
Learning Recursive Automata
from Positive Examples

Isabelle Tellier

LIFL-GRAppA & Inria Futurs (Mostrare project)
Université Charles-de-Gaulle Lille 3
BP 60149
F-59653 Villeneuve d’Ascq Cedex

isabelle.tellier@univ-lille3.fr

ABSTRACT. In this theoretical paper, we compare the “classical” learning techniques used to
infer regular grammars from positive examples with the ones used to infer categorial gram-
mars. To this aim, we first study how to translate finite state automata into categorial grammars
and back. We then show that the generalization operators employed in both domains can be
compared, and that their result can always be represented by generalized automata, called “re-
cursive automata”. The relation between these generalized automata and categorial grammars
is studied in detail. Finally, new learnable subclasses of categorial grammars are defined, for
which learning from strings is nearly not more expensive than from structures.

RÉSUMÉ. Dans cet article théorique, nous proposons de comparer les techniques “classiques”
employées en inférence grammaticale de langages réguliers par exemples positifs avec celles
employées pour l’inférence de grammaires catégorielles. Pour cela, nous commençons par étu-
dier les traductions réciproques entre automates finis et grammaires catégorielles. Nous mon-
trons ensuite que les opérateurs de généralisation utilisés dans chacun des domaines sont com-
parables, et que le résultat de leur application peut toujours se représenter à l’aide d’automates
généralisés appelés “récursifs”. Les liens entre ces automates généralisés et les grammaires ca-
tégorielles sont étudiés en détail. Enfin, nous exhibons de nouvelles sous-classes apprenables
de grammaires catégorielles pour lesquelles l’apprentissage à partir de textes n’est presque pas
plus coûteux que l’apprentissage à partir de structures.

KEYWORDS: grammatical inference, positive examples, Gold’s model, categorial grammars.

MOTS-CLÉS : inférence grammaticale, exemples positifs, modèle de Gold, grammaires catégo-
rielles.

RSTI - RIA – 20/2006. New Methods in Machine Learning, pages 775 to 804

776 RSTI - RIA – 20/2006. New Methods in Machine Learning

1. Introduction

Grammatical inference deals with the problem of how to infer a grammar from
examples it generates -and, sometimes, from examples it does not generate- (see
(Cornuéjols et al., 2002) for an introduction, and the proceedings of the ICGI con-
ference, dedicated to this domain). We focus here on grammatical inference from
positive examples only, and our approach is mainly theoretical. The theoretical frame-
work is provided by Gold’s model of learnability in the limit from positive examples
(Gold, 1967) which requires precise criteria to be fulfilled.

Learning from positive examples is notoriously difficult, because it is difficult to
avoid over-generalization. In Gold’s model, it is now well known that no class of
grammars able to generate every finite language and at least one infinite language is
learnable (Gold, 1967). So, none of most classical classes of grammars (for example:
those of the Chomsky hierarchy) is learnable. Nevertheless, some of their subclasses
can be. As a matter of fact, subclasses of regular grammars, represented by finite state
automata, have been proved learnable from strings (Angluin, 1982; Denis et al., 2002).

The learnability of subclasses of context-free grammars has also been studied in
this context. But a new problem arises for non-regular context-free grammars: their
string language under-determines the syntactic structures they produce. So, the notion
of “example generated by a grammar” is usually extended to integrate part of this
syntactic structure. This is the approach adopted by Sakakibara (Sakakibara, 1990;
Sakakibara, 1992) and, more recently, Kanazawa (Kanazawa, 1996; Kanazawa, 1998).

Kanazawa’s main results concern the learnability from positive “structural exam-
ples” of large subclasses of AB-categorial grammars. AB-categorial grammars is a
grammatical formalism, mostly known in the computational linguistic community
(Oehrle et al., 1988). The class of every AB-categorial grammar has the expres-
sive power of ε-free context-free grammars (Bar Hillel et al., 1960). But, surpris-
ingly enough, nobody seems to have ever tried to represent regular languages by AB-
categorial grammars, to see whether Kanazawa’s learnability results coincide with
other known results of regular grammatical inference from positive example. This is
the starting point of this article.

So, in this paper, after having introduced the necessary definitions, we first study
how finite state automata translate into AB-categorial grammars, and conversely. This
is an easy application of classical language theory techniques. This translation then
allows to compare learning results from positive examples known in both domains,
and to deduce some new ones. But comparing learning algorithms themselves reveals
to be even more interesting. In particular, we show that the generalization operator of
“state fusion”, used in traditional regular grammatical inference is a special case of the
generalization operator of “unifying substitutions on variables” used in AB-categorial
grammar learning. The latter, as we will see, is even too powerful, because it can
transform an AB-categorial grammar generating a regular language into another one
generating a context-free language. Yet, in this case, we show that the result can still
be represented by a generalised automaton, which is a special case of Recursive Tran-

Learning RA from Positive Examples 777

sition Network (Woods, 1970). This result leads us to study more in details the link
between these generalized automata, called recursive automata, and AB-categorial
grammars.

Finally, in the last part of the paper, we go back to learning considerations. We
identify new learnable subclasses of AB-categorial grammars represented by recursive
automata. The main interest of these new classes is that they are learnable from strings
at a much smaller computational cost than in Kanazawa’s approach.

This article is mainly theoretical. By linking AB-categorial grammars and finite
state models, it contributes to language theory. This link is used to unify grammatical
inference results coming from two different traditions, and to show that they can both
benefit from ideas coming from the other one.

2. Finite State Automata and Categorial Grammars

We assume the basics of formal language theory, as stated for example in (Aho et
al., 1972; Hopcroft et al., 1979; Gécseg et al., 1996), are known by the reader. For any
symbol a, we use the classical notation a∗ = {ε, a, aa, aaa, ...} where ε is the empty
string, and a+ = aa∗. In this section, we recall basic definitions concerning finite
state automata, formal grammars, AB-categorial grammars and their connexions.

2.1. Finite State Automata and Regular Languages

Definition 1 (Finite State Automaton (FSA) and their Language) A finite state
automaton (FSA in the following) A is a 5-tuple A = 〈Q, Σ, δ, q0, F 〉 such that Q
is the finite set of states of A, Σ its finite vocabulary, q0 ∈ Q is the initial state of A
(in this paper, we only consider automata with a unique initial state) and F ⊆ Q its
set of final states. Finally, δ is the transition function of A, defined from Q×Σ to 2Q.

The language L(A) generated (or recognized) by the FSA A is defined as: L(A) =
{w ∈ Σ∗|δ∗(q0, w) ∩ F 6= ∅}, where δ∗ is the natural extension of δ on Q× Σ∗ such
that for any a ∈ Σ, any u ∈ Σ∗ and any q ∈ Q, δ∗(q, au) = {δ∗(q′, u)|q′ ∈ δ(q, a)}.
The set of languages recognized by a FSA is called the set of regular languages.

Example 1 Figure 1 displays a simple FSA A such that L(A) = a+b+.

0 1 2
a b

a

b

Figure 1. a simple finite state automaton

778 RSTI - RIA – 20/2006. New Methods in Machine Learning

2.2. Context-free Grammars and Categorial Grammars

We now recall the classical definitions of a context-free generative grammar (use-
ful further as an intermediary representation in proofs), and of categorial grammars. In
this paper, we restrict ourselves to the most simple ones, called AB-categorial gram-
mars (referring to their inventors, Adjukiewicz and Bar-Hillel).

Definition 2 (Context-free Grammars and their Language) A context-free gram-
mar (or simply a CF-grammar in the following) is a 4-tuple G = 〈Σ, N, P, S〉 with Σ
the finite terminal vocabulary of G, N its finite non terminal vocabulary (Σ∩N = ∅),
P ⊂ N × (Σ ∪ N)∗ its finite set of rules and S ∈ N its axiom.

The language generated (or recognized) by a grammar G is L(G) = {w ∈
Σ∗|S −→∗ w} where −→∗ is the reflexive and transitive closure of the binary re-
lation defined by P .

Definition 3 (Categories, AB-Categorial Grammars and their Language) Let
B be a set (at most countably infinite) of basic categories containing a distin-
guished category S ∈ B, called the axiom. We note Cat(B) the smallest set such
that B ⊂ Cat(B) and for any A, B ∈ Cat(B) we have: A/B ∈ Cat(B) and
B\A ∈ Cat(B).

For every finite vocabulary Σ and for every set of basic categories B (S ∈ B),
a categorial grammar is a finite relation G over Σ × Cat(B). We note 〈v, A〉 ∈ G
the assignment of the category A ∈ Cat(B) to the element of the vocabulary v ∈ Σ.
AB-categorial grammars (CGs in the following) are categorial grammars where the
syntactic rules take the form of two rewriting schemes: ∀A, B ∈ Cat(B)

– FA (Forward Application) : A/B B → A

– BA (Backward Application) : B B\A→ A

These schemes justify the “fractional” notation used to define categories. The lan-
guage generated (or recognized) by a CG G is: L(G)={w = v1 . . . vn ∈ Σ+ | ∀i ∈
{1, . . . , n}, ∃Ai ∈ Cat(B) such that 〈vi, Ai〉 ∈ G and A1 . . . An →∗ S}, where
→∗ is the reflexive and transitive closure of the relation →, defined by FA and BA

schemes. For every w ∈ L(G), it is possible to produce a syntactic analysis structure
detailing each step of the derivation of w in G. For CGs, these structures take the form
of binary-branching trees whose leaf nodes are assignments of G and whose internal
nodes are labeled either by FA or BA and by a category (see Example 2).

