From Logic to Grammars via Types*

Daniela Dudau-Sofronie, Isabelle Tellier, Marc Tommasi

LIFL-Grappa Team and Université Charles de Gaulle-lille3
59 653 Villeneuve d’Ascq Cedex, FRANCE
dudau@lifl.fr, tellier,tommasi@univ-1lille3.fr
http://www.grappa.univ-1ille3.fr

Abstract. This paper investigates the inference of Categorial Gram-
mars from a new perspective. To learn such grammars, Kanazawa'’s ap-
proach comnsists in providing, as input, information about the structure
of derivation trees in the target grammar. But this information is hardly
arguable as relevant data from a psycholinguistic point of view. We pro-
pose instead to provide information about the semantic type associated
with the words used. These types are considered as general semantic
knowledge and their availability is argued. A new learning algorithm
from types is given and discussed.

1 Introduction

Learning a foreign language from texts is like trying to decipher hieroglyphs
without the Rosetta stone: it is an unreachable challenge. Without the indica-
tions about their meaning found in the stone, hieroglyphs would probably still
remain mysterious. This paper can be interpreted as a tentative explanation of
how semantics can help syntax learning.

Categorial Grammars are well known for their formalized connection with
semantics ([Mon74], [DWP81]). They provide a good compromise between for-
malism and linguistic expressivity ((OBW88]). Previous works have studied the
learnability of such grammars ([Adr92], [Kan98], [MO98]) but neither of them
uses the syntax/semantics interface to help the syntactic learning process.

Links between Kanazawa’s learning strategy and semantic information have
been shown in [Tel99]. This first approach is still not satisfactory as it does not
avoid combinatorial explosion. This paper is a new way of considering learn-
ing Categorial Grammars from semantic knowledge. The original contribution
consists in the use of semantic types associated with words.

Types are very general information, allowing to distinguish facts from en-
tities and from properties satisfied by entities. Most knowledge representation
languages use this notion, and it ususally seems possible to deduce types from
lexical semantics. A new learning algorithm taking as input data both syntacti-
cally correct sentences and the corresponding sequences of types is explained.

Sections 2 and 3 are preliminaries introducing the class of Grammars we
want to learn and the nature of the information admitted as input to the learning

* this work was supported by the ARC INRIA project GRACQ

process. Section 4 exposes the heart of our proposition, illustrated with a detailed
example, and criticizes its limitations.

The conclusion argues about the cognitive plausibility of the data provided
to this algorithm, in comparision with the data usually used in other learning
algorithms. Perspective issues are also evoked.

2 Grammatical Inference

The Problem of Grammatical Inference from positive examples (or: from texts)
consists in the design of algorithms able to identify a formal grammar from a
sample of sentences it generates. This problem is a rough formal approximation
of how children manage to learn the grammar of their mother language ([WC80]).
From a theoretical point of view, identifying a formal grammar from texts is very
difficult since regular (and therefore context-free) grammars are not learnable
from texts in usual learning models ([Gol67,Val84]).

2.1 Categorial Grammars

In the following, we will use formal grammars belonging to the class of AB-
Categorial Grammars ([HGS60]). In this formalism, every member of the vo-
cabulary (every word) is associated with a finite set of categories, expressing its
combinatorial power. The set C' of every possible category is built from a finite
set C' of basic categories in the following way: C’ is the smallest set satisfying
C C C" and for every X € C' and Y € C' then (X/Y) € C' and (Y\X) € C"".
Syntactic rules are reduced to the following rewriting schemas (where .”
denotes the concatenation operation): for every category X and Y in C’

— FA (Forward Application) : (X/Y).Y — X;
— BA (Backward Application) : Y.(Y\X) — X.

