Abstract Geometrical Computation and the Blum, Shub and Smale Model (CiE 2007 + 2008)

Jérôme DURAND-LOSE

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, ${\rm FRANCE}$

▲日▼▲□▼▲□▼▲□▼ □ ののの

27 mars 2008 – MC2, LIP, ÉNS LYON

- Prom Lin-ℝ-URM to Abstract Geometrical Computation
- From Abstract Geometrical Computation to Lin-R-URM

▲日▼▲□▼▲□▼▲□▼ □ ののの

4 Full BSS and more with accumulations

5 Conclusion

- ② From Lin-ℝ-URM to Abstract Geometrical Computation
- \bigcirc From Abstract Geometrical Computation to Lin- \mathbb{R} -URM
- 4 Full BSS and more with accumulations

5 Conclusion

Context

- Computation on the continuum
- Analog/continuous models
- No consensus on an analog Turing thesis
- Relating various models
- Blum, Shub and Smale model on ℝ (ℝ-BSS) [Blum, Shub, and Smale, 1989] [Blum, Cucker, Shub, and Smale, 1998]
- Abstract geometrical computation (AGC) [JDL: MCU 04, CiE 05]

Goal: to relate these

Full-BSS (last part only)

Polynomial instead of linear (i.e. unconstrained multiplication)

Definition: Linear- \mathbb{R} -BSS

- Variables hold real numbers
- Computing linear functions over the variables

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• Branch with $0 \le \text{test}$

Definition: Linear- \mathbb{R} -BSS on unbounded sequences

▲日▼▲□▼▲□▼▲□▼ □ のので

- Variables hold real numbers
- Computing linear functions over the variables
- Branch with $0 \le \text{test}$

To handle unbounded number of variables

- Variables ordered in an infinite array
- shift operator

Definition: Linear- \mathbb{R} -BSS on unbounded sequences

- Variables hold real numbers
- Computing linear functions over the variables
- Branch with $0 \le \text{test}$

To handle unbounded number of variables

- Variables ordered in an infinite array
- shift operator

Not the easiest to handle

- Switch for an equivalent model [Novak, 1995]
- → linear-ℝ-Unlimited Register Machines

Definition: Linear-R-Unlimited Register Machines

▲日▼▲□▼▲□▼▲□▼ □ のので

- An accumulator
- Infinite array of registers (holding real numbers)

Basic operations

- Done on the accumulator
- Store into / load from a register
- Addition of the value of a register
- Multiplication by a constant

Definition: Linear- \mathbb{R} -Unlimited Register Machines

- An accumulator
- Infinite array of registers (holding real numbers)
- Finitely many addresses (special registers)

Basic operations

- Done on the accumulator
- Store into / load from a register
- Addition of the value of a register
- Multiplication by a constant

Indirect addressing

- Through address registers
- Dec and Inc

Definition: Abstract Geometrical Computation and Signal Machines

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Definition: Abstract Geometrical Computation and Signal Machines

◆□> ◆□> ◆三> ◆三> ・三 のへで

 $\mathbb{R} \times \mathbb{R}^+$

Definition: Abstract Geometrical Computation and Signal Machines

(日)

э

Computation

$Lin-\mathbb{R}-URM$

- Initial values of the registers
- Runs until stops
- Final values of the registers

Abstract Geometrical Computation

- Signals in the initial configuration
- Runs until no more collision is possible
- Signals in the final configuration

Out of scope

- Infinite computations
- Accumulations (AGC is subject to Zeno's paradox) except in the last part

2 From Lin- \mathbb{R} -URM to Abstract Geometrical Computation

3 From Abstract Geometrical Computation to Lin-R-URM

4 Full BSS and more with accumulations

5 Conclusion

Encoding of Lin- \mathbb{R} -URM configuration - 1

▲日▼▲□▼▲□▼▲□▼ □ のので

Encoding of Lin- \mathbb{R} -URM configuration - 2

▲日▼▲□▼▲□▼▲□▼ □ のので

Updating the addresses $- \det A_i$

(check for zero)

Updating the addresses $- \operatorname{inc} A_i$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 ´ �� ◆

Load and store

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Load, store and add

(not shown)

• Previous value must be disposed of

Indirect addressing

Move until marker found

Addition

• With the same construction but considering val instead of ba

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Multiplication

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Normalisation

Addressing a new counter

 \rightsquigarrow Configuration is enlarged with a register at 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

Values too large

 \rightsquigarrow Everything is scaled down

Abstract Geometrical Computation and the Blum, Shub and Smale Model (CiE 2007 + 2008) From Abstract Geometrical Computation to Lin- \mathbb{R} -URM

1 Introduction and Definitions

2 From Lin-R-URM to Abstract Geometrical Computation

\bigcirc From Abstract Geometrical Computation to Lin- \mathbb{R} -URM

▲日▼▲□▼▲□▼▲□▼ □ のので

4 Full BSS and more with accumulations

5 Conclusion

Abstract Geometrical Computation and the Blum, Shub and Smale Model (CiE 2007 + 2008) From Abstract Geometrical Computation to Lin-R-URM

Encoding of Signal machine configurations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Abstract Geometrical Computation and the Blum, Shub and Smale Model (CiE 2007 + 2008) From Abstract Geometrical Computation to Lin-R-URM

Updating

Main loop

- Find date of next collision
 - Go through the configuration
 - Find minimal time to zero a distance
- Update the distances (Go through the configuration again)
- Treat the collision(s) (Go through the configuration again)
 - Find maximal sequences of zero distances
 - Replace the signals and shift the rest if necessary

Linear URM because...