The main characteristic of CGs is that they are lexicalized, in the sense that the
syntactic information are entirely carried by the assignments of categories to the vo-
cabulary, and not by the rewriting rules which are general schemes defined once for
all. They are mainly known in the domain of natural language processing, because
they allow natural correspondences with logical semantics (Oehrle et al., 1988).

Learning RA from Positive Examples 779

Example 2 CGs have mainly been used to represent natural language syntax, so this
is the case in this example. For example, let B = {S, T, CN} (where T stands for
“term” and CN for “common noun”), Σ = {John, runs, loves, a, cat, man} and
G be defined by:
G = {〈John, T 〉, 〈runs, T\S〉, 〈loves, (T\S)/T 〉, 〈loves, T\(S/T)〉, 〈cat, CN〉,
〈man, CN〉, 〈a, (S/(T\S))/CN〉, 〈a, ((S/T)\S)/CN〉}.
This CG allows to recognize sentences like “John runs” or “John loves a cat” with
the syntactic analysis structures of Figure 2.

S
BA

T
John

T\S
runs

S
BA

S/T
BA

T
John

T\(S/T)
loves

(S/T)\S
FA

((S/T)\S)/CN
a

CN
cat

Figure 2. syntactic analysis structures produced by an AB-categorial grammar

Definition 4 (F-Structures, Structural Examples, Structured Language) A
functor-argument (or F-) structure over an alphabet Σ is a binary-branching tree
whose leaf nodes are labeled by elements of Σ and whose internal nodes are labeled
either by BA or FA. The set of F-structures over Σ is denoted F (Σ).
For any AB-categorial grammar G ⊂ Σ × Cat(B), a structural example for G is an
element of F (Σ) which can be obtained from a syntactic analysis structure associated
with a string w ∈ L(G) by deleting each of the categories it contains. For any CG
G ⊂ Σ× Cat(B), the structured language FL(G) associated with G is the set of its
structural examples (see Example 4).

G denotes the class of every CGs. For every integer k ≥ 1, the set of CGs assigning
at most k distinct categories to each member of its vocabulary is the class of k-valued
CGs denoted by Gk. When k = 1 the grammars are also called rigid.

2.3. From Automata to Regular Categorial Grammars

The expressive power of CGs is the one of ε-free context-free grammars (Bar Hillel
et al., 1960). So, they can also generate every ε-free regular languages. Correspon-
dences between FSA and CGs recognizing the same languages are easy to define.

Definition 5 (Regular CGs) We call a FA-regular (resp. BA-regular) CG a CG
GFA ⊂ Σ × Cat(B) (resp. GBA ⊂ Σ × Cat(B)) that only contains assignments of

780 RSTI - RIA – 20/2006. New Methods in Machine Learning

the form 〈a, A〉 or 〈a, A/B〉 (resp. of the form 〈a, A〉 or 〈a, B\A〉) with a ∈ Σ and
A, B ∈ B (so, A and B are basic categories). We note Gr

FA (resp. Gr
BA) the class of

every FA-regular (resp. BA-regular) CG.

Let A = 〈Q, Σ, δ, q0, F 〉 be any FSA. Let B = (Q\{q0}) ∪ {S} (where S /∈ Q).
There exist a FA-regular CG GFA ∈ Gr

FA and a BA-regular CG GBA ∈ Gr
BA, both

finite subsets of Σ × Cat(B) and both recognizing the language L(A)\ε. To obtain
these CGs, you just have to apply the classical transformations of a FSA into a right-
linear regular grammar and a left-linear regular grammar and then to transform the
former into a FA-regular CG and the latter into a BA-regular CG, in an obvious way.

Example 3 Let us transform the FSA of Example 1 into a FA-regular (resp. BA-
regular) CG. The rules of the right-linear regular grammar G1 recognizing the same
language as A are the following (where the state of number i is associated with a
non terminal symbol noted qi, with q0 = S): S −→ aq1, q1 −→ aq1, q1 −→ b,
q1 −→ bq2, q2 −→ b, q2 −→ bq2. The corresponding FA-regular CG GFA is:
GFA = {〈a, S/q1〉, 〈a, q1/q1〉, 〈b, q1〉, 〈b, q1/q2〉, 〈b, q2〉, 〈b, q2/q2〉}.
The rules of the left-linear regular grammar G2 recognizing the same language as A
are the following (where the state of number i is associated with a non terminal symbol
noted qi): q1 −→ a, q1 −→ q1a, q2 −→ q1b, q2 −→ q2b, S −→ q1b, S −→ q2b. The
corresponding BA-regular CG GBA is:
GBA = {〈a, q1〉, 〈a, q1\q1〉, 〈b, q1\q2〉, 〈b, q2\q2〉, 〈b, q1\S〉, 〈b, q2\S〉}

So, FSA can easily be lexicalized. In fact, the previous transformations preserve
not only the string language, but also the structural descriptions associated by the
intermediate grammars with the strings. So, GFA generates right-branching flat trees
using only the FA scheme of rule (as displayed in Figure 3), whereas GBA generates
left-branching flat trees using only the BA scheme. A crucial consequence is that, in
both subclasses of CGs, structural examples in the sense of Definition 4 are available
for free, i.e. in linear time, from the corresponding strings.

Example 4 Figure 3 displays (on the left) two syntactic structures produced by the CG
GFA obtained in Example 3, and (on the right) the corresponding structural examples.

2.4. From Regular Categorial Grammars to Finite State Automata

The way back, from regular CGs to FSA, is not more difficult. Let GFA ∈ Gr
FA

(resp. GBA ∈ Gr
BA) be a FA-regular (resp. BA-regular) CG. To transform it into a

FSA AFA (resp. ABA) recognizing the same (ε-free) language, it is enough to proceed
as follows: if B is the set of basic categories of GFA (resp. of GBA), then the set of
states of AFA (resp. ABA) contains B and an additional final (resp. initial) state.
Each lexical assignment in the initial CG corresponds to a transition in the FSA:

Learning RA from Positive Examples 781

S
FA

S/Q1
a

Q1
b

FA

a b

S
FA

S/Q1
a

Q1
FA

Q1/ Q1
a

Q1
FA

Q1/ Q2
b

Q2
b

FA

a FA

a FA

b b

Figure 3. syntactic structures and the corresponding structural examples

1) Starting from GFA, let the initial state of AFA be q0
FA = S. Let QFA = B ∪

{F} with F /∈ B and FFA = {F}. Each assignment 〈a, U/V 〉 ∈ GFA corresponds
to a transition labeled by a between the states U and V in A (i.e. δFA(U, a) = V) and
each assignment 〈a, U〉 ∈ GFA to a transition labeled by a between U and FA (i.e.
δFA(U, a) = FA).

2) Starting from GBA, let QBA = B ∪ {I} with I /∈ B. Let q0
BA = {I} and

FBA = {S}. Each assignment 〈a, U\V 〉 ∈ GBA corresponds to a transition labeled
by a between the states U and V in A (i.e. δBA(U, a) = V) and each assignment
〈a, U〉 ∈ GBA to a transition labeled by a between IA and U (i.e. δBA(IA, a) = U).

Note that these transformations do not mean that only the CGs that are FA or
BA-regular generate a regular language. The CG defined in Example 2 is neither
FA-regular nor BA-regular in the sense of Definition 5 but it generates a finite (and
thus regular) language. But the structures it produces are not flat.

Example 5 The FSA built by applying these operations to the CGs obtained in Ex-
ample 3 are given in Figure 4. They are not exactly the same as the initial one (in
Figure 1), because of the state (F in the first one, I in the second one) added to the
ones coming from basic categories. They are non deterministic.

These transformations have an easy but interesting consequence, which will be
useful further: the notion of language associated with a state can now receive two
different characterizations.

782 RSTI - RIA – 20/2006. New Methods in Machine Learning

S 1 2

F

a b

b
b

a

b I 1 2

S

a b

b
b

a

b

Figure 4. FSA obtained from a FA-regular CG (left) and a BA-regular CG (right)

Definition 6 (State Languages) In a CG G ⊂ Σ × Cat(B), the language L(C) as-
sociated with a category C ∈ Cat(B) is the set of strings which can be assigned
categories that can be reduced to C (in other words, they are sub-constituants of cat-
egory C): L(C) = {w = u1 . . . un ∈ Σ+ | ∀i ∈ {1, . . . , n} ∃Ai ∈ Cat(B) such that
〈ui, Ai〉 ∈ G and A1 . . . An →∗ C}. Now, if this CG is FA-regular (resp. BA-
regular), it can be transformed into a FSA AFA (resp. ABA) as previously explained,
where C becomes a non-final state (resp. a non initial state). In both cases, L(C) can
receive a new characterization:

1) in AFA: L(C) = LFA(C) = {w ∈ Σ+|F ∈ δ+

FA(C, w)} where F is the
unique final state of AFA and δFA is its transition function. This definition excludes
ε (we know that C 6= F so ε /∈ LFA(C)) and uses the fact that there is only one
terminal state F in AFA. This means that strings in LFA(C) correspond to paths
starting from the state C in AFA (C 6= F), and reaching the final state F . It is
sometimes also called the suffix language of the state C. Of course, if C = S, we
have: LFA(S) = L(AFA) = L(G).