These schemas justify the fractional notations of the operators / and \. Cat-
egories of the form X/Y (resp. Y\X) can be considered as oriented functors
expecting an argument of category Y on their right (resp. on their left) and
providing a result of category X. Given a vocabulary X', a Categorial Grammar
G is defined by an axiomatic category S and an association between words in X/
and categories in C'. The language recognized by G is the set of finite concate-
nations of elements of X for which there exists an assignment of categories that
can be rewritten with the schemas into S. The class of (string) languages that
are recognizable by Categorial Grammars is the class of context-free languages.

Ezample 1 (A basic Categorial Grammar). Let us define a Categorial Gram-
mar for the analysis of a small subset of natural language whose vocabulary
is {a, man, woman, John, runs, walks, fast}. The set of basic categories is
C = {S,T,CN} where S is the axiomatic category of sentences, T stands for

! For a sake of clarity, parentheses are omitted in non ambiguous expressions

term and CN means common noun. The assignment of categories to words is:
John: T'; man, woman: CN; runs, walks: (T'\S);

a: ((S/(T\S))/CN); fast: (T\S)\(T\S)).

This grammar allows to recognize sentences like : “a man runs” and “John
runs fast” because:

a man runs (twice with the FA rule)
((S/(T\S))/CN) . CN . (T\S) = (S/(T\S)) - (T\S) = S
John runs fast (twice with the BA rule)

T .(T\S).({(T\S\(T\9)) -T.(T\S)—> S

2.2 Grammatical Inference of Categorial Grammars

Learning a Categorial Grammar consists in identifying the categories assigned to
each word of its vocabulary. The rewriting schemas are supposed to be known.

The formal learnability of Categorial Grammars has been studied in a variant
of the PAC model ([Adr92]) and in Gold’s model ([Kan96,Kan98]). The most
powerful result obtained uses the notion of Structural Ezample. A Structural
Example is derived from a syntactic analysis structure by deleting intermediate
categories while preserving the terminal symbols and the reduction schemas used.

Example 2. The Structural Examples dervived from analyses of Example 1 are:

NN
AT A

man runs fast

Kanazawa has proved that the class Gy of Categorial Grammars assigning at
most k different categories with any given word is learnable in Gold’s model from
positive Structural Examples ([Kan96,Kan98]). Basically, the learning strategy,
extending an algorithm earlier proposed by [BP90], relies on the unification of
variable categories assigned to each nodes of the Structural Examples. When
k = 1, the grammars are called “rigid” and they can be efficiently learned.
When k > 1, the learnability is NP-hard ([F1o00]).

The main problem in this approach is that Structural Examples are hardly
arguable as relevant data from a psycholinguistic point of view. The learnability
result from Structural Examples can be extended to a learnability result from
texts, but in this case the algorithm first needs to enumerate every possible tree
structure corresponding with every string of words provided as example, and
thus becomes exponential. Efficiency and cognitive plausibility don’t seem to go
together well.

Our purpose is also to learn Categorial Grammars, but from a new kind
of input data, more informative than texts and more relevant than Structural
Examples, i.e. sequences of types. Types will be associated with words and can
be interpreted as semantic information.

3 Semantic information

3.1 A typing system

A well known interest of Categorial Grammars is their connection with seman-
tics. This connection, first formalized by Montague ([Mon74,DWP81]) is inspired
by the Principle of Compositionality ([Jan97]). One of its consequences is a
strong correspondence between syntactic categories and semantic types. These
types are what we propose to use in the learning process.

We will not define here a full semantic language, as types can be associated
with very different kinds of semantic representation (the next subsection will
provide clues to extract types from a usual semantic language). For us, the only
semantic information needed will be a typing system making a basic distinc-
tion between entities and facts and allowing to express the types of functors,
among which are the predicates. This typing system is a un-intensional version
of Montague’s intensional logic. The set © of possible types is defined by:

— elementary types : e € O (type of entities) and t € © (type of truth values)
are the elementary types of ©;

— O is the smallest set including every elementary type and satisfying : if u € ©
and v € O then (u,v) € O (the composed type (u,v) is the type of functors
taking an argument of type u and providing a result of type v).

