Abstract Geometrical Computation and the Blum, Shub and Smale Model (CiE $2007+2008)$

Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, France

27 mars 2008 - MC2, LIP, ÉNS LYon

(1) Introduction and Definitions
(2) From Lin- \mathbb{R}-URM to Abstract Geometrical Computation
(3) From Abstract Geometrical Computation to Lin-RR-URM
(4) Full BSS and more with accumulations
(5) Conclusion
(1) Introduction and Definitions
(2) From Lin- $\mathbb{R}-U R M$ to Abstract Geometrical Computation
(3) From Abstract Geometrical Computation to Lin- \mathbb{R}-URM
(4) Full BSS and more with accumulations
(5) Conclusion

Context

- Computation on the continuum
- Analog/continuous models
- No consensus on an analog Turing thesis
- Relating various models
- Blum, Shub and Smale model on $\mathbb{R}(\mathbb{R}$-BSS) [Blum, Shub, and Smale, 1989] [Blum, Cucker, Shub, and Smale, 1998]
- Abstract geometrical computation (AGC) [JDL: MCU 04, CiE 05]

Goal: to relate these

Lin- \mathbb{R}-BSS

Abstract Geometrical Computation

Full-BSS (last part only)

Polynomial instead of linear (i.e. unconstrained multiplication)

Definition: Linear- \mathbb{R}-BSS

- Variables hold real numbers
- Computing linear functions over the variables
- Branch with $0 \leq$ test

Definition: Linear- \mathbb{R}-BSS on unbounded sequences

- Variables hold real numbers
- Computing linear functions over the variables
- Branch with $0 \leq$ test

To handle unbounded number of variables

- Variables ordered in an infinite array
- shift operator

Definition: Linear- \mathbb{R}-BSS on unbounded sequences

- Variables hold real numbers
- Computing linear functions over the variables
- Branch with $0 \leq$ test

To handle unbounded number of variables

- Variables ordered in an infinite array
- shift operator

Not the easiest to handle

- Switch for an equivalent model [Novak, 1995]
- \rightsquigarrow linear- \mathbb{R}-Unlimited Register Machines

Definition: Linear-R-Unlimited Register Machines

- An accumulator
- Infinite array of registers (holding real numbers)

Basic operations

- Done on the accumulator
- Store into / load from a register
- Addition of the value of a register
- Multiplication by a constant

Definition: Linear-R-Unlimited Register Machines

- An accumulator
- Infinite array of registers (holding real numbers)
- Finitely many addresses (special registers)

Basic operations

- Done on the accumulator
- Store into / load from a register
- Addition of the value of a register
- Multiplication by a constant

Indirect addressing

- Through address registers
- Dec and Inc

Definition: Abstract Geometrical Computation and Signal Machines

$$
\mathbb{R} \times \mathbb{R}^{+}
$$

Definition: Abstract Geometrical Computation and Signal Machines

$$
\mathbb{R} \times \mathbb{R}^{+}
$$

Signal
(Meta-signal, position)
Position
(x, t)

Definition: Abstract Geometrical Computation and Signal Machines

$$
\mathbb{R} \times \mathbb{R}^{+}
$$

Signal
(Meta-signal, position)
Position
(x, t)

Meta-signal $\mu=(\iota, \nu)$
<1

Rule

$$
\rho=\left\{\mu_{i}^{-}\right\}_{i} \rightarrow\left\{\mu_{j}^{+}\right\}_{j}
$$

Λ

Computation

Lin-R-URM

- Initial values of the registers
- Runs until stops
- Final values of the registers

Abstract Geometrical Computation

- Signals in the initial configuration
- Runs until no more collision is possible
- Signals in the final configuration

Out of scope

- Infinite computations
- Accumulations (AGC is subject to Zeno's paradox) except in the last part

(1) Introduction and Definitions

(2) From Lin- \mathbb{R}-URM to Abstract Geometrical Computation

3 From Abstract Geometrical Computation to Lin- \mathbb{R}-URM
(4) Full BSS and more with accumulations
(5) Conclusion

Encoding of Lin-R-URM configuration - 1

Real values

Scale and positions of val for values $-\pi,-1.5,0, \sqrt{2}$ and e

Accumulator and registers

sca

ba val

ba val

ba val

Accumulator (-2) and registers $\left(-2.1, \sqrt{2}, \frac{e}{2}, \frac{\pi}{2}\right.$)

Encoding of Lin-R-URM configuration - 2

Addresses

$$
A_{0}=2, A_{1}=3 \text { and } A_{2}=3
$$

State / line number

Updating the addresses $-\operatorname{dec} A_{i}$

(check for zero)

Updating the addresses $-\operatorname{inc} A_{i}$

Load and store

Example of store R_{5} (direct addressing)

Load, store and add

(not shown)

- Previous value must be disposed of

Indirect addressing

- Move until marker found

Addition

- With the same construction but considering val instead of ba

Multiplication

$$
\alpha<1 \text { (here } \alpha=-\frac{1}{2} \text {) }
$$

$1<\alpha$ (here $\alpha=2$)