2) in GBA: L(C) = LBA(C) = {w ∈ Σ+|C ∈ δ+

BA(I, w)} where I is the
unique initial state of ABA and δBA is its transition function. So, this time, strings
in LBA(C) correspond to paths starting from the initial state I (I 6= C) in ABA and
reaching the state C. It is sometimes also called the prefix language of the state C. Of
course, if C = S, we also have: LBA(S) = L(ABA) = L(G).

Example 6 In the left automaton of Figure 4, LFA(q1) = a∗b+ and LFA(q2) = b+;
in the right automaton LBA(q1) = a+ and LBA(q2) = a+b+;

3. Inference of Categorial Grammars from Positive Examples

The learnability of CGs in Gold’s model from positive examples has received great
attention in the recent years. Now that we have an easy translation of subclasses of
such grammars (the subclasses Gr

FA and Gr
BA) into automata, it is natural to see how

these results translate into regular language learning, to compare them with known
results in this domain. In this section, we focus on FA-regular CGs, but the same
could be done with BA-regular CGs.

Learning RA from Positive Examples 783

3.1. Gold’s model

The notion of learnability in Gold’s model from positive examples (Gold, 1967) is
also known as learnability in the limit from positive examples. We recall its definition
and Kanazawa’s main results here.

Definition 7 (Gold’s Learnability Criterion) Let G be a set of grammars (in the fol-
lowing, G will always be a subclass of CGs) over an alphabet Σ and let a function as-
sociate a language to each grammar. This function will either be the string language
generated by the grammar L : G −→ pow(Σ∗) (cf. Definition 3) or its structured
language FL : G −→ pow(F (Σ)) (cf. Definition 4), where for any set ∆, pow(∆)
refers to the set of subsets of ∆.

φ is a mapping which associates to some finite samples of strings in Σ∗ (resp. of
structural examples in F (Σ)) a grammar in G. φ is said to converge to G ∈ G on
a sample 〈si〉i∈N of elements of Σ∗ (resp. of F (Σ)) if ∃n0 ∈ N such that ∀i ≥ n0,
Gi = φ(〈s0, ..., si〉) is defined and equal to G.

φ is said to learn the class G from positive examples (resp. from positive structural
examples) if for every language L in L(G) = {L(G)|G ∈ G} (resp. in FL(G) =
{FL(G)|G ∈ G}) and every sequence 〈si〉i∈N which enumerates L, i.e. for which
{si|i ∈ N} = L, there exists G ∈ G such that L = L(G) (resp. L = FL(G)) and φ
converges to G on 〈si〉i∈N.

G is learnable if there exists a computable function φ which learns G.

This well known criterion of learnability applies to classes of grammars. A map-
ping φ learns a class if it is able to identify any member of this class when a sample
enumerating the corresponding language is given as input. Children, too, are able to
learn any natural language, provided that they are raised in a environment where this
language is spoken. Note also that φ is not required to converge on the exact gram-
mar which generated the sample (the target grammar), but on any grammar generating
the same language. The notion of language which serves as a success criterion is, of
course, the same as the one which was used to generate the sample. For example, if
structural examples are provided to the learning function, the grammar on which it
converges must generate the same structured language as the target grammar.

It is known since (Gold, 1967) that no class able to produce every finite language
and at least one infinite language is learnable. So, the class of every CG G is not
learnable. Nevertheless, Kanazawa (Kanazawa, 1998) has proved that interesting sub-
classes of G are learnable.

Theorem 1 (Learnability of Gk (Kanazawa, 1998)) For any k ≥ 1, the class Gk of
k-valued CGs is learnable from strings and from structural examples.

And, of course, G = ∪k∈NGk . Nevertheless, a learnability result does not neces-
sary lead to a tractable learning algorithm φ. As a matter of fact, it has been proved that

784 RSTI - RIA – 20/2006. New Methods in Machine Learning

the problem of identifying an element of G1 from strings is NP-hard (Florêncio, 2002),
and identifying an element of Gk with k > 1 from structural examples is also NP-hard
(Florêncio, 2001).

3.2. Categorial Grammars and Regular Grammatical Inference

In this section, we first translate Kanazawa’s results into regular grammatical in-
ference. We then show the equivalence between two other known results.

Theorem 2 (Learnability of k-valued FA-Regular CGs) For every k ≥ 1, the
class of k-valued FA-regular CGs Gk ∩ Gr

FA is learnable from structural examples
and from strings.

Proof 1 (Proof of Theorem 2) This theorem is a direct consequence of Theorem 1,
restricted to the class Gk ∩Gr

FA. To prove it directly, it is enough to notice that for any
given integer k ≥ 1, Gk∩Gr

FA contains a finite number of distinct classes of isomorph
CGs (up to a renaming of their basic categories). We know from (Angluin, 1980) that
this property implies learnability. �

Note also that, according to section 2.4, elements of Gk ∩Gr
FA can be transformed

into FSA containing at most k distinct transitions labeled by the same element of Σ.
So, Theorem 2 can also be seen as a generalization of a result stated in (Yokomori,
1995). The class of “Strictly Deterministic Automata” defined in this paper coincides
with the class of automata which translate CGs belonging to G1 ∩ Gr

FA. Similarly,
we can introduce the notion of k-valued automata, i.e. FSA which are the result of
applying the process of the section 2.4 to k-valued FA-regular CGs. This class seems
more adapted to represent languages with large alphabets Σ than many usual classes.
And, of course, ∪k≥1{L(G)|G ∈ Gk ∩ Gr

FA} contains every regular language.

Furthermore, the computable function proposed by Kanazawa to learn Gk from
structures (and which is given in section 3.3) can easily be adapted to learn Gk ∩ Gr

FA

from strings. To do this, first associate a right-branching flat structure with FA internal
nodes to every string of the sample and apply the learning function to this input. The
result provided by this function is conserved only if the grammar belongs to Gk ∩
Gr

FA (which is decidable). It is interesting to notice that, in the case of FA-regular
CGs, unlike in the case of general CGs, strings and structures are equivalent - that is,
structures are available for free from strings. This is the idea we will try to generalize
for larger classes of CGs in the last section.

Other interesting results worth being compared: the one concerning the class of
0-reversible FSA (Angluin, 1982) and the one concerning the class of reversible CGs
(Besombes et al., 2004).

Learning RA from Positive Examples 785

Definition 8 (0-Reversibility of a FSA (Angluin, 1982)) A FSA is said to be 0-
reversible if and only if it is deterministic and the automaton obtained by reversing
the transitions backwards is also deterministic.

Definition 9 (Reversibility of a CG (Besombes et al., 2004)) A CG is said to be re-
versible if it does not contain two assignments of categories for the same element of
vocabulary, which are distinct by only one basic category.

The class of 0-reversible FSA is learnable in the limit from positive examples
(Angluin, 1982). The class of reversible GCs is learnable in the limit from structural
examples and from strings (Besombes et al., 2004). We show in the following the
connections between these two results.

Theorem 3 (Equivalence of these Reversibility Notions) Let G be a FA-regular
CG and let A be the FSA obtained from it, as described in section 2.4. A is 0-reversible
in the sense of Definition 8 if and only if G is reversible in the sense of Definition 9.

Proof 2 (Sketch of Proof of Theorem 3) This theorem is a direct consequence of the
way A is built, with a unique initial state, a unique final state and no ε transition.
So, the conditions for A to be deterministic only concern transitions starting from
the same state and labeled by the same symbol. They are equivalent for G with the
following ones: ∀a ∈ Σ

– ∀Q1, Q2, Q3 ∈ B: 〈a, Q1/Q2〉 ∈ G and 〈a, Q1/Q3〉 ∈ G⇔ Q2 = Q3.

– ∀Q1, Q2 ∈ B: 〈a, Q1〉 ∈ G and 〈a, Q1/Q2〉 ∈ G⇔ Q2 = FA (in fact, 〈a, Q1〉
stands for 〈a, Q1/FA〉 and no transition starts from FFA);

Similarly, as A has only one final state, the conditions for the reversed automaton to
be deterministic are equivalent with the following ones: ∀a ∈ Σ

– ∀Q1, Q2 ∈ B: 〈a, Q1〉 ∈ G and 〈a, Q2〉 ∈ G⇔ Q1 = Q2

– ∀Q1, Q2, Q3 ∈ B: 〈a, Q1/Q2〉 ∈ G and 〈a, Q3/Q2〉 ∈ G⇔ Q1 = Q3.