These types combine following rewriting rules similar with the ones of 2.1.

— TF (Type Forward) : (u,v) . u — v;
— TB (Type Backward) : u . (u,v) — v.

Example 3. For the grammar of Example 1, the types of the words are:

John: e; man, woman, runs, walks: (e, t); a: ({e,t), ({e, t), t)); fast: ({e,), (e, t)).
These types express that “John” denotes an entity; “man”, “woman”, “runs”
and “walks” characterize one-place predicates and “fast” is a one-place predicate
modifier. The type of “a” comes from its semantic translation in Montague’s
system (see 3.2).

The main difference between categories in C' and types in © is that the direction
of a functor-argument application in categories is indicated by the operator used
(/ or \), whereas this direction is lost in types (as both are replaced by a).
The functor-argument application of types is commutative, whereas it is not for
categories. Note that for a given type containing n elementary types, there are
2n=1 possible ways to replace each of its n — 1 “” by either / or \.

Another difference is that in our typing system, the set of elementary types
is reduced to {e,t}, whereas it just needs to be finite in Categorial Grammars.

3.2 From logic to types

Before entering the learning process, let us slightly deepen the links between
semantics and types. As a matter of fact it seems possible, under conditions, to

deduce the type corresponding with a word from its meaning representation in
a Montague-like system.

The typing system we use is perfectly well adapted to the language of first
order predicate logic extented with typed-lambda calculus (corresponding with
un-intensional Montague’s intensional logic).

Example 4. The semantic translation of the words of our little grammar in this
logical language are the following:

— John : John' (the prime symbol distinguishes logical constants from words)
— man : Az.man}(z); woman : A\x.woman/ (x)

runs : A\z.run}(z); walks : Az.walk] (x)

— a:)\Pl)\QlEI:c[Pl (.’L‘) A Ql(x)]

fast : AP Az.[P(z)]

The types associated with these words are easily deductible from their logical
translation. An algorithm working in this case has been implemented.

Nevertheless, the reader should note that we need to impose some syntactic rules
(not restrictive in the language of the logic) in order to derive types from logical
formulas. For the language evoked, they include the following:

— atomic symbols noted x, y, etc. and isolated logical constants are of type e;

— symbols denoting predicates or functions must be used in extension, i.e. dis-
playing their arity and all their arguments: for example, a two-place predicate
P will appear as AzAy.Pz(z)(y);

— formulas associated with words must be close, to avoid free variables

In fact, typed languages are usually defined with rules taking into account
conditions on types. Types are thus deductible from formulas of these languages
if the formulas themselves can be analyzed without ambiguity. The precise con-
ditions allowing type deduction in the general case are being explored.

4 A new learning algorithm from types

We adopt here a semantic-based theory of syntax learning, i.e. we consider that
the capacity of acquiring a grammar is conditioned by the ability to build a
representation of the situation described. In previous semantic-based methods of
learning ([HW75,And77,Lan82,Hil83,Fel98]), word meanings are supposed to be
already known when the grammatical inference mechanism starts. We make here
the smoother hypothesis that the crucial information to be extracted from the
environment is the semantic type of words. Recognizing that a word represents
an entity or a property satisfied by a (or several) entity(ies) is the prerequisite
of our learning system. Section 3.2 suggests that types can be deduced from
semantic representations, and are thus less informative.

4.1 Layout of the algorithm

The input of our learning algorithm is a sample of couples composed of a syntac-
tically correct sentence and a corresponding sequence of types. The purpose is
to build a rigid Categorial Grammar able to generate this sample. The missing
information is the direction of the functor/argument applications, as each type
of the form (u,v) can combine with a type u placed either on its left (with a TB
rule), or on its right (with a TF rule). In the first case, the type (u,v) syntacti-
cally behaves like u\v with the rule BA, in the second one like v/u with the rule
FA in the Categorial Grammar formalism. The identification of the operators /
and \ will be processed in two steps: a parsing step and a step to get categories
from types.

