Computing with irrational 3-speed signal machines MCU 2015 - Informal talk

Jérôme Durand-Lose Université d'Orléans, Orléans, FRANCE

September 2015 - Famagusta, North Cyprus
(1) Signal machines
(2) Problematic: minimality for Turing capability
(3) Known cases

4 Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds
(5) Results and future work
(1) Signal machines
(2) Problematic: minimality for Turing capability
(3) Known cases
(4) Generalisation
- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds
(5) Results and future work

Computing with irrational 3-speed signal machines
Signal machines

Signals in cellular automata

- Signal (meta-signal)
- Collision (rule)

Computing with irrational 3-speed signal machines
Signal machines

Vocabulary and example: finding the middle

Meta-signals (speed)

M
(0)

Collision rules

Computing with irrational 3-speed signal machines
Signal machines

Vocabulary and example: finding the middle

Meta-signals (speed)

$$
\begin{array}{cc}
M & (0) \\
\text { div } & (3)
\end{array}
$$

Collision rules

Vocabulary and example: finding the middle

Meta-signals (speed)

M
div
hi
lo
(0)
(3)
(1)
(3)

M

Collision rules

$\{\operatorname{div}, M\} \rightarrow\{M$, hi, lo $\}$

Vocabulary and example: finding the middle

Vocabulary and example: finding the middle

Computing with irrational 3 -speed signal machines
Signal machines

Complex behavior

Computing with irrational 3 -speed signal machines
Signal machines

Complex behavior

(1) Signal machines

(2) Problematic: minimality for Turing capability

(3) Known cases

4 Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds
(5) Results and future work

Problematic: minimality for Turing capability

Simulating a Turing machine on a finite tape

$c\|c\| c\|c\| c \mid$	
	q_{1}
c b c \#	
q_{1}	
$c\|c\|$ b b	
q_{1}	
	c $\mathrm{c} \mid \mathrm{b}$ \#
q_{0}	
c	c c \# \#
q_{0}	
	c b \# \#
${ }^{4}$	
	b b \# \#
q_{0}	
b $\mathrm{b}_{\mathrm{b}} \mathrm{b}$ b \# \# \#	
90	
	c b \# \#
q_{0}	
	c c \# \#
q_{0}	
	b c \# \#
90	
	bla \# \#

Minimality - bounding the number of...

Meta-signals and collision rules

- 13 meta-signals (21 collision rules) Cyclic tag system [Durand-Lose, 2011]

3 Speeds rational

- Impossible [Durand-Lose, 2013]
3 Speeds with irrationality
- Possible
[Durand-Lose, 2013]
- Always possible (generic meta-signal, rules
 and initial configuration) this talk

(1) Signal machines

(2) Problematic: minimality for Turing capability

(3) Known cases

4 Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds
(5) Results and future work

1 or 2 speeds

1 speed

No collision at all

2 speeds

Bounded number of collisions

- Not Turing-universal

4 speeds

Turing-universal

- TM simulation
- Fourth speed to enlarge the tape

3 speed rational case

- Rational speeds $(\in \mathbb{Q})$
- Rational initial positions
\rightsquigarrow Collisions at rational positions as the solution of systems of two rational linear equations

Implemented in Java

- Exact precision (on \mathbb{Q})
- Tons of space-time diagrams

Rational space-time diagrams

Embedded in a mesh [Becker et al., 2013]

Mesh

- No computation

Simple fractal construction [Becker et al., 2013]

Fractal

Fractal construction

Irrational initial positions $(-1,-0.6,0, \varphi)$, rational speeds $(-2,0,2)$
φ must satisfy $\frac{\varphi}{1}=\frac{1}{\varphi-1}$
φ is the Golden ratio

How to enlarge the tape?

- Use the fractal...
without generating it!

q_{1}			
c c b	c\|l	l	
q_{1}			
c c b	c ${ }^{\text {a }}$		
q_{1}			
c c b	b		
q_{1}			
c c c	b		
q_{0}			
c c c	\#		
q_{0}			
c c b			
q_{0}			
c b b			
q_{0}			
q_{0}			
b c b			
q_{0}			
b c c	c		
q_{0}			
b b c			
q_{0}			
a b c	...		

