Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, FRANCE

Journées Informatique et Géométrie 2015 (JIG) — 8 octobre 2015 — ESIEE Paris, Marne-la-Vallée

2 Définition

2 Définition

4 Fractales

5 Plus Ioin

Dessin qui s'auto-complète

- segments de droite colorés
- orientation (évite les retours)

Dessin qui s'auto-complète

- segments de droite colorés
- orientation (évite les retours)
- Prolongation potentielle
- Intersection

Dessin qui s'auto-complète

- segments de droite colorés
- orientation (évite les retours)
- Prolongation potentielle
- Intersection
- Prolongation

Dessin qui s'auto-complète

- segments de droite colorés
- orientation (évite les retours)
- Prolongation potentielle
- Intersection
- Prolongation
- Règle de ré-écriture
- $\bullet \ \{b,r\} \longrightarrow \{v\}$

Dessin qui s'auto-complète

- (plus simple)
- origine du modèle

Automate cellulaire

Automate cellulaire

Automate cellulaire

Automate cellulaire

Automates cellulaire : utilisation de signaux

Synchronisation d'une ligne de fusiliers [Goto, 1966]

AC : Conception avec des signaux

Fischer, 1965

AC : Analyse en terme de signaux

Das et al., 1995

Signaux

- Signal (meta-signal)
- Collision (règle)

Μ

Vocabulaire et exemple : trouver le milieu

Μ

Vocabulaire et exemple : trouver le milieu

Meta-signaux (vitesse)				
М	(0)			
div	(3)			

М

Règles de collision

Vocabulaire et exemple : trouver le milieu

Meta-signaux	(vitesse)
M	(0)
div	(3)
hi	(1)
Io	(3)

Règles de collision

 $\{ \text{ div, } M \} \!\rightarrow\! \{ \text{ M, hi, lo} \}$

Vocabulaire et exemple : trouver le milieu

	Meta-signaux	(vitesse)	
	М	(0)	
	div	(3)	
	hi	(1)	
I	lo	(3)	
1	back	(-3)	

Règles de collision

 $\left\{ \begin{array}{l} \mathsf{div}, \ \mathsf{M} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \mathsf{M}, \ \mathsf{hi}, \ \mathsf{lo} \end{array} \right\} \\ \left\{ \begin{array}{l} \mathsf{lo}, \ \mathsf{M} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \mathsf{back}, \ \mathsf{M} \end{array} \right\}$

Vocabulaire et exemple : trouver le milieu

Meta-signaux (vitesse)				
М	(0)			
div	(3)			
hi	(1)			
lo	(3)			
back	(-3)			

Règles de collision

 $\left\{ \begin{array}{l} \mathsf{div, M} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \mathsf{M, hi, lo} \end{array} \right\} \\ \left\{ \begin{array}{l} \mathsf{lo, M} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \mathsf{back, M} \end{array} \right\} \\ \left\{ \begin{array}{l} \mathsf{hi, back} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \mathsf{M} \end{array} \right\} \\ \end{array}$

Autre exemple

2 Définition

④ Fractales

5 Plus Ioin

Additionner

Calculer (au sens de Turing)

Simulation

Calculer (au sens de Turing)

Machines rationnelle

- vitesses $\in \mathbb{Q}$
- \bullet positions initiales $\in \mathbb{Q}$
- $\bullet \ \Rightarrow \ \mathsf{coordonn\acute{e}e} \ \mathsf{des} \ \mathsf{collisions} \in \mathbb{Q}$
- implantable exactement

Indécidabilité

- nombre fini de collisions
- apparition d'un méta-signal
- utilisation d'une règle
- disparition des signaux
- participation d'un signal à une collision
- extension sur le coté...

2 Définition

5 Plus Ioin

Exemples

Cantor de toute dimension de Hausdorff [Senot, 2013]

Ordre supérieur

Fractale à 3 vitesses [Becker et al., 2013]

Cas rationnel : prisonnier d'un maillage

• Devient périodique

Positions initiales *irrationnelles* $(-1, -0.6, 0, \varphi)$, vitesses (-2, 0, 2) φ vérifie $\frac{\varphi}{1} = \frac{1}{\varphi - 1}$ φ est le *nombre d'or*

1 Introduction

2 Définition

3 Calculer

4 Fractales

Calcul fractal

Résoudre QSAT

Machine générique [Duchier et al., 2012]

Exemple

 $\exists x_1 \forall x_2 \forall x_3 \\ x_1 \land (\neg x_2 \lor x_3)$

Calculer avec des nombres réels exacts

Addition (valeur \approx distance)

Caractérisation hors accumulation : lin-BSS

- addition, soustraction
- multiplication par une constante
- test de signe, branchement...