Parsing types We assume that every sentence given as input is syntactically
correct and thus that the associated sequence of types can be reduced using the
TB and TF rules to the type of truth values ¢. The first step of the algorithm
is to find such a reduction.

Example 5.

({e,1), (e, 1), 1)) (e, 1) (e, 1)

Only TF can apply as a first reduction and combines the first two types into
the type ({e,t),t). Again using TF, the final reduction leads to ¢. See Figure 1.

{e;t) ((es), 1)) (est)

Fig. 1. A parse tree for types.

This reduction can be viewed as a parse in a context free grammar. In this
setting, TF : (u,v).u — v and TB : u.{u,v) — v are interpreted as schemes of
rules where u and v are instantiated by types in the input sequence. As every
instantiated rule fitting one of these schemes is in Chomsky Normal Form, it is
possible to adapt a standard parsing algorithm to find the parse on types. In
this paper, we modify the Cocke-Younger-Kasami (CYK) algorithm.

The whole process is the search for replacing the “” in type expressions to
get categories. Possible values for “” are /, \ or “left unchanged” (a “,” is left
unchanged when the corresponding type is never in a functor place). To this aim,
we identify every “,” with a distinct variable. A reduction via TF or TB implies

some equalities between categories and subcategories that must be propagated.

For instance, when one applies a TF : (u,v).u — v rule on a man associated with
types ((e z1 t) 2 ((e x3 t) x4 t)) and (e x5 t), the constraint z; = x5 arises.

Hence, type reductions translate into variable equalities and a given parse
leads to a system of equalities. We depict such equalities in Figure 2 by the
underlined variables.

t
/ TF\
((exat)zat) (ewot)
/ TF \
(ezit)y s {ewst) zat)) (exst)
Fig. 2. Parsing types and introducing variable equalities. We underline variables that
generate constraints to be fulfilled at each level of the parse tree.

Note that there could be more than one parse for a given input. The outcome
of the parser is thus a set of parses each of which being described by a set of
variable equalities. We will discuss complexity issues at the end of this section.

Getting categories Now given such contraints on types, we easily deduce
categories and hence a Categorial Grammar that accepts the sequence of words
as input. To this aim, we consider that TB and TF have BA and FA as a
counterpart in the categorial grammar formalism. The association between types
and categories is done in the following way:

— t is associated with S.

— any distinct type that never occurs at a functor place in the parse is associ-
ated with a new variable category.

— If TF : (u x; v).u — v and u (resp. v) is associated with the category A
(resp. B) then z; = / and (u z; v) is associated with the category B/A.

— If TB : u.{u z; v) — v and u (resp. v) is associated with the category A
(resp. B) then z; =\ and (u z; v) is associated with the category A\B.

Thus, while getting categories, we add equality constraints of the form z; = /
or z; = \ for some 7. The process is always guaranteed to give a set of categories
because of the properties of the sequences in input.

Learning process An on-line and incremental learning algorithm can be de-
signed using the strategy describe above. It consists in inferring equality con-
straints between variables and equality constraints fixing the value of variables
from each input couple (in the example below, both are inferred at the same
time). We also take into account that the target Categorial Grammar is rigid,
that is every word is associated with at most one category.

Exzample 6. A first input is provided ...

a man Tuns o i 5
(e, t), {{e, t), 1)) (e,t) (e,t) | leads to the system 2 _ / .
({e 1 t) z2 {{e x3 t) x4 t)) (€ x5 t) (e 6 t) ﬁz ; 5/176

At this point, the Categorial Grammar inferred consists in the associations:
a:(S/B)/A ; man: A; runs: B.

Consider a second input. Since every word has at most one category we con-
sider the same variables in the type of words already encountered in a previous
sentence. The set of variable equalities is enriched.