For FA-regular CGs, these conditions coincide with the one of Definition 9.�

So, the learnability of the class of 0-reversible FSA from strings (Angluin, 1982)
can be seen as a consequence of the learnability of the class of FA-regular reversible
CGs from structures, which itself is a consequence of (Besombes et al., 2004)’s result.
In fact, this is not very surprising, because (Besombes et al., 2004) were inspired
by a result on the learnability of reversible context-free grammars from structures
(Sakakibara, 1992), which was already a generalization of (Angluin, 1982)’s result.
The corresponding learning algorithms should be more carefully compared, but they
also seem to be equivalent. Note that the class of reversible CGs, which includes the
class of rigid CGs G1, is learnable from structural examples in polynomial time.

786 RSTI - RIA – 20/2006. New Methods in Machine Learning

3.3. Learning Algorithm

The learnability results of Theorem 1 are not only theoretical ones. From a given
sample of structural examples, it is possible to characterize the set of CGs of a cer-
tain normal form compatible with this sample, that is the set of CGs G whose struc-
tured language FL(G) contains these structural examples. The original algorithm
able to identify the set of k-valued CGs in reduced form (cf. Definition 15 in section
5.1) compatible with a sample of structural examples is due to Buszkowski & Penn
(Buszkowski et al., 1990). When the target is a rigid grammar, the algorithm is usu-
ally called RG. In the more general case, when the target grammar is simply known
to belong to Gk for some known k ∈ N, we will call it BPk. We recall it here, ex-
amplifying it on a simple sample of flat structural examples, to see how it relates to
traditional learning strategies employed in regular grammatical inference.

Let D be a sample of structural examples for an unknown CG. The first steps of
BPk(D) are the following: for each element of D

1) introduce a label S at the root;
2) introduce a distinct variable xi ∈ χ at each argument node (i.e. at the left

daughter of each BA node and at the right daughter of each FA node);
3) introduce a fractional category at every other node, allowing the functional ap-

plication identified by the label FA or BA of the father node to apply.

The result of collecting all the categories associated with each distinct member of
the vocabulary (at the leaves of the trees) after these steps is a CG called the general
form of D and noted GF (D). The structured language of this grammar is exactly the
initial sample D, i.e.: FL(GF (D)) = D.

Example 7 Let D be the pair of structural examples of Example 4. The application
of steps 1) to 3) to it gives the result of Figure 5, and GF (D) is defined as follows:

– a: S/x1, S/x4, x4/x3;

– b: x1, x3/x2, x2.

The corresponding FSA is given in Figure 6: it very much looks like what is known in
regular grammatical inference as the maximal canonical automaton MCA(I) with
respect to a set of strings I ⊂ Σ∗ (Dupont et al., 1994; Cornuéjols et al., 2002). By
definition, MCA(I) has a unique initial state Q0 and for each w = u1...un ∈ I
it has a sequence Q1, ..., Qn of distinct states with Qn ∈ F , and ∀i ∈ {1, ..., n}:
δ(Qi−1, ui) = Qi. The only difference between our automaton and the MCA built
with respect to the strings associated with the elements of D is that it has a unique
final state. In regular grammatical inference from a set of positives examples I , the
starting point is usually not MCA(I) but PTA(I): the Prefix Tree Automaton, which
is obtained from MCA(I) by merging the states sharing the same prefixes. Both
automata exactly generate the language I but PTA(I), contrarily to MCA(I), is
always deterministic. But the notion of determinism has no relevance in the context of
CGs, so there is no reason to prefer PTA(I) to our FSA here.

Learning RA from Positive Examples 787

S
FA

S/x1
a

x1
b

S
FA

S/x4
a

x4
FA

x4/ x3
a

x3
FA

x3/ x2
b

x2
b

Figure 5. result of applying the first steps of the learning algorithm

x1

S F

x4 x3 x2

a b

a
a b

b

Figure 6. the automaton corresponding to GF (D)

The next step of BPk(D) consists in searching for substitutions that unify some
category assignments of the general form GF (D). Thus, we first need to introduce
the notion of substitution.

Definition 10 (Variable Categories and Substitutions) Let χ be an enumerably in-
finite set of variables and B = χ∪{S}. A substitution is a function σ : χ −→ Cat(B)
that maps variables to categories. It can be extended to a function from categories
to categories as follows: (i) σ(S) = S, (ii) σ(A/B) = σ(A)/σ(B) and (iii)
σ(A\B) = σ(A)\σ(B) for any A, B ∈ Cat(B). Similarly, a substitution is natu-
rally extended to apply to a CG: ∀G ∈ G, σ(G) = {〈v, σ(A)〉|〈v, A〉 ∈ G}. For
any CG G, a unifying substitution for G is a substitution that unifies (i.e. gives
the same result to) distinct categories assigned to the same element of the vocabu-
lary of G. More formally, σ is a unifying substitution for G if ∀v ∈ Σ we have:
|{σ(A)|〈v, A〉 ∈ G}| ≤ |{A|〈v, A〉 ∈ G}|. As a consequence, a unifying substitu-
tion can only decrease the maximal number of distinct categories assigned to the same
member of the vocabulary (the value of the k such that the grammar is k-valued).

788 RSTI - RIA – 20/2006. New Methods in Machine Learning

Property 1 (Fundamental Property (Buszkowski et al., 1990)) For any CG G, the
following two properties are equivalent: (i) D ⊆ FL(G) and (ii) ∃σ such that
σ(GF (D)) ⊆ G.

In other words, CGs G which are compatible with D, that is for which D ⊆
FL(G), are those which contain a substitution of GF (D). But, to avoid searching for
every possible substitution, Kanazawa proves that it is enough to search for unifying
substitutions only. In this case, the grammars obtained are in a certain normal form
(cf. Definition 15 and Theorem 6 further). If the target grammar is k-valued, the next
step of the computation of BPk(D) is the following:

4) find every possible unifying substitution σ for GF (D) such that the grammar
σ(GF (D)) is k-valued.

The result of the computation of BPk(D) is thus a set of grammars of the form
σ(GF (D)). If k = 1, the set is at most a singleton because, if it is possible, there
exists a unique way to unify every distinct category assigned to every distinct word.
In this case, the 4 steps detailed above build a learning algorithm of G1 in the sense of
Gold and can be efficiently implemented; this algorithm is quadratic in the size of the
input D and is incremental (Kanazawa, 1998).

If k > 1, the situation may be more difficult because the output set BPk(D) of
k-valued grammars may never be reduced to one grammar in the limit. Yet, Gold’s cri-
terion imposes to select only one grammar among this set. As only positive examples
are available, there is a risk to select a grammar which overgeneralizes. To avoid this,
Kanazawa proposes to perform inclusion tests on the structured languages generated
by every grammar in the set (the inclusion of structured languages is decidable). Let
µ be a computable function that maps any non-empty finite set of CGs to one of its
minimal member with respect to the inclusion of its structured language. Then it is
possible to define a learning function φ for Gk as follow: ∀D = 〈Ti〉0≤i≤n:

– φ(〈T0〉) = µ(BPk(T0))

– φ(〈T0, ..., Ti+1)

=

{

φ(〈T0, ..., Ti〉) if Ti+1 ∈ FL(φ(〈T0, ..., Ti〉)),
µ(BPk({T0, ..., Ti+1}) otherwise

This strategy is not tractable in practice, because of its high algorithmic cost, but it
provides a learning algorithm in the sense of Gold.

Applying a substitution on a CG is a generalization operation, because we have
the following property (Buszkowski et al., 1990): σ(G1) ⊆ G2 =⇒ FL(G1) ⊆
FL(G2). So we always have: FL(G) ⊆ FL(σ(G)) and, similarly, L(G) ⊆
L(σ(G)). As already stated, it has been proved that it is enough to search for uni-
fying substitutions. What does it mean to unify two categories assigned to the same
member of the vocabulary ? A good way to interpret this operation is to see its effect
on the corresponding FSA. As we have seen in section 2.4, each assignment 〈a, U〉 of a
category U ∈ Cat(B) to a member of the vocabulary a ∈ Σ in a FA-regular CG gives

Learning RA from Positive Examples 789

a transition labeled by a in the corresponding FSA. Unifying two categories assigned
to the same a ∈ Σ in a regular CG thus seems to mean “merging two transitions”
labeled by a in the corresponding FSA.

In usual regular grammatical inference, the most often used generalization operator
is not this one: it is the operator of state merging (Angluin, 1982; Oncina et al., 1992;
Dupont et al., 1994; Cornuéjols et al., 2002). What is the link between “category
unification” and “state merging” ? Is one of these operators more powerful than the
other ? Let us look at this more carrefully. In the context of a set D containing only
flat structures with FA internal nodes, GF (D) is necessarily a FA-regular CG (see
Example 7). Taking into account the general form of FA-regular CGs (as specified in
Definition 5), only two cases can occur to unify two categories:

– conditions of the form σ(xi) = σ(xj) = xj for any xi ∈ χ and any xj ∈ χ∪{S}
exactly specify a state merging becauses the variables introduced coincide with states
of the corresponding FSA: so, states xi and xj are merged.

