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Cellular Automata: signal use
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5 / 58



Simulation between signal machines

Signal Machines (Introduction and Definition)

CA: Conception with signals

Fischer (1965)

6 / 58



Simulation between signal machines

Signal Machines (Introduction and Definition)

CA: Analyzing with Signals

Das et al. (1995)

in a chromosome. This de�nes one generation of the GA; it is repeated G times for one GA run.FI(�) is a random variable since its value depends on the particular set of I ICs selected toevaluate �. Thus, a CA's �tness varies stochastically from generation to generation. For thisreason, we choose a new set of ICs at each generationFor our experiments we set P = 100, E = 20; I = 100, m = 2; and G = 50. M was chosenfrom a Poisson distribution with mean 320 (slightly greater than 2N). Varying M preventsselecting CAs that are adapted to a particular M . A justi�cation of these parameter settings isgiven in [9].We performed a total of 65 GA runs. Since F100(�) is only a rough estimate of performance,we more stringently measured the quality of the GA's solutions by calculating PN104(�) withN 2 f149; 599; 999g for the best CAs in the �nal generation of each run. In 20% of the runsthe GA discovered successful CAs (PN104 = 1:0). More detailed analysis of these successful CAsshowed that although they were distinct in detail, they used similar strategies for performing thesynchronization task. Interestingly, when the GA was restricted to evolve CAs with r = 1 andr = 2, all the evolved CAs had PN104 � 0 for N 2 f149; 599; 999g. (Better performing CAs withr = 2 can be designed by hand.) Thus r = 3 appears to be the minimal radius for which the GAcan successfully solve this problem.
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(a) Space-time diagram. (b) Filtered space-time diagram.
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Figure 1: (a) Space-time diagram of �sync starting with a random initial condition. (b) The same space-time diagram after �ltering with a spatial transducer that maps all domains to white and all defects toblack. Greek letters label particles described in the text.Figure 1a gives a space-time diagram for one of the GA-discovered CAs with 100% perfor-mance, here called �sync. This diagram plots 75 successive con�gurations on a lattice of sizeN = 75 (with time going down the page) starting from a randomly chosen IC, with 1-sites col-ored black and 0-sites colored white. In this example, global synchronization occurs at time step58. How are we to understand the strategy employed by �sync to reach global synchronization?Notice that, under the GA, while crossover and mutation act on the local mappings comprising a4
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Signal Machines (Introduction and Definition)
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Signal Machines (Introduction and Definition)

Vocabulary and Example: Find the Middle

M M

Meta-signals (speed)

M (0)

div (3)
hi (1)
lo (3)

back (-3)

Collision rules

{ div, M }→{ M, hi, lo }
{ lo, M }→{ back, M }

{ hi, back }→{ M }
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Stack Implantation

Name Speed

Add, Rem 1/3

A, E 1

U, M 0
−→
R 3
←−
R −3
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{Add,M } → {M,A,
−→
R }

{
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R ,M } → {

←−
R ,M }

{A,
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Fractal Generation
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Relations to Models of Computation

Discrete computation: Turing Machines

Turing-computation

Turing Machine
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Relations to Models of Computation

Discrete computation: Turing Machines

Turing-computation

Also with restrictions

all different speed

only 2→ 2 rules
(conservative)

one-to-one rules
(reversible)

Any above and

rational (Q)

Rational machines

speeds ∈ Q
initial positions ∈ Q
⇒ collision coordinates ∈ Q
exact simulation on computer/TM

Undecidability
finite number de collisions
meta-signal appereance
use of a rule
disappearing of all signals
involvement of a signal in any collision
extension on the side, etc.
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Relations to Models of Computation

Analog Computation: linear Blum, Shub and Smale

Computing with Real Numbers

Encoding

base val

x
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Sign test
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val base
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Addition
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Relations to Models of Computation

Analog Computation: linear Blum, Shub and Smale

Multiplication by a constant

By −.9

base

base

val

val

x

−.9x

By − 1
2

base

base

val

val

x

− 1
2
x

By 2
3

base

base

val

val

x

2
3
x

By
√

2

base

base

val

val

x

√
2x

By π

base

base

val

val

x

πx

Signal speeds are constants of the machine

If x ≤ 0 then val is meet before base
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Relations to Models of Computation

Analog Computation: linear Blum, Shub and Smale

Zooming out

x−2 x−1 x0 x1 x2 x3 x4

[ ]

q1

q1

q2

q3

q3

q2

Finite sequence of real numbers

+ Dynamics

finite state automata

sign test

addition, multiplication by constant

(set constant value)

(enlarge the array)

Like a Turing machine with real numbers on the tape
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Relations to Models of Computation

Analog Computation: linear Blum, Shub and Smale

Linear Blum, Shub and Smale with shift

Encoding a configuration

b a a c

d1 d2 d3

-1

-1 ...

b

d1 ...

a

d2 ...

a

d3 ...

c

-3 ...

-2

-2 ...

Simulating a signal machine: loop

1 Compute the minimum time to a collision, δ

2 Advance time by δ (update all distances)

3 Process collision(s)
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Intrinsically Universal Family of Signal Machines

Concept and Definition

Intrinsic Universality

Being able to simulate any other dynamical system of the its class.