- Finite number of signals (and collision rules)
 - \rightsquigarrow Bounded number of signals involved in a collision
 - \rightsquigarrow Switch (nested if) to get to the right case
- Constant speeds \rightarrow Constants of the lin- \mathbb{R} -URM

1 Introduction and Definitions

Prom Lin-ℝ-URM to Abstract Geometrical Computation

3 From Abstract Geometrical Computation to Lin-R-URM

4 Full BSS and more with accumulations

5 Conclusion

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

Abstract Geometrical Computation and the Blum, Shub and Smale Model (CiE 2007 \pm 2008)

Full BSS and more with accumulations

What is missing

Internal multiplication

Implementing

$$x, y \rightarrow x.y$$

Any polynomial function can be generated

Computing with an infinite sum

Computation

- Pre-treatment to ensure 0 < y < 1
- Binary extension of *y*:

$$y = y_0.y_1y_2y_3\ldots$$

Computation

$$xy = \sum_{0 \le i} y_i \left(\frac{x}{2^i}\right)$$

Potentially infinite loop

	p_{n+1}	x_{n+1}	y_{n+1}	b_{n+1}
if $y_n = 0$		ste	ор	
else if $b_n < y_n$	$p_n + x_n$	<i>x</i> _n /2	$y_n - b_n$	$b_n/2$
else	<i>p</i> _n	$x_n/2$	Уn	$b_n/2$

ヘロト 人間 とくほ とくほう

э

Abstract Geometrical Computation and the Blum, Shub and Smale Model (CiE 2007 \pm 2008)

Full BSS and more with accumulations

Implementation

Infinite sum

- Accumulation
- Ensure accumulation

For AGC

- Handeling accumulations
- Basic primitives
 - extract the y_i
 - generate and sometimes add $\frac{x}{2^{i}}$

Extending AGC with simple accumulation

Various cases

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Extending AGC with simple accumulation

Various cases: only isolated accumulations are covered

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Extending AGC with simple accumulation

Any accumulation leaves the same signal

Preparing the data for multiplication

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 今 へ や ・

Abstract Geometrical Computation and the Blum, Shub and Smale Model (CiE 2007 \pm 2008)

Full BSS and more with accumulations

Main loop

Accumulation at x.y

Property ensuring accumulation in bounded time

• No distant signal (everything is packed on the side)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Everything is scaling down

Correction

Clear from construction

Achievement

- Inner multiplication
- Full BSS!

More than BSS

Square rooting by approximation

$$b_n^2 \leq a < \left(b_n + \frac{1}{2^n}\right)^2$$

recurrence formula

$$a - \left(b_n + \frac{1}{2^{n+1}}\right)^2 = a - b_n^2 - \frac{b_n}{2^n} - \frac{1}{4^{n+1}} = d_n - e_n - f_n$$

Table for the loop

	b_{n+1}	d_{n+1}	e_{n+1}	f_{n+1}	g_{n+1}			
if $d_n - e_n - f_n = 0$	stop							
else if $0 < d_n - e_n - f_n$	$b_n + g_n$	$d_n - e_n - f_n$	$e_n/2 + f_n$	$f_n/4$	<i>g</i> _n /2			
else	bn	dn	$e_n/2$	$f_n/4$	g _n /2			

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Abstract Geometrical Computation and the Blum, Shub and Smale Model (CiE 2007 + 2008)

Full BSS and more with accumulations

Conclusion

Relation

• Computing capability of ACG with simple accumulation is *strictly more* than for BSS

Side result

Square rooting of 2 can be defined with a rational SM

▲日▼▲□▼▲□▼▲□▼ □ ののの

• Accumulation can happen at irrational coordinate

Introduction and Definitions

- Prom Lin-ℝ-URM to Abstract Geometrical Computation
- \bigcirc From Abstract Geometrical Computation to Lin- \mathbb{R} -URM
- 4 Full BSS and more with accumulations

Abstract Geometrical Computation and the Blum, Shub and Smale Model (CiE 2007 + 2008) Conclusion

Conclusion

Result: Equivalence

- Lin- \mathbb{R} -URM / Lin- \mathbb{R} -BSS
- Abstract geometrical computation / Signal machines

Result: Stronger computing capability with accumulation

- AGC with accumulation is strictly stronger than full BSS ($\sqrt{\ }$
- Accumulation at irrational coordinate

Future work

- Characterize the power of AGC with isolated accumulation
- BSS counterpart of accumulations in AGC (Zeno effect/lim)
- Link AGC with transfinite computations and computable analysis