– conditions of the form σ(xi) = xj/xk, for any xi ∈ χ and for any xj , xk ∈
χ ∪ {S} are more difficult to understand. They seem to mean that a state is merged
with a transition! The best way to understand them is to remember that variables
correspond to basic categories, and can be used to label not only symbols of Σ but
also strings in Σ+. By unifying xi and xj/xk, we thus allow every string that could
be associated with the category xi in the CG to be used as a transition between the
states xj and xk in the FSA. We will see better how to interpret this in Example 8.

Example 8 Let us illustrate both cases on our canonical example, with k = 2. Let us
define step by step a unifying substitution σ for the GF (D) of Example 7, such that
σ(GF (D)) is 2-valued. To unify two categories assigned to a ∈ Σ, one solution is to
set: σ1(x4) = σ1(x1) = x1 (by convention, when variables are unified, the result is
the variable with the smallest index), and σ1 is the identity elsewhere. The resulting
CG σ1(GF (D)) is then the following:

– a: S/x1, x1/x3;

– b: x1, x3/x2, x2.

The corresponding FSA is displayed in Figure 7. In this case, the substitution σ1

x1

S F

x3 x2

a b

a
b

b

Figure 7. the automaton corresponding to σ1(GF (D))

specifies to merge the states x4 and x1 in the FSA representing GF (D). Here, state
merging appears as a special case of unifying categories, and it does not allow to

790 RSTI - RIA – 20/2006. New Methods in Machine Learning

extend the language recognized by the grammar (or by the FSA). But it is not always
so simple. To unify categories assigned to b ∈ Σ, let us now set: σ2(x1) = x3/x2

(and σ2 is the identity elsewhere). The resulting CG σ1 ◦σ2(GF (D)) is the following:

– a: S/(x3/x2), (x3/x2)/x3;

– b: x3/x2, x2.

We note that this CG is no longer FA-regular. Nevertheless, we propose to represent
it in a generalized automaton, as shown in Figure 8.

x3/x2

S F

x3 x2

a b

a
x3/x2

b

Figure 8. the generalized automaton corresponding to σ1 ◦ σ2(GF (D))

In this automaton, the previous state x1 was renamed according to σ2 as x3/x2.
And, to express that every string that could previously be associated with the category
x1 can now be used as a transition between the states x3 and x2 a new transition
labeled by x3/x2 replaces the one that was labeled by b between these states. To use
this new transition, you need to produce a string of category x3/x2, that is a string
belonging to the state language of x3/x2. According to Property 6, such a string is
obtained by following a path starting from the state x3/x2 and reaching the final state
F . The letter b labels such a direct path. But another possible choice is to first reach
x3 by a where the previous situation is posed again, and then to reach F by b. A stack
is necessary to remember each time the transition labeled by x3/x2 is used. So, we
call it a “recursive transition”.

This generalized automaton can be considered as a special case of Recursive Tran-
sition Network (Woods, 1970). The language it recognizes is the same as the one rec-
ognized by σ1 ◦ σ2(GF (D)) and is equal to anbn, for n ≥ 1. This language is not
regular but is a correct generalization of the input {ab, aabb}.

How could such a generalization occur ? Let us look at the analysis tree produced
by σ1 ◦ σ2(GF (D)) for the string aaabbb, given in Figure 9.

This tree is no longer flat. To understand how it was built, look back at the second
tree of Figure 5. By combining substitutions σ1 and σ2, we have specified the following
condition: σ1 ◦ σ2(x4) = σ1 ◦ σ2(x1) = x3/x2. In the tree, this condition provides
an equality between the label of an internal node (x4) and the label of a leaf (x3/x2).
This equality thus opens the possibility to copy the subtree rooted by x4 in the place of
the leaf labeled by x3/x2, as is done in Figure 9. This operation can be seen as what
is called a substitution, explicitly used in the formalism of Tree Adjoining Grammars,
for example (Joshi et al., 1997).

Learning RA from Positive Examples 791

S
FA

S/(x3/x2)
a

x3/x2
FA

(x3/x2)/ x3
a

x3
FA

x3/x2
FA

(x3/x2)/ x3
a

x3
FA

x3/ x2
b

x2
b

x2
b

Figure 9. syntactic analyses tree for aaabbb

Example 8 shows that variable unification is more powerful than state merging,
because it can transform a FSA into a generalized automaton, generating a language
which outpasses the class of regular languages. To extend the connection between
FA-regular (resp. BA-regular) CGs and FSA, we need to take into account the new
notion of automata this example introduces. The next section is dedicated to the study
of this connection, before going back to learning considerations.

4. Recursive Automata and Categorial Grammars

Section 2 showed that FSA and CGs go together well. But, of course, FSA are
not powerful enough to represent every CG. In this section, we first study the connec-
tion, not only in terms of strings but also in terms of structures, between unidirectional
CGs (that is, CGs making use of only one operator among {/, \}) and our new class of
generalized automata. This new class can be considered as a special case of recursive
transition networks (Woods, 1970), but where the recursive transitions refer to paths
inside the same automaton instead of refering to paths into another automaton (as is
usually the case in RTNs). For this reason, we call the members of this class recursive
automata. We then show that to produce the structures generated by any (not neces-
sarily unidirectionnal) CG, it is always enough to consider a pair of mutually recursive
automata.

792 RSTI - RIA – 20/2006. New Methods in Machine Learning

4.1. Recursive Automata and their Language

Definition 11 (Recursive Automaton) A recursive automaton R is a 5-tuple R =
〈Q, Σ, γ, q0, F 〉 such that Q is the finite set of states of R, Σ is its finite vocabulary,
q0 ∈ Q its (unique) initial state and F ∈ Q its (unique) final state. γ is the transition
function of R, defined from Q× (Σ ∪Q) to 2Q.

The only important difference between this definition and Definition 1 is that in a
recursive automaton (RA in the following), it is possible to label a transition either
by an element of Σ or by an element of Q. We restrict ourselves to RA with a unique
final state, but it is not a crucial choice. As we have seen in Property 6, there exist two
different notions of state language. Similarly, there exist two different notions of RA
which will be called, for obvious reasons, RAFA and RABA. They differ in the way
their language is defined.

Definition 12 (Language Recognized by a RA) Let R = 〈Q, Σ, γ, q0, F 〉 be a
RAFA (resp. a RABA). For every q ∈ Q (resp. every q′ ∈ Q) we define the
language LFA(q) (resp. LBA(q′)) associated with q (resp. with q’) as the smallest
set satisfying:

– LFA(F) = ε (resp. LBA(q0) = ε);

– if there exists a transition labeled by a ∈ Σ between q and q′, i.e. q′ ∈ γ(q, a)
then: a.LFA(q′) ⊆ LFA(q) (resp. LBA(q).a ⊆ LBA(q′));

– if there exists a transition labeled by r ∈ Q between q and q′, i.e. q′ ∈ γ(q, r)
then: LFA(r).LFA(q′) ⊆ LFA(q) (resp. LBA(q).LBA(r) ⊆ LBA(q′)).

The language LFA(R) of the RAFA (resp. the language LBA(R) of the RABA) is
defined by: LFA(R) = LFA(q0) (resp. LBA(R) = LBA(F)).

For a state q ∈ Q (resp. q′ ∈ Q) such that q 6= F (resp. q′ 6= q0), the definition of
LFA(q) (resp. of LBA(q′)) is recursive: when it exists, it is a smallest fix-point. As
already seen, in a RAFA, LFA(q) is the set of strings starting from q and reaching the
final state F , whereas in a RABA, LBA(q′) is the set of strings starting from the initial
state q0 and reaching q′. RA are not limited to producing flat trees, because recursive
transitions allow a real branching, as shown in Figure 9. Real recursion occurs when,
in the FA case, there exists a path starting from a state q, using a transition labeled by
q and reaching F (and the corresponding situation in the BA case). We show in the
following that RAFA and RABA are respectively linked with the two families of CGs
known as “unidirectionnal”, because they make an exclusive use of either / or \.

4.2. From Unidirectional CGs to RA

Definition 13 (Unidirectional CGs) A FA-unidirectional CG (resp. BA-
unidirectional CG) is a CG that only assigns categories that are either basic
or built from the operator / (resp. \).

Learning RA from Positive Examples 793

Unidirectional CGs are powerful: each one of the two families of unidirectional
CGs can produce any ε-free context-free language (Bar Hillel et al., 1960).

Theorem 4 (From Unidirectional CGs to RA) Every FA-unidirectional (resp.
BA-unidirectional) CG can be transformed into a strongly equivalent RAFA (resp.
RABA), i.e. generating the same structural descriptions.

Proof 3 (Sketch of Proof of Theorem 4) Let G be a FA-unidirectional CG (it is easy
to adapt the proof for a BA-unidirectional CG). The construction proposed is a direct
adaptation of the one described in section 2.4 for FA-regular CGs. It could also be
formulated by using the CF-grammar in Chomsky Normal Form strongly equivalent
with G (Kanazawa, 1998; Huet et al., 2002), but we give here a shortcut. Let N be
the set of every subcategory of a category assigned to a member of the vocabulary
in G (a category is a subcategory of itself). The set of states for the RAFA to be
built is now: N ∪ {F} with F /∈ N . The initial state is S, the final one is F . For
every A/B ∈ N , define a transition labelled by A/B between the states A and B
(that is: B ∈ γ(A, A/B)). And for every 〈a, A〉 ∈ G, add a transition labelled by a
between the states A and F (F ∈ γ(A, a)). The structures produced by both device
are the same because every transition not leading to F in the RAFA corresponds to
an instantiation of the rewriting scheme FA by members of N : these rules are of
the form A −→ A/B B, with A, B ∈ N and mean that a subtree rooted by A can
be decomposed into two subtrees: one rooted by A/B and one rooted by B. This is
exactly what is also expressed in the RAFA.�

Corollary 1 The set of RAFA (resp. RABA) recognizes every ε-free CF language.

Conversely, every recursive automaton can easily be transformed into a strongly
equivalent CF-grammar in Chomsky Normal Form. So, their expressivity at the string
and structure levels are exactly the same (except for languages with ε). Note also that
it is easy to define a recursive automaton with infinite loops.

Example 9 The classical FA-unidirectional CG recognizing the language anbn,
n ≥ 1, is the following: GFA = {〈a, S/B〉, 〈a, (S/B)/S〉, 〈b, B〉}. Similarly,
the classical BA-unidirectional CG recognizing the same language is: GBA =
{〈a, A〉, 〈b, A\S〉, 〈b, S\(A\S)〉}. The corresponding RAFA and RABA are given
in Figure 10. They are different from the RAFA of Figure 8, even if they recognize the
same language. These RA can be simplified: here, in the RAFA, you can delete the
state (S/B)/S and replace the label of the recursive transition between S/B and S
by a (and similarly for the RABA). But it is not possible for the state S/B, which is
really recursive. Note finally that there is no hope that the RAFA of Figure 10 belongs
to the output set of the BP algorithm for some sample D made of only flat trees with
FA internal nodes, because it contains a state S/B which is not accessible from the
initial state (in the RABA, the problem comes from the state A\S from which the final
state is not accessible). As a matter of fact, in any MCA(D) built from such a sample

794 RSTI - RIA – 20/2006. New Methods in Machine Learning

S/B (S/B)/S

S B F
S/B b

(S/B)/S

a

a

S\(A\S) A\S

I A S
b

a A\S

b
S\(A\S)

Figure 10. a RAFA and a RABA both recognizing anbn, n ≥ 1

D, every state is accessible from the initial state and allows to reach the final state,
and this property is preserved by merging transitions.

4.3. Mutually Recursive Automata for AB-Categorial Grammars

Unidirectional CGs and CF grammars have the same expressivity at the string
level, but bidirectional CGs are useful for linguistic purposes, because of the structures
they produce. It is thus natural to try to extend our finite state-like model to the general
case of CGs, where both FA and BA rules are used. As we have seen, it is possible to
represent the use of FA rules in a RAFA and the use of BA rules in a RABA. So, we
propose to represent a (bidirectional) CG by a pair of mutually recursive automata:
one is a RAFA, the other one is a RABA. For a syntactic analysis that uses both FA
and BA rules, mutual calls between both recursive automata will be necessary. After
an introducing example, we provide a definition of mutually recursive automata, and
show that they have the same expressivity at the structure level as CGs.

Example 10 (Example of MRA) Let us translate the CG given in Example 2 into a
pair of mutually recursive automata (cf. Figure 11). The states of these automata
correspond to every possible sub-category of a category assigned to a member of the
vocabulary (duplicated in each RA), plus a final state F in the RAFA (above), and an
initial state I in the RABA (under). The transitions are designed in exactly the same
way as in the proof of Theorem 4. Then, the RA have been simplified as explained in
Example 9, but not as much as possible: here, we have chosen to preserve the rep-
resentation of all the finite vocabulary in both automata. As the language recognized
by the grammar is finite, a simple FSA recognizing the same string language could be
defined. But a pair of MRA is necessary to represent the structures generated by the
initial CG, especially to label the nodes by either FA or BA.

Definition 14 (Mutually Recursive Automata and their Language) A pair of mu-
tually recursive automata (MRA in the following) is a pair M = (AFA, ABA)
where AFA = 〈Q ∪ {SFA, F}, Σ, γFA, SFA, F 〉 is RAFA and ABA = 〈Q ∪
{I, SBA}, Σ, γBA, I, SBA〉 is a RABA sharing the same vocabulary Σ and the same

Learning RA from Positive Examples 795

T

S T\S F

(S/T)\S CN T\(S/T)

S/(T\S)

S/T

S/(T\S)

loves
John

runs

((S/T)\S)/CN

aa

(S/(T\S))/CN

cat,man
loves

T\S (S/(T\S))/CN ((S/T)\S)/CN

I (T\S)/T S/T

CN T S

cat,man
John

T\S

runs

loves

(S/T)\S

a
a

loves

Figure 11. a pair of mutually recursive automata: the RAFA and the RABA

set of state names Q except for their initial and final states (SFA /∈ Q, F /∈ Q, I /∈ Q
and SBA /∈ Q). We define LM (F) = ε = LM (I) and for every state q ∈ Q, the
language LM (q) of the state q in M is the smallest set such that:

– LFA(q) ∪ LBA(q) ⊆ LM (q)

– if there exists a transition labeled by r ∈ Q between q and q′ in AFA (resp. in
ABA), i.e. q′ ∈ γFA(q, r) (resp. q′ ∈ γBA(q, r)) then: LM (r).LFA(q′) ⊆ LFA(q)
(resp. LBA(q).LM (r) ⊆ LBA(q′)).

We define the language of the MRA as: L(M) = LM (SFA) ∪ LM (SBA).

796 RSTI - RIA – 20/2006. New Methods in Machine Learning

Theorem 5 For every CG G there exists a pair of MRA M = (AFA, ABA) strongly
equivalent with G.

Proof 4 (Sketch of Proof of Theorem 5) This theorem is a natural generalization of
Theorem 4, the strongly equivalent grammar in Chomsky Normal Form playing the
role of intermediary. Each member of the finite vocabulary must be present in at least
one of the RA of the pair (or in both like in Figure 11). In both automata, a recursive
transition labeled by S from its initial state and its final state can be added (it is not
compulsary in most cases).�

At the moment, we do not know if it is possible to produce the same structures as
the ones produced by a CG with another unique finite-state-like device. The problem
is not the structures themselves, but the labels FA, and BA associated to each node of
each tree.

5. Learning Context-Free Languages Represented by CGs

Now that we have a more complete correspondence between CGs and automata,
we try in this last section to improve or re-interpret learning results in terms of recur-
sive automata. In the first subsection, we identify new subclasses of unidirectionnal
CGs adapted to learning from flat structures. In the second one, we reinterpret the
general BP algorithm in terms of operations applying on MRA.

5.1. Learning Unidirectional Categorial Grammars from Flat Structures

In this subsection, we go back to string languages. In this case, as we have
seen, unidirectional CGs are enough because they can generate every ε-free context-
free language. Learning context-free languages from strings is a difficult challenge.
Kanazawa proved that for every k, Gk is learnable from strings but the learning strat-
egy he suggests is not at all efficient. As a matter of fact, it consists in generating
every possible functor-argument structure compatible with every string of the input
data, then applying the BP algorithm on these structures, as if they were real strutural
examples. It is very expensive a strategy, not tractable in practice. But Example 8
showed that at least some context-free languages (anbn was the canonical example)
could be learned from strings, supposing that the underlying structural examples were
flat. The purpose of this sub-section is to study this approach in more details.

Definition 15 (Reduced form (Kanazawa, 1998)) A substitution σ is said to be
faithful to a CG G if for all 〈v, A〉 ∈ G and 〈v, B〉 ∈ G such that A 6= B, then
σ(A) 6= σ(B). A faithful substitution is a substitution which is not a unifying substi-
tution. Let v be the binary relation between CGs defined by : G1 v G2 if and only
if there exists a substitution σ faithful to G1 such that σ(G1) ⊆ G2. A grammar G is

Learning RA from Positive Examples 797

said in reduced form if there is no G′ such that G′ @ G and FL(G) = FL(G′). It
is decidable whether a grammar is in reduced form and, for any CG, one can find a
grammar in reduced form generating the same structured language.

This notion of “Reduced Form” is mainly to justify that only unifying substitutions
can be used in a learning algorithm: as a matter of fact, by using faithful substitutions
(i.e. substitutions which are not unifying substitutions) you do not extend the class of
accessible structured languages, so you can afford to avoid them.

Theorem 6 (BP Algorithm and Grammars in Reduced Form (Kanazawa, 1998))
For any CG G ∈ Gk in reduced form, for any sequence 〈Ti〉i∈N enumerating FL(G),
we have: ∃n0 ∈ N such that ∀n ≥ n0, G belongs to the set BPk(〈T1, ..., Tn〉).

Theorem 6 provides a sufficient condition to belong to the output of the BP algo-
rithm. We will use this condition to define new classes of CGs adapted to learning
from strings. Let:
GSub

k,FA = {σ(G)|G ∈ Gk ∩ Gr
FA and G is in reduced form and σ is a unifying substi-

tution for G}.

Of course, it is also possible to similarly define GSub
k,BA. Elements of GSub

k,FA are FA-
unidirectional CGs, because unifying substitutions cannot introduce new directions of
functional applications. Similarly, elements of GSub

k,BA are BA-uniderectional CGs.
And for every k ≥ 1, we have: GSub

k,FA ⊂ Gk (resp. GSub
k,BA ⊂ Gk) because unifying

sustitutions can only decrease the maximal number of distinct categories assigned to
the same member of the vocabulary.

What more can be said about the languages generated by the grammars of
these classes, i.e. what are the extensions of ∪k≥1{L(G)|G ∈ GSub

k,FA} and of
∪k≥1{L(G)|G ∈ GSub

k,BA} ? First note that both sets include the set of every regu-
lar languages. As a matter of fact, ∪k≥1{L(G)|G ∈ Gk ∩Gr

FA} and ∪k≥1{L(G)|G ∈
Gk∩Gr

FA} both contain every regular language (see commentaries following the proof
of Theorem 2), for each regular language there exists a CG in reduced form in each
set generating this language and in both cases σ = Id can be considered as a special
case of unifying substitution.

But Example 8 also showed that for some k, GSub
k,FA contains a grammar which

generates the non-regular language anbn. As a matter of fact, in this example,
σ1(GF (D)) ∈ G3 ∩ Gr

FA and is in reduced form and σ2 is a unifying substitution
for it, so σ2 ◦ σ1(GF (D)) ∈ GSub

3,FA. But we will see in the following that elements
of GSub

k,FA cannot generate every ε-free context-free language. Before this, let us first
characterize the elements of these classes.

For every k, the main interest of the class GSub
k,FA is that it naturally extends the

class Gk ∩ Gr
FA, whose fundamental property is that its members produce structural

examples that are only flat trees with FA internal nodes. This property can be used to
adapt Kanazawa’s standard learning algorithm.

798 RSTI - RIA – 20/2006. New Methods in Machine Learning

Theorem 7 For every k ≥ 1, for every G ∈ GSub
k,FA (resp. G ∈ GSub

k,BA), there exists a
set D ⊂ FL(G) only made of flat right-branching trees with FA internal nodes (resp.
left-branching trees with BA internal nodes) and there exists τ , a unifying substitution
for GF (D) such that G = τ(GF (D)). Such a set D will be called a characteristic
sample of G.

Proof 5 (proof of Theorem 7) For every G ∈ GSub
k,FA, by definition there exist G′ ∈

Gk ∩ Gr
FA in reduced form and σ a unifying substitution for G′ such that G = σ(G′).

We know by Theorem 6 that for any sequence 〈Ti〉i∈N enumerating FL(G′), we
have: ∃n0 ∈ N such that ∀n ≥ n0 G′ belongs to the set output by the BP algo-
rithm whose inputs are k and 〈T1, ..., Tn〉. Let D = 〈T1, ..., Tn0〉. As G′ is FA-
regular, FL(G′) only contains right-branching flat trees with FA-internal nodes,
and so does D. The fact that G′ belongs to the output of BP from D means that
there exists a unifying sustitution ρ for GF (D) such that G′ = ρ(GF (D)). So
G = σ(G′) = σ(ρ(GF (D))). Let τ = ρ ◦ σ. τ is a composition of two unify-
ing substitutions, so it is also a unifying substitution for GF (D) and, as expected
G = τ(GF (D)). And D ⊂ FL(G′) ⊂ FL(σ(G′)) (as already stated in the com-
mentaries of Property 1, applying a substitution is a generalization operation), so
D ⊂ FL(G).�

Theorem 7 means that the members of GSub
k,FA can always be obtained by apply-

ing unifying substitutions on the general form GF (D) obtained from a sample D
of their structured language made of only right-branching flat trees with FA inter-
nal nodes. This suggests an adaptation of the standard Kanazawa’s strategy to identify
CGs belonging to the class GSub

k,FA from strings (see Algorithm 1). The main difference
between this algorithm and Kanazawa’s is that it is no longer necessary to associate
every possible functor-argument structures to each string: it is enough to associate
right-branching flat structures with FA internal nodes which is, of course, much less
expensive. But, as the set D is unknown, flat structures will be associated only to input
strings not already recognized (associated with any structure) by the current hypothe-
ses grammars (remember that a3b3 is recognized by the CG of Example 8 but not with
a flat structure).

Let us suppose that Algorithm 1 is given an integer k ≥ 1 and strings produced
by a grammar G ∈ GSub

k,FA whose characteristic sample is D. Theorem 7 ensures
that as soon as the input set of strings includes the set of strings corresponding to the
elements of the sample D (which will always occur in the limit), then for some j, the
set Rj,k contains G among its output set. Of course, the whole process can be adapted
to handle GSub

k,BA, by supposing left-branching flat trees with BA internal nodes.

This algorithm to identify the set GSub
k,FA compatible with a set of strings is ex-

ponentially less expensive than the one proposed by Kanazawa to identify the set of
k-valued grammars compatible with the same set of strings.

Elements of GSub
k,FA are at most k-valued. But it is possible that some language

generated by a k0-valued bidirectionnal CG can only be generated by a grammar in

Learning RA from Positive Examples 799

Algorithm 1 algorithm to identify elements of GSub
k,FA from strings

Require: 〈s0, ..., si〉 where ∀i, si ∈ Σ+ and k
1: j ←− 0
2: repeat
3: Cj = {s0, ..., sj} \\ try Cj as a sample
4: associate a right-branching flat structure with FA internal nodes to every ele-

ment of Cj to get the set of structural examples Dj

5: apply BPk(Dj) to find the set Rj,k ⊂ Gk of CGs compatible with this set
6: discard all elements of Rj,k whose string language does not include

{sj+1, ..., si}
7: j ←− j + 1
8: until j = i + 1 OR Rj,k 6= ∅

Ensure: Rj,k: a set of CGs in GSub
k,FA whose string language includes 〈s0, ..., si〉

GSub
k1,FA, where k1 > k0 because grammars in GSub

k1,FA are more constrained than k0-
valued CGs. So, the k needed by Algorithm 1 may be greater than the one needed
by the BP algorithm to identify a grammar generating the same language. Gram-
mars in GSub

k,FA can be considered as having a special normal form: they produce only
right-branching flat trees or right-branching flat trees of right-branching flat trees (cf
Example 9).

For k = 1, BP is also called RG and is by itself an efficient learning algorithm.
But note also that every rigid grammars is in reduced form and the only unifying
substitution that can be applied to it is Id, so GSub

1,FA = G1 ∩ Gr
FA, is a subclass of

FA-regular CGs.

If k > 1, as usual, to make this algorithm a learning algorithm in the sense of Gold,
inclusion tests may still be necessary to avoid over-generalization. In fact, inclusion
between (string) context-free languages is undecidable. To overcome this problem,
Kanazawa suggests to perform inclusion tests for the strings of bounded length l gen-
erated by every grammar present in the output set at each step l of the algorithm. This
test is computable and, in the limit, allows to select the grammar generating the small-
est string language. Such a strategy should be applied here too (but is not tractable).

Finally, Theorem 7 allows to identify some ε-free context language which cannot
be generated by any grammar in any G ∈ GSub

k,FA. anbnc for n ≥ 1 is such a language.
Let us suppose that ∃k0 ≥ 1 and ∃G0 ∈ GSub

k0,FA such that L(G0) = anbnc, n ≥ 1. By
Theorem 7, there exists a characteristic sample D0 for G0, made of right-branching
flat trees with FA-internal nodes. So, D0 only contains structural examples that take
the form of Figure 12. As shown in Figure 9, to generalize context-free languages
from examples of this kind, it is necessary to define substitutions that unify the label
of an internal node and the label of a leaf in such trees, allowing to substituate a subtree
to a leaf. But every subtree of every element of D0 has a rightmost leaf labeled by c.

800 RSTI - RIA – 20/2006. New Methods in Machine Learning

FA

a FA

FA

b c

Figure 12. a right-branching flat tree with FA internal nodes for an element of anbnc

So, it is impossible not to duplicate c by substituting a subtree to a leaf in such a tree.
So, the language generated by τ(GF (D0)) can never be anbnc, n ≥ 1.

It is interesting to notice that anbnc, n ≥ 1 can easily be generated by an element
G ∈ GSub

k,BA, for some k ≥ 1. On the contrary, no G ∈ GSub
k,BA for any k ≥ 1 can

generate canbn. So the set of languages generated by both classes are not the same.
This shows that Algorithm 1 and the corresponding variant adapted for GSub

k,BA do not
have the same expressivity. It could thus be interesting to combine both algorithms
by applying them alternatively, associating to strings the corresponding set of right-
branching flat trees with FA-internal node on one hand, and the corresponding set
of left-branching flat trees with BA-internal node on the other hand. Unfortunately,
languages like canbnc, n ≥ 1 can be generated neither by any element of any GSub

k,FA

nor by any element of any GSub
k,BA and is thus still out of reach of such an algorithm.