Cellular Automata

regular (Albert and Čulik II, 1987; Mazoyer and Rapaport,
1998; Ollinger, 2001)

reversible (Durand-Lose, 1997)

freezing [Theyssier et Al.]

Tile Assembly Systems

possible at T=2 and above (Woods, 2013)

impossible at T=1 (Meunier et al., 2014)

24 / 58



Simulation between signal machines

Intrinsically Universal Family of Signal Machines

Concept and Definition

Simulation for Signal Machines

Space-Time Diagram Mimicking
m

1

m
2

m
3

m
2

m
4

space

ti
m
e

space

ti
m
e

Signal Machine Simulation

US simulates A if there is function from the configurations of A to
the ones of US s.t. the space-time issued from the image always
mimics the original one.
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Intrinsically Universal Family of Signal Machines

Concept and Definition

Theorem

For any finite set of real numbers S, there is a signal machine
US , that can simulate any machine whose speeds belong to S.

The set of US where S ranges over finite sets of real numbers
is an intrinsically universal family of signal machines.

Rest of this section

Let S be any finite set of real numbers,
let A be any signal machine whose speeds belongs to S,

US is progressively constructed as simulation is presented.
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Intrinsically Universal Family of Signal Machines

Global Scheme

Macro-Signal

Meta-signal of A identified with numbers

Unary encoding of numbers

Structure

iµ
σ: σth signal, ith speed

iµ
σ

il
ef
t-
b
ou

n
d

ii
d
i

im
ai
nσ times

ir
ig
h
t-
b
ou

n
d

Collision
Rules

encoding

support zone
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Intrinsically Universal Family of Signal Machines

Global Scheme

Global scheme

When Support Zones Meet

1 provide a delay

2 test if macro-collision is appropriate and what macro-signals
are involved

3 if OK

start the macro-collision

Hypotheses for macro-collision

no other macro-signal nor macro-collision will interfere

speed of involved macro-signals ranged [j , . . . , i ] (included)

their main∅ signals intersect at a unique point
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Intrinsically Universal Family of Signal Machines

Macro-Collision

Removing Unused Tables and Sending ids to Table
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Intrinsically Universal Family of Signal Machines

Macro-Collision

Collision Rules Encoding

One rule after the other

Encoding of { 3µ
1, 7µ

4, 8µ
5 } → { 2µ

3, 4µ
1 } in the direction i .

ir
u

le
-b

o
u

n
d

it
h

en
-i

d 2
it

h
en

-i
d 2

it
h

en
-i

d 2

it
h

en
-i

d 4

ir
u

le
-m

id
d

le

ii
f-

id
3

ii
f-

id
7

ii
f-

id
7

ii
f-

id
7

ii
f-

id
7

ii
f-

id
8

ii
f-

id
8

ii
f-

id
8

ii
f-

id
8

ii
f-

id
8

ir
u

le
-b

o
u

n
d

32 / 58



Simulation between signal machines

Intrinsically Universal Family of Signal Machines

Macro-Collision

Comparison of id’s in the if-part of a Rule
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Intrinsically Universal Family of Signal Machines

Macro-Collision

Rule Selection
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Intrinsically Universal Family of Signal Machines

Macro-Collision

Generating the Output
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Intrinsically Universal Family of Signal Machines

Macro-Collision

Whole resolution
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Intrinsically Universal Family of Signal Machines

Preparation (shrink, test and check)

Good Cases
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Intrinsically Universal Family of Signal Machines

Preparation (shrink, test and check)

Shrinking Unit
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a1

a2
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Intrinsically Universal Family of Signal Machines

Preparation (shrink, test and check)

Shrink
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Intrinsically Universal Family of Signal Machines

Preparation (shrink, test and check)

Testing for Other main∅ Signals
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Detecting Potential Overlaps
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Non-determinism (work in progress)

Definition and example

Non-determinism in rule output

Meta-signals
a 0
b -1
c 1

Collision rules
{ a, b }→{ a, c }
{ a, b }→{ b }
{ c, a }→{ b }
{ c, a }→{ a }

a b a

a

a c

b
a

a b

b
a

a
c

a

b
a

c
a

a

a
b

a c

a
b

b

Shifted superposition

no collision
possible
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Implantation

Macro-collision

{ (vα, uα) }α meets
{(

v ′β, u
′
β

)}
β

1 E1 =
{(

(vα, v
′
β), uα ∧ u′β

)}
α,β

U =
⊎
α,β uα ∧ u′β

2 E2 = { ((v , v ′), u ∧ u′) ∈ E1 | u ∧ u′ 6= ∅ }
3 E3 = { (∅,w) | ((�,�),w) ∈ E2 }

∪ { ({µ},w) | ((µ,�),w) ∈ E2 ∨ ((�, µ),w) ∈ E2 }
∪ { (ρ+.µ, ρ(µ, ν) ∧ w) | ((µ, ν),w) ∈ E2 ∧ ρ− = {µ, ν} }

4 Out Speed = { Speed(µ) | ∃µ, (F ,w) ∈ E3, µ ∈ F}
5 ∀s ∈ out,

Outs = { