# Computing with irrational 3-speed signal machines MCU 2015 — Informal talk

Jérôme Durand-Lose



Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, FRANCE



September 2015 — Famagusta, North Cyprus

## Signal machines

2 Problematic: minimality for Turing capability

3 Known cases

## ④ Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds



# Signal machines

Problematic: minimality for Turing capability

3 Known cases

## 4 Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds

## Signals in cellular automata



- Signal (meta-signal)
- Collision (rule)

Μ

## Vocabulary and example: finding the middle



М

# Collision rules

## Vocabulary and example: finding the middle

| Meta-signals (s | speed) |  |
|-----------------|--------|--|
| М               | (0)    |  |
| div             | (3)    |  |
|                 |        |  |
|                 |        |  |
|                 |        |  |



М

# Collision rules

## Vocabulary and example: finding the middle

| M (0)                       |  |
|-----------------------------|--|
| div (3)<br>hi (1)<br>lo (3) |  |



## Collision rules

 $\{ \text{ div, } M \} \!\rightarrow\! \{ \text{ M, hi, lo} \}$ 

## Vocabulary and example: finding the middle



| Meta-signals ( | speed) |  |
|----------------|--------|--|
| М              | (0)    |  |
| div            | (3)    |  |
| hi             | (1)    |  |
| lo             | (3)    |  |
| back           | (-3)   |  |

## Collision rules

| { div, | М | $\} \!\rightarrow\! \{$ | М,  | hi, | lo | } |
|--------|---|-------------------------|-----|-----|----|---|
| { lo,  | М | $\} \!\rightarrow\! \{$ | bac | k,  | М  | } |

## Vocabulary and example: finding the middle



| Meta-signals (s | peed) |  |
|-----------------|-------|--|
| М               | (0)   |  |
| div             | (3)   |  |
| hi              | (1)   |  |
| lo              | (3)   |  |
| back            | (-3)  |  |

## Collision rules

| { div,   | М  | $\} \!\rightarrow\! \{$ | М,  | hi, | lo | } |
|----------|----|-------------------------|-----|-----|----|---|
| { lo,    | М  | $\} \!\rightarrow\! \{$ | bac | k,  | М  | } |
| { hi, ba | ck | $\} \!\rightarrow\! \{$ | M   | -   |    |   |

# Complex behavior



# Complex behavior



# Signal machines

## Problematic: minimality for Turing capability

3 Known cases

## 4 Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds

Computing with irrational 3-speed signal machines Problematic: minimality for Turing capability

## Simulating a Turing machine on a finite tape





29

Computing with irrational 3-speed signal machines Problematic: minimality for Turing capability

# Minimality — bounding the number of...

## Meta-signals and collision rules

 13 meta-signals (21 collision rules) Cyclic tag system [Durand-Lose, 2011]

## 3 Speeds rational

Impossible

[Durand-Lose, 2013]

## 3 Speeds with irrationality

Possible
 Durand Lass

[Durand-Lose, 2013]

 Always possible (generic meta-signal, rules and initial configuration) this talk



# Signal machines

Problematic: minimality for Turing capability

3 Known cases

## 4 Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds

# 1 or 2 speeds





• Not Turing-universal

#### Known cases

## 4 speeds

## Turing-universal

- TM simulation
- Fourth speed to enlarge the tape



Computing with irrational 3-speed signal machines Known cases

## 3 speed rational case

- Rational speeds ( $\in \mathbb{Q}$ )
- Rational initial positions

Collisions at rational positions
 as the solution of systems of two rational linear equations

#### Implemented in Java

- Exact precision (on  $\mathbb{Q}$ )
- Tons of space-time diagrams

Known cases

## Rational space-time diagrams



Known cases

# Embedded in a mesh [Becker et al., 2013]



• No computation

Known cases

## Simple fractal construction [Becker et al., 2013]



Irrational initial positions  $(-1, -0.6, 0, \varphi)$ , rational speeds (-2, 0, 2) $\varphi$  must satisfy  $\frac{\varphi}{1} = \frac{1}{\varphi - 1}$   $\varphi$  is the Golden ratio Computing with irrational 3-speed signal machines Known cases

## How to enlarge the tape?

Use the fractal...

without generating it!



# Signal machines

Problematic: minimality for Turing capability

3 Known cases

## ④ Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds

Computing with irrational 3-speed signal machines Generalisation Any irational ratio betwen distances at last position

# Signal machines

2 Problematic: minimality for Turing capability

3 Known cases

## ④ Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds

#### Generalisation

Any irational ratio betwen distances at last position



#### Generalisation

Any irational ratio betwen distances at last position



#### Generalisation

Any irational ratio betwen distances at last position



Computing with irrational 3-speed signal machines Generalisation Any irational ratio betwen distances

# Signal machines

2 Problematic: minimality for Turing capability

3 Known cases

## ④ Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds

Generalisation

Any irational ratio betwen distances

#### Previous stategy works unless



#### 3-signal collision identifies the case

 $\rightsquigarrow$  try to find a ratio different from 1 on the left

Generalisation

Any irational ratio betwen distances

## Not found yet



Generalisation

Any irational ratio betwen distances

## Found



Generalisation

Any irational ratio betwen distances

## Found



Cells have to be shifted



Generalisation

Any irational ratio betwen distances



Computing with irrational 3-speed signal machines Generalisation Any irrational ratio between speeds

# Signal machines

2 Problematic: minimality for Turing capability

3 Known cases

## ④ Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds

Generalisation

Any irrational ratio between speeds

## Transformed into irrational ratio between distances



bord<sup>L</sup> @ 0  
a @ 1  

$$S (\overline{spd^{+}}) = s^{+}$$
  
 $S (\overline{spd^{-}}) = -s^{-}$   
bord<sup>L</sup> @  $\frac{1}{1 + \frac{s^{+}}{s^{-}}}$ 

# Signal machines

2 Problematic: minimality for Turing capability

3 Known cases

## 4 Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds

Computing with irrational 3-speed signal machines Results and future work

## Results

#### Rational signal machines (Up to normalization)

• 4 speeds are needed and enough to compute

## 3 speeds: possible to compute with either

- any 2 speeds with irrational ratio, or
- initial positions with irrational ratio between distances

#### Unique machinery

- collision rules and
- ordered signals in the initial configuration

Computing with irrational 3-speed signal machines Results and future work

## Future work

#### Speed order unknown

- superposition
- identifying the middle speed and form barriers

• Use irrational values as oracle

- Black hole (hyper-)computation
- Analog computation?

# Becker, F., Chapelle, M., Durand-Lose, J., Levorato, V., and Senot, M. (2013).

Abstract geometrical computation 8: Small machines, accumulations & rationality.

Submitted.



## Durand-Lose, J. (2011).

Abstract geometrical computation 4: small Turing universal signal machines.

Theoret. Comp. Sci., 412:57-67.

## Durand-Lose, J. (2013).

Irrationality is needed to compute with signal machines with only three speeds.

In Bonizzoni, P., Brattka, V., and Löwe, B., editors, *CiE '13, The Nature of Computation*, number 7921 in LNCS, pages 108–119. Springer.

Invited talk for special session Computation in nature.