(1) Signal machines

(2) Problematic: minimality for Turing capability
(3) Known cases
4. Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds
(5) Results and future work

(1) Signal machines

(2) Problematic: minimality for Turing capability
(3) Known cases
(4) Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds
(5) Results and future work

Computing with irrational 3-speed signal machines
Generalisation
Any irational ratio between distances at last position

Final situation

$$
q_{0} \quad \overleftarrow{\text { enl }} \begin{aligned}
& \text { ok }
\end{aligned} \quad \# \stackrel{\alpha^{\prime}}{\longleftrightarrow} \operatorname{bord}_{1}^{R} \stackrel{\beta^{\prime}}{\longleftrightarrow} \operatorname{bord}_{2}^{R} \quad \text { with } \frac{\alpha^{\prime}}{\beta^{\prime}} \notin \mathbb{Q}
$$

Initial situation

$\overrightarrow{q_{0}} \quad \overline{\#} \stackrel{\alpha}{\longleftrightarrow} \operatorname{bord}_{1}^{R} \stackrel{\beta}{\longleftrightarrow} \operatorname{bord}_{2}^{R}$

Computing with irrational 3-speed signal machines
Generalisation
Any irational ratio between distances at last position
Final situation

$$
q_{0} \quad \overleftarrow{\text { enl }}
$$

Initial situation
$\overrightarrow{q_{0}} \quad \overline{\#} \stackrel{\alpha}{\longleftrightarrow} \operatorname{bord}_{1}^{R} \stackrel{\beta}{\longleftrightarrow} \operatorname{bord}_{2}^{R}$

Computing with irrational 3-speed signal machines
Generalisation
Any irational ratio between distances at last position
Final situation

$$
q_{0} \quad \overleftarrow{\text { enl }}
$$

Initial situation
$\overrightarrow{q_{0}} \quad \overline{\#} \stackrel{\alpha}{\longleftrightarrow} \operatorname{bord}_{1}^{R} \stackrel{\beta}{\longleftrightarrow} \operatorname{bord}_{2}^{R}$

(1) Signal machines

(2) Problematic: minimality for Turing capability

(3) Known cases
(4) Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds
(5) Results and future work

Previous stategy works unless

3-signal collision identifies the case

\rightsquigarrow try to find a ratio different from 1 on the left

Computing with irrational 3-speed signal machines
Generalisation
Any irational ratio betwen distances
Not found yet

Computing with irrational 3-speed signal machines
Generalisation
Any irational ratio betwen distances

Found

$$
\begin{aligned}
& \text { A new vertical signal (}!^{*} \text {) is generated }
\end{aligned}
$$

Computing with irrational 3-speed signal machines
Generalisation
Any irational ratio betwen distances

Found

A new vertical signal ($!^{*}$) is generated

Cells

have to be shifted

Computing with irrational 3-speed signal machines
Generalisation
Any irational ratio betwen distances

(1) Signal machines

(2) Problematic: minimality for Turing capability
(3) Known cases
(4) Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds
(5) Results and future work

Any irrational ratio between speeds

Transformed into irrational ratio between distances

(1) Signal machines

(2) Problematic: minimality for Turing capability

(3) Known cases
(4) Generalisation

- Any irational ratio betwen distances at last position
- Any irational ratio betwen distances
- Any irrational ratio between speeds
(5) Results and future work

Results

Rational signal machines (Up to normalization)

- 4 speeds are needed and enough to compute

3 speeds: possible to compute with either

- any 2 speeds with irrational ratio, or
- initial positions with irrational ratio between distances

Unique machinery

- collision rules and
- ordered signals in the initial configuration

Future work

Speed order unknown

- superposition
- identifying the middle speed and form barriers
- Use irrational values as oracle
- Black hole (hyper-)computation
- Analog computation?

圊 Becker，F．，Chapelle，M．，Durand－Lose，J．，Levorato，V．，and Senot， M．（2013）．
Abstract geometrical computation 8：Small machines，accumulations \＆rationality．
Submitted．
雷
Durand－Lose，J．（2011）．
Abstract geometrical computation 4：small Turing universal signal machines．

Theoret．Comp．Sci．，412：57－67．
星
Durand－Lose，J．（2013）．
Irrationality is needed to compute with signal machines with only three speeds．
In Bonizzoni，P．，Brattka，V．，and Löwe，B．，editors，CiE＇13，The Nature of Computation，number 7921 in LNCS，pages 108－119．
Springer．
Invited talk for special session Computation in nature．