1 Introduction

2 Définition

3 Calculer

4 Fractales

5 Plus Ioin

Résultats

- modèles simple
- beaucoup de propriétés

Perspectives

- autre apparitions?
- discrétisation automatique (thèse Tom Besson)

Autres modèles dynamiques euclidiens

• EJC IM 2015 [Becker and Durand-Lose, 2015]

Règle et compas [Huckenbeck, 1989, Huckenbeck, 1991]

Exemple

• calcul du milieu de A et B

1:
$$c_1 \leftarrow Cercle$$
 (centre A, rayon $d(A,B)$)
2: $c_2 \leftarrow Cercle$ (centre B, rayon $d(A,B)$)
3: $p_1 \leftarrow Intersection$ (c_1, c_2)
4: $p_2 \leftarrow Intersection$ (c_1, c_2) différente p_1
5: $d_1 \leftarrow Droite$ (p_1, p_2)
6: $d_2 \leftarrow Droite$ (A, B)
7: $p_3 \leftarrow Intersection$ (d_1, d_2)
8: Écrire p_3
9: Eini

Automates de Mondrian [Jacopini and Sontacchi, 1990]

Dérivée constante par région [Asarin et al., 1995, Bournez, 1999]

Références tout public et web

Pour la Science, rubrique de Jean-Paul Delahaye

• Page web de [Delahaye, 2014]

EJC IM 2015

• Accès direct à [Becker and Durand-Lose, 2015, Sect. 4.3]

Introduction visuelle (un peu pauvre)

• http://www.univ-orleans.fr/lifo/Members/Jerome. Durand-Lose/Recherche/AGC/intro_AGC.html

Articles de JDL et al. téléchargeables depuis

• http://www.univ-orleans.fr/lifo/Members/Jerome. Durand-Lose/Recherche/publications.html

- Asarin, E., Maler, O., and Pnueli, A. (1995).
 Reachability analysis of dynamical systems having piecewise-constant derivatives.
 Theoret. Comp. Sci., 138(1) :35-65.
- Becker, F., Chapelle, M., Durand-Lose, J., Levorato, V., and Senot, M. (2013).
 Abstract geometrical computation 8: Small machines, accumulations & rationality.

Submitted.

Becker, F. and Durand-Lose, J. (2015).
 Construire et calculer dans un monde 2d.
 In Ollinger, N., editor, *Informatique Mathématique — une photographie en 2015*, pages 135–177. CNRS édition.

Bournez, O. (1999).

Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy.

Theoret. Comp. Sci., 210(1) :21-71.

- Das, R., Crutchfield, J. P., Mitchell, M., and Hanson, J. E. (1995).Evolving globally synchronized cellular automata. In Eshelman, L. J., editor, International Conference on Genetic Algorithms '95, pages 336–343. Morgan Kaufmann.

Delahaye, J.-P. (2014). Une théorie rêvée du calcul. Pour la Science, 437 :90-96.

in French.

Duchier, D., Durand-Lose, J., and Senot, M. (2012). Computing in the fractal cloud: modular generic solvers for SAT and Q-SAT variants.

In Agrawal, M., Cooper, B. S., and Li, A., editors, Theory and Applications of Models of Computations (TAMC '12), number 7287 in LNCS, pages 435-447. Springer.

Fischer, P. C. (1965).

Generation of primes by a one-dimensional real-time iterative array.

J. ACM, 12(3) :388-394.

Goto, E. (1966).

Otomaton ni kansuru pazuru [Puzzles on automata].

In Kitagawa, T., editor, Johokagaku eno michi [The Road to information science], pages 67-92. Kyoristu Shuppan Publishing Co., Tokyo.

Huckenbeck, U. (1989).

Euclidian geometry in terms of automata theory. Theoret. Comp. Sci., 68(1):71-87.

Huckenbeck, U. (1991).

A result about the power of geometric oracle machines. Theoret. Comp. Sci., 88(2) :231-251.

📄 Jacopini, G. and Sontacchi, G. (1990). Reversible parallel computation: an evolving space-model. Theoret. Comp. Sci., 73(1) :1-46.

Senot, M. (2013).

Modèle géométrique de calcul : fractales et barrières de complexité.

Thèse de doctorat, Université d'Orléans.