5.2. Another View on the BP Algorithm

Finally, in this last subsection, we illustrate the BP algorithm in the general case
(i.e. for bidirectional CGs) on an example. We do not provide any new result here,
but just a new perspective on the same learning strategy, using the notion of mutually
recursive automata introduced in the previous section. Example 11 thus generalises
what has already been observed in Examples 7 and 8.

Example 11 (BP Algorithm Reinterpreted) Let us apply the BP algorithm, as al-
ready stated in subsection 3.3, to a set of structural examples using both FA and
BA labels. The set D of structural examples is made of the trees of Figure 12. After
applying the steps 1 to 3 of the BP algorithm, we obtain the trees of Figure 13.

Learning RA from Positive Examples 801

FA

FA

a man

runs

FA

FA

a cat

BA

runs fast

Figure 13. a set of structural examples

S
FA

S/x2

FA

(S/x2)/x1

a
x1

man

x2

runs

S
FA

S/x5

FA

(S/x5)/x3

a
x3

cat

x5

BA

x4

runs
x4\x5

fast

Figure 14. a set of structural examples labeled by the BP algorithm

The general form GF (D) obtained has thus the following assignments:
GF (D) = {〈a, (S/x2)/x1〉, 〈a, (S/x5)/x3〉, 〈man, x1〉, 〈runs, x2〉, 〈runs, x4〉,
〈cat, x3〉, 〈fast, x4\x5〉}

The pair of mutually recursive automata representing GF (D) is given in Fig-
ure 14: the FA-automaton is above, the BA-automaton is under (some transitions
have several labels for readability). It is possible to define a substitution σ such that
σ(GF (D)) is rigid: let σ(x1) = σ(x3) = x1, σ(x2) = σ(x5) = σ(x4) = x2 and σ
is the identity elsewhere. Then, σ(GF (D)) has the following assignments:
GF (D) = {〈a, (S/x2)/x1〉, 〈man, x1〉, 〈runs, x2〉, 〈cat, x3〉, 〈fast, x4\x5〉}

As in Example 8, the substitution σ can be interpreted as opering transition merges
(and thus state merges) on the automata of the pair, resulting in the new pair of recur-
sive automata given in Figure 15.

This CG (and similarly, of course, the corresponding pair of MRA) recognizes new
sentences like “a man runs fast fast fast”: some generalization has occurred.

802 RSTI - RIA – 20/2006. New Methods in Machine Learning

x2

S x5 F

S/x2 x1

S/x5 x3

S/x2
x2,runs

(S/x2)/x1

a

x1,manS/x5

x5

(S/x5)/x3

a

x3,cat

I x4 x5

x4

runs

x4\x5

fast

Figure 15. the pair of mutually recursive automata representing GF (D)

x2

S S/x2 x1 F

S/x2
x2,runs

(S/x2)/x1

a

x1

man,cat

I x2

x2

runs

x2\x2,fast

Figure 16. the pair of mutually recursive automata representing σ(GF (D))

6. Conclusion

To conclude, this study shows that the domain of regular grammatical inference
and the domain of CGs learning can be integrated into a unified framework. The first
benefits of this unification is the translation of results from one domain to the other one
with very few efforts, and a better understanding of the nature of the generalization
operator used in each domain.

Learning RA from Positive Examples 803

By trying to translate subclasses of GCs into finite state automata, we finally al-
lowed to extend the definition of finite state automata to give them the same expressive
power at the structure level as general CGs. This is another (less expected) result of
this work. It shows that the inference of context-free grammars may not be so different
from the inference of regular grammars as it first seemed.

Our work also provides new ideas to learn context-free languages from strings.
Learning context-free languages from strings is known difficult because strings under-
specify the possible underlying structures. The solution we suggest is to constrain as
much as possible these structures. Unidirectional CGs are better adapted to represent
context-free-languages for inference from strings than general CGs, because they gen-
erate the same class of string languages while being more constrained at the structure
level. Classes GSub

k,BA and GSub
k,BA are even more interesting because, for each grammar

of these classes, there exists a characteristic sample of examples obtained in linear
time from strings which is enough to ensure that the grammar is in the search space
of an algorithm. The grammars in these classes produce flat trees of flat trees, so they
are constrained to produce structures which are as close as possible to strings. Learn-
ing these classes from strings is not much more expansive than learning them from
structural examples.

But a lot remains to be done. The exact expressivity of our new classes should be
characterized more precisely. And a remaining problem with CGs is the fact that for a
given language they can generate, no unique canonical representative CG generating
this language has been identified. The existence of such a canonical representative
exemplar, playing the role of a target grammar, would avoid the inclusion tests that
make the full learning algorithms untractable. For regular languages, the minimal de-
terministic finite state automaton (Oncina et al., 1992) or the canonical RFSA (Denis
et al., 2002) play this role. And, of course, experiments should be performed to test
the real efficiency of our proposed algorithm.

Another possible perspective concerns the adaptation of this work to learning al-
gorithms from positive and negative examples, or to the identification of other more
powerful subclasses of categorial grammars like Lambek grammars (Lambek, 1958).

7. References

Aho A. V., Ullmann J. D., The Theory of Parsing, Translation and Compiling, vol 1: Parsing,
Habile, 1972.

Angluin D., « Inductive Inference of Formal Languages from Positive Data », Information and
Control, vol. 45, n◦ 2, p. 117-135, May, 1980.

Angluin D., « Inference of Reversible Languages », Journal of the ACM, vol. 29, n◦ 3, p. 741-
765, July, 1982.

Bar Hillel Y., Gaifman C., Shamir E., « On Categorial and Phrase Structure Grammars », Bul-
letin of the Research Council of Israel, 1960.

804 RSTI - RIA – 20/2006. New Methods in Machine Learning

Besombes J., Marion J.-Y., « Learning Reversible Categorial Grammars from Structures »,
Categorial Gramars, p. 148-163, 2004.

Buszkowski W., Penn G., « Categorial grammars determined from linguistic data by unifica-
tion », Studia Logica, vol. 49, p. 431-454, 1990.

Cornuéjols A., Miclet L., Apprentissage artificiel ; concepts et algorithmes, Editions Eyrolles,
2002.

Denis F., Lemay A., Terlutte A., « Some language classes identifiable in the limit from positive
data », ICGI’02, LNAI 2484, Springer Verlag, Amsterdam, p. 63-76, 2002.

Dupont P., Miclet L., Vidal E., « What is the search space of the regular inference », in , S. Verlag
(ed.), ICGI’94, LNAI 862, Heidelberg, p. 25-37, 1994.

Florêncio C. C., « Consistent Identification in the Limit of Rigid Grammars from Strings Is
NP-hard », ICGI’02, LNAI 2484, Springer Verlag, Amsterdam, p. 49-62, 2002.

Florêncio C. C., « Consistent Identification in the Limit of Any of the Classes k-valued Is NP-
hard », LACL’01, LNAI 2099, Springer Verlag, p. 125-134, 2001.

Gold E., « Language Identification in the Limit », Information and Control, vol. 10, p. 447-474,
1967.

Gécseg F., Steinby M., « Tree Languages », Handbook of Formal Languages, vol. 3, Springer
Verlag, p. 1-68, 1996.

Hopcroft J., Ullman J., Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, 1979.

Huet G., Rétoré C., Survey of a few fundamental representation structures for computational
linguistics, ESSLI lectures. 2002.

Joshi A., Schabes Y., Handbook of Formal Languages, vol3, Springer Verlag, chapter Tree-
Adjoining Grammars, p. 69-120, 1997.

Kanazawa M., « Identification in the Limit of Categorial Grammars », Journal of Logic, Lan-
guage and Information, vol. 5, n◦ 2, p. 115-155, 1996.

Kanazawa M., Learnable Classes of Categorial Grammars, FoLLI, CLSI Publication, 1998.

Lambek J., « The Mathematics of Sentence Structure », American Mathematical Monthly, vol.
65, p. 154-170, 1958.

Oehrle R. T., Bach E., Wheeler D. (eds), Categorial Grammars and Natural Language Struc-
tures, D. Reidel Publishing Company, Dordrecht, 1988.

Oncina J., Garcia P., « Inferring regular languages in polynomial update time », Pattern Recog-
nition and Image Analysis, p. 49-61, 1992.

Sakakibara Y., « Learning context-free grammars from structural data in polynomial time »,
Theoretical Computer Science, vol. 76, p. 223 - 242, 1990.

Sakakibara Y., « Efficient Learning of Context-Free Grammars from Positive Structural Exam-
ples », Information and Computation, vol. 97, n◦ 1, p. 23-60, May , 1992.

Woods W. A., « Transition Network Grammars of Natural Language Analysis », Communica-
tion of the ACM, vol. 13, p. 591-606, 1970.

Yokomori, « On Polynomial-Time Learnability in the Limit of Strictly Deterministic Au-
tomata », Machine Learning, vol. 2, p. 153-179, 1995.