Normalisation

Addressing a new counter

\rightsquigarrow Configuration is enlarged with a register at 0

Values too large
\rightsquigarrow Everything is scaled down

(1) Introduction and Definitions

(2) From Lin- $\mathbb{R}-U R M$ to Abstract Geometrical Computation

3 From Abstract Geometrical Computation to Lin- \mathbb{R}-URM
(4) Full BSS and more with accumulations
(5) Conclusion

Encoding of Signal machine configurations

Alternatively signal id and distance to the next

Updating

Main loop

- Find date of next collision
- Go through the configuration
- Find minimal time to zero a distance
- Update the distances (Go through the configuration again)
- Treat the collision(s) (Go through the configuration again)
- Find maximal sequences of zero distances
- Replace the signals and shift the rest if necessary

Linear URM because. . .

- Finite number of signals (and collision rules)
\rightsquigarrow Bounded number of signals involved in a collision
\rightsquigarrow Switch (nested if) to get to the right case
- Constant speeds \rightsquigarrow Constants of the lin- $\mathbb{R}-U R M$

(1) Introduction and Definitions

(2) From Lin- $\mathbb{R}-U R M$ to Abstract Geometrical Computation

(3) From Abstract Geometrical Computation to Lin- \mathbb{R}-URM
4) Full BSS and more with accumulations
(5) Conclusion

What is missing

Internal multiplication

- Implementing

$$
x, y \rightarrow x \cdot y
$$

- Any polynomial function can be generated

Geometrical interpretation?

Computing with an infinite sum

Computation

- Pre-treatment to ensure $0<y<1$
- Binary extension of y :

$$
y=\mathrm{y}_{0} \cdot \mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3} \cdots
$$

- Computation

$$
x y=\sum_{0 \leq i} \mathrm{y}_{i}\left(\frac{x}{2^{i}}\right)
$$

Potentially infinite loop

	p_{n+1}	x_{n+1}	y_{n+1}	b_{n+1}
if $y_{n}=0$	stop			
else if $b_{n}<y_{n}$	$p_{n}+x_{n}$	$x_{n} / 2$	$y_{n}-b_{n}$	$b_{n} / 2$
else	p_{n}	$x_{n} / 2$	y_{n}	$b_{n} / 2$

Implementation

Infinite sum

- Accumulation
- Ensure accumulation

For AGC

- Handeling accumulations
- Basic primitives
- extract the y_{i}
- generate and sometimes add $\frac{x}{2^{1}}$

Extending AGC with simple accumulation

Various cases

Extending AGC with simple accumulation

Various cases: only isolated accumulations are covered

Extending AGC with simple accumulation

Various cases: only isolated accumulations are covered

Any accumulation leaves the same signal

Preparing the data for multiplication

First iteration

Loop end

Main loop

Two iterations

Accumulation at $x \cdot y$

Property ensuring accumulation in bounded time

- No distant signal (everything is packed on the side)
- Everything is scaling down

Correction

- Clear from construction

Achievement

- Inner multiplication
- Full BSS!

More than BSS

Square rooting by approximation

recurrence formula

$$
b_{n}^{2} \leq a<\left(b_{n}+\frac{1}{2^{n}}\right)^{2}
$$

$$
a-\left(b_{n}+\frac{1}{2^{n+1}}\right)^{2}=a-b_{n}^{2}-\frac{b_{n}}{2^{n}}-\frac{1}{4^{n+1}}=d_{n}-e_{n}-f_{n}
$$

Table for the loop

| | b_{n+1} | d_{n+1} | e_{n+1} | f_{n+1} | g_{n+1} |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| if $d_{n}-e_{n}-f_{n}=0$ | stop | | | | |
| else if $0<d_{n}-e_{n}-f_{n}$ | $b_{n}+g_{n}$ | $d_{n}-e_{n}-f_{n}$ | $e_{n} / 2+f_{n}$ | $f_{n} / 4$ | $g_{n} / 2$ |
| else | b_{n} | d_{n} | $e_{n} / 2$ | $f_{n} / 4$ | $g_{n} / 2$ |

Conclusion

Relation

- Computing capability of ACG with simple accumulation is strictly more than for BSS

Side result

- Square rooting of 2 can be defined with a rational SM
- Accumulation can happen at irrational coordinate

Conclusion

(1) Introduction and Definitions

(2) From Lin- $\mathbb{R}-U R M$ to Abstract Geometrical Computation
(3) From Abstract Geometrical Computation to Lin- \mathbb{R}-URM

4 Full BSS and more with accumulations
(5) Conclusion

Conclusion

Result: Equivalence

- Lin-R-URM / Lin-R-BSS
- Abstract geometrical computation / Signal machines

Result: Stronger computing capability with accumulation

- AGC with accumulation is strictly stronger than full BSS ($\sqrt{ })$
- Accumulation at irrational coordinate

Future work

- Characterize the power of AGC with isolated accumulation
- BSS counterpart of accumulations in AGC (Zeno effect/lim)
- Link AGC with transfinite computations and computable analysis