L1 =T7 =
a woman walks 7 5

((e,t), {(e, 1), 1)) (e,t) (et 22 =/

({e m1 t) o {(e z3 t) T4 t)) (€ T7 t) {€ T5 t) ;i z S;s =24

Thus, man and woman (resp. walks and runs) are of the same category.
Consider a third input. One can find that the set of variable equalities becomes:

a woman walks fast
((e, 1), {{e, 1), 1)) (e,;t) (e;1) (e, 1), (e, 1))

(e x1 t) 22 {{e x3 t) x4 t)) (e x7 t) (e x5 t) ({e xg t) T10 (€ 11 t))

r1 =27 = Ts

.’L'2:/
I3 = Tg = Tg = T11 = T9
.1'4:/
3710:\

Finally, if the last sentence is “John walks”, equality constraints propagate

xg =\ to several categories. | John walks T1 = X7 = Ts
€ <€,t) T2 = /
e (exgt) T3 = Ty = Tg = T11 = Tg = \
T4 = /
Z10 = \

To summerize, after renaming e in 7 and (e z; t) in CN, the Categorial
Grammar obtained consists in John: T'; man, woman: CN; runs, walks: T\S; a:
(S/(T\S))/CN; fast: (T\S)\(S\T). So, with this sample, we exactly obtain the
grammar of Example 1. This grammar is able to recognize sentences like “John
runs fast”, not given as example. Some generalization has thus occurred.

In more complicated cases where more than one parse is possible on a given
input, the algorithm must maintain a set of sets of constraints representing a set
of candidate grammars.

Criticism A parse in a context free grammar in Chomsky Normal Form can
be computed in polynomial time in the size of the input. This complexity result
is stated for a given context free grammar. In our setting, we do not have a

context free grammar but a “set of possible ones” defined by schemes of rules.
This changes a lot the complexity issues as illustrated by the following example:

Example 7. Let us consider the following input:

aa...q b a...a
ee...ele,{(.,{e,t)))e... e

with n letters a on both sides of a b. It can be proved that there are (27)
different Categorial Grammars recognizing this input. As a matter of fact, the
type associated with b expects 2n arguments among which n are on its left and
n are on its right. So, TF and TB must both be applied n times, no matter in
which order. Thus, a parser that builds every possible parse runs in exponential

time relatively to the total number of “” in the input sequence of types.

As an interpretation of this example, two interesting facts can be said. First, we
wanted to provide more information as input than simple sentences in order to
find linguistically relevant and computationally acceptable learning procedures.
The process of finding structural data from sole string input data being too
expensive we propose to add semantic information represented by types. It can be
observed that even with the richer data of types provided as input, the problem
is far from trivial in terms of time and space complexity.

Second, a naive approach consists in trying every possible assignment of a
value in {“\", ""/" ="} with every) in the input sequence of types. For n
in this sequence, there are 3" different assignments. The worst case complexity
of our approach is comparable with the complexity of this naive algorithm.

Nonetheless, the algorithm is not exponential in the number of words in
the sentence given as input. The problem arises from the intrinsic number of
possible solution grammars. But we are not interested in finding all acceptable
Categorial Grammars (w.r.t. the input): only one is enough. Since the parser
can work in polynomial time in the case where there is only one acceptable
Categorial Grammar, there is still some hope to find relevant adaptations of our
method. We will pursue these research directions in the near future.

4.2 Implementation details

We now describe a simplified scheme of our algorithm. The global structure is
similar to CYK. We also follow as much as possible the notations in [HUT79].
The algorithm builds a table. Rows and columns range from 1 to the length of
the input. In the CYK algorithm, a cell (4,) contains the non-terminals types
that the subsequence of length j starting at position 7 reduces to. Here we add
two modifications. First, there might be more than one parse. Therefore cells
in the table are indexed by the starting position in the sequence, the length of
the subsequence, the number of the parse. Second, we add some information in
cells in order to propagate the equality constraints over variables and the partial
parse of types called the partial structure (that is the parse of a subsequence of
types). Hence, cells in the analysis table contains a (non-terminal) type, equality
constraints over variables and a partial structure.

