be a recursive automaton. The language L(R) recognized by R is defined as:
L(R) = {w € "|F € v (qo,w)}, where v is the natural extension of v on
Q x YT, d.e for anyu € X and v € X* any q € Q, v (q,uv) is the smallest
subset containing {v*(¢',v)|d € v(q,u)} if u € X and {v*(¢',v)|3t € Q such
that ¢’ € v(q,t) and uw € L(t)} else, where L(t) is the state language of t.

RA also produce structures. These structures are not necessarily flat, because
recursive transitions allow a real branching. A real recursivity occurs when there
exists a path starting from a state ¢ € ), using a recursive transition labelled
by ¢ and reaching the final state (as it was the case for z3/z2 in Figure 6).

Theorem 4 (From Unidirectional GCs to RA). A unidirectional CG only
assigns categories that are either basic or built from the operator /. The set of
unidirectional CGs is noted Gy . Fvery G € Gy can be transformed into a strongly
equivalent RA, i.e. a RA generating the same structured language.

Proof (Proof of Theorem 4). It is well known [10] that any CG G C X x Cat(B)
can be transformed into a strongly equivalent context-free grammar in Chomsky
Normal Form H = (X N, P,S) in the following way: N is the set of every
subcategory of a category assigned to a member of the vocabulary in G (a
category is a subcategory of itself). Then, for every (v, A) € G,let A — v € P
and for all A, Bin N,let A — A/B B € P (for unidirectional CGs, this is
enough). The set of states of our RA R is the set NU{F'}, with F' ¢ N. Rules of
the form A — v correspond to a transition labelled by v between the state A
and the final state F. Rules of the form A — A/B B correspond to a recursive
transition labelled by A/B between states A and B. The use of a rule of this
form in a derivation in G means that a subtree rooted by A can be decomposed
into two subtrees: one rooted by A/B and one rooted by B. This is exactly what
is also expressed by the corresponding recursive transition in R.[]

Corollary 1. Unidirectional CGs can generate every e-free context-free lan-
guage [2]. So, it immediately follows from Theorem 4 that every e-free context-free
language can also be generated by a RA.

Example 9. The classical unidirectional CG recognizing the language a™b", n >
1, is the following: G = {{a, S/B), (a, (S/B)/S), (b, B)}. The corresponding RA
(distinct from the one of Example 8) is given in Figure 8. This RA can be sim-
plified: the recursive transitions that are not really recursive can be lexicalized.
Here, you can delete the state (S/B)/S and replace the label of the recursive
transition between S/B and S by a. But it is not possible for the state S/B.

The main interest of RA is that they produce the same structures as the ones
produced by unidirectional CGs, i.e. using only F'A rules. So, we hope to infer
them from flat trees, like in Example 8. The problem is that the RA obtained
from the process exemplified in Example 9 does not belong to the search space of
any set of flat trees, because of the states that are not reachable from the initial
state. So, we will need a more constraint form for RA (or for unidirectional CGs).



a

(5/B)/S

Fig. 8. Another RA recognizing a"b"

4.2 Learning Unidirectional CGs from Flat Structure

When only strings are available, Kanazawa’s learning strategy consists in gen-
erating every possible structural example compatible with the input data, then
applying the process described in section 3.3. It is a very expensive strategy, not
tractable in practice. On the basis of the previous examples, we propose to refine
Kanazawa’s learning strategy to learn CF-languages from strings.

Definition 13. A CG G is said to have no useless category if every assignment
of a category to a member of the vocabulary is used in at least one syntactic
analysis of an element of L(G) (G is also said to be in reduced form [12]). Let:
Gr.o = {0(Q)|G € Gx NG, and G has no useless category and o is a unifying
substitution for G}.

Of course, for every k > 1, Gy » € G, NGy and |J,~,{L(G)|G € Gk} has a
non null intersection with the set of non-regular CF-languages (see Example 8).
But we do not know whether it can generate every CF-language.

The problem is that the notion of accessibility in a RA is different from
the notion of accessibility in a FSA, because of recursive transitions. A state
which is not accessible in a FSA (corresponding with a useless category in the
corresponding CG) can become accessible after a substitution has been applied.