The input consists in sequences of words and types. Types are built with
variables in place of “,”.
The procedure apply-tf (table[i] [k] [p],table[i+k] [j-k] [q],table[i] [j]1)
tries to apply a TF rule to a subsequence starting at position ¢ and of length
j. The first cell corresponds to the pth parse of the subsequence of length k
starting at position ¢ and the second cell corresponds to the gth parse of the
subsequence of length j — k starting at position i + k. Basically, apply-tf checks
that table[i] [k] [p] . Typeis of the form (u; x; v), table[i+k] [j-k] [q] . Type
is of the form us. Then, apply-tf searches for a substitution (a variable replace-
ment) o such that o(u1) = o(ug). If it is possible, apply-tf adds a new cell
table[i][j1[x] in the list table[i][j] in the following way:

— table[i][j]1[x].Typeis o(v);

— table[i] [j] [x] .Var combines the substitution ¢ and the substitutions in
table[i+k] [j-k] [q] .Var and in table[i] [k] [p].Var;

— table[i] [j] [x] .Struis:
TF(table[i] [k] [p].Stru table[i+k] [j-k] [q] .Stru).

The procedure apply-tb is of course similar to apply-tf. The main algo-
rithm is given in algorithm 1.

5 Conclusion

Learning a Categorial Grammar means associating categories with words. Cat-
egories are built from basic categories and operators. Learning categories from
strings of words seems impossible in reasonable time. So, richer input data need
to be provided.

The approach developed so far by Buskowsky & Penn and Kanazawa con-
sisted in providing Structural Examples, i.e. giving the nature of the operators
/ and \ and letting the basic categories to be learnt. Our approach is the exact
dual, as it consists in providing the nature of the basic categories (under the
form of types), but letting the operators to be learnt.

From a cognitive point of view, our choice seems more relevant, because the
data we provide can be interpreted as coming from semantic information. If we
admit the existence of a universal symbolic mental language ([Fod75]), types are
related with this language and are thus language-independent. On the contrary,
the operators used in categories are connected with the word order of a specific
natural language and this linguistic parameter is not arguably innate.

The ability to identify types, i.e. for example to distinguish an entity from a
predicate describing a property satisfied by entities can be compared with what
psychologists call categorization. This very general ability does not anticipate on
the way this semantic distinction will be grammaticallized in a particular nat-
ural language. For example, common nouns and intransitive verbs receive the

Algorithm 1 Parse algorithm

Input: (w1,71)...(wn,) the sequence of words with the corresponding associated
types built with variables z1, ..., zp.

1: for i =1ton do

2: table[i][1]1[0].Type= 7; // the first partial type in cell ij

3: table[i][11[0].Var= @; // the first set of equality constraints in cell ij
4: table[i] [1]1[0].Stru= w;; // the first partial structure in cell 75

5: table[i][1].size-cell=1; // the number of elements in the cell ¢j

6: end for

7: for j =2 ton do

8: fori=1ton—j+1do

9: table[i] [j] .size-cell=0;

10: fork=1toj—1do
11: for p =1 to table[i] [k] .size-cell do
12: for g =1 to table[i+k] [j-k].size-cell do
13: apply-tf(table[i] [k] [p], tablel[i+k][j-k][ql,tablel[il[j1)
14: apply-tb(table[i] [k] [p], tablel[i+k][j-k][ql,tablel[il[j1)
15: end for
16: end for
17: end for
18: end for
19: end for

Output: The global derivation table calculated.

same semantic type corresponding with a one-place predicate. But, in English,
intransitive verbs can combine with individual terms (proper names) to provide a
sentence whereas common nouns never appear at a functor place. So, both kinds
of words are syntactically distinguished by their different combinatorial proper-
ties and the initially identical semantic types finally correspond with different
syntactic categories.