For every k, the main interest of the class G , is that it naturally extends the
class GxNG,, whose fundamental property is that its members produce structural
examples that are flat trees with F'A internal nodes only. This property can be
used to adapt Kanazawa’s standard learning algorithm, as explained below.

Theorem 5. For every k > 1, for every G € Gy ., there exists a set D of flat

structures with F'A internal nodes and there exists 7, a unifying substitution for
GF(D) such that G = 7(GF(D)).

Proof (proof of Theorem 5). For every G € Gy, ., by definition there exists G’ €
Gr N G, without useless category and ¢ a unifying substitution for G’ such that
G = o(G"). We know by Theorem 2 that Gx N G, is learnable from structural
examples and from strings. Let D be a characteristic set of structural examples
for G’ (see [12]). G’ is regular, so D is only made of flat structures with F'A
internal nodes. G’ has no useless category, so it belongs to the result of the
BP algorithm [12] whose inputs are k and D. This means that there exists a



unifying substitution p for GF(D) such that G’ = p(GF(D)). So G = o(G') =
o(p(GF(D)). Let 7 = o o p, which is a unifying substitution for GF(D).O

Theorem 5 means that the members of G, admit a characteristic sample
made of only flat structures, and that they belong to the result of the BP al-
gorithm whose input is this characteristic sample. This suggests an adaptation
of Kanazawa’s standard algorithm to learn the class Gy , from strings (see Al-
gorithm 1). The main difference between this algorithm and Kanazawa’s is that
not all binary branching structures need to be associated to each string: it is
enough to associate flat structures with F'A internal nodes. But, to ensure the
convergence of this algorithm, flat structures will be associated only to input
strings not already recognized (associated with any structure) by the current
hypothesis grammars (remember that a3b? is recognized by the CG of Example
8 but not with a flat structure).

Algorithm 1 algorithm to compute elements of G, , generating (so, ..., s;)

Require: (so, ..., s;) where Vi, s; € X" and k

1: 5«—0

2: repeat

3:  C; ={s0,.--,8;} \\ try C; as a characteristic sample

4 associate a flat structure with F'A internal nodes to every element of C;

5:  apply BP algorithm to find the set R; C Gi of CGs compatible with this set
6:  discard all elements of R, ; whose string language does not include {s;t1,..., i}
7 je—j+1

8 until j =i+ 10OR R, £ 0
Ensure: R;: a set of CGs in Gy, whose string language includes (so, ..., $;)

Elements of G, , are obtained by applying unifying substitutions to k-valued
CG, so they are also at most k-valued. But the k& needed by Algorithm 1 may
be greater than the one needed by the BP algorithm. Grammars in G; , can
be considered as having a special normal form: they produce only flat trees or
trees that are the result of adjunctions on flat trees (cf Example 8). Theorem
5 ensures that as soon as the input includes a set of strings corresponding to a
characteristic sample of flat structures with F'A nodes (which will always occur
in the limit), then for some j, the set R, contains at least one CG generating
the target language. Inclusion tests are still necessary to select one grammar.

5 Conclusion

To conclude, this study shows that the domain of regular grammatical inference
and the domain of CGs learning can be integrated into a unified framework. The
first benefits of this unification is the translation of results from one domain to
the other one with very few efforts, and a better understanding of the nature of
the generalization operator used in the BP algorithm and Kanazawa’s work.



Another less expected result is the introduction of a new class of automata:
the class of RA, which naturally extends the class of FSA and allows to represent
unidirectional CGs. Unidirectional CGs are better adapted to represent CF-
languages for inference from strings than general CGs, because they are more
constrained but generate the same class of languages. The class G, , is even more
interesting because, for each element of this class, there exists a characteristic set
of flat structural examples with F'A internal nodes only. So, learning this class
from strings is not more expansive than learning it from structures. Of course,
the expressivity of this class, which is still not known, should be characterized
more precisely.

This study shows that the inference of CF-grammars may not be so different
from the inference of regular grammars as it first seemed. But a lot remains to
be done. A natural perspective is the adaptation of algorithms learning regular
languages from positive and negative examples (such as RPNI [13], or Delete [7])
to CF-languages. This requires to define a canonical target. Another possible
perspective concerns the adaptation of this work to Lambek grammars.
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