The algorithm we propose here is able to identify any rigid Categorial Gram-
mar. It still needs to be extended to k-valued Categorial Grammars. In fact, two
sources of polymorphism should be distinguished: the case where a word must
be associated with different semantic types (for example words like “and”), and
the case where a word must be associated with different syntactic categories
corresponding with the same semantic type (which must be the case for words
like “a”). The first case should be handled as a natural extension of our learning
strategy, where each semantically distinct instance of the word is treated as a
new word, but the second case should be harder to deal with. Another extension
to be explored is the case when only some of the types associated with words are
known (for example, those associated with lexical words), whereas some others
(those associated with grammatical words) remain unknown.

Finally, our implemantation still needs to be applied on real corpuses to
compare its performance with other implemented methods.

References

[Adr92] P. W. Adriaans. Language Learning from a Categorial Perspective. PhD
thesis, University of Amsterdam, Amsterdam, The Netherlands, 1992.

[And77] J. R. Anderson. Induction of augmented transition networks. Cognitive
Science, 1:125-157, 1977.

[BP90] W. Buszkowski and G. Penn. Categorial grammars determined from linguis-
tic data by unification. Studia Logica, 49:431-454, 1990.

[DWP81] D.R. Dowty, R. E. Wall, and S. Peters. Introduction to Montague Semantics.
Linguistics and Philosophy. Reidel, 1981.

[Fel98] J. A. Feldman. Real language learning. In ICGI’98, 4th International Col-
loguium in Grammatical Inference, pages 114-125, 1998.

[Flo00] Costa Florncio. On the complexity of consistent identification of some classes
of structure languages. In ICGI’2000, 5th International Colloquium on Gram-
matical Inference, volume 1891 of Lecture Notes in Artificial Intelligence,
pages 89-102. Springer Verlag, 2000.

[Fod75] J. Fodor. The Language of Thought. Harvester Press, 1975.

[Gol67] E.M. Gold. Language identification in the limit. Inform. Control, 10:447-474,
1967.

[HGS60] Y. Bar Hillel, C. Gaifman, and E. Shamir. On categorial and phrase structure
grammars. Bulletin of the Research Council of Israel, 9F, 1960.

[Hil83] J. C. Hill. A computational model of language acquisition in the two-year-old.
Cognition and Brain Theory, 3(6):287-317, 1983.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[HW75] H. Hamburger and K. Wexler. A mathematical theory of learning transfor-
mational grammar. Journal of Mathematical Psychology, 12:137-177, 1975.

[Jan97] T. M. V. Janssen. Compositionality. In J. V. Benthem and A. ter Meulen,
editors, Handbook of Logic and Language, pages 417-473. MIT Press, 1997.

[Kan96] Makoto Kanazawa. Identification in the limit of categorial grammars. Journal
of Logic, Language, and Information, 5(2):115-155, 1996.

[Kan98] M. Kanazawa. Learnable Classes of Categorial Grammars. The European
Association for Logic, Language and Information. CLSI Publications, 1998.

[Lan82] P. Langley. Language acquisition through error discovery. Cognition and
Brain Theory, 5:211-255, 1982.

[MO98] T. Briscoe M. Osborne. Learning stochastic categorial grammars. In
CoNLL97: Computational Natural Language Learning, pages 80-87, 1998.

[Mon74] R. Montague. Formal Philosophy; Selected papers of Richard Montague. Yale
University Press, 1974.

[OBW88] Richard T. Oehrle, Emmon Bach, and Deirdre Wheeler, editors. Categorial
Grammars and Natural Language Structures. D. Reidel Publishing Company,
Dordrecht, 1988.

[Tel99] 1. Tellier. Towards a semantic-based theory of language learning. In 12th
Amsterdam Colloquium, pages 217-222, 1999.

[Val84] Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984.

[WC80] K. Wexler and P. Culicover. Formal Principles of Language Acquisition. MIT
Press, 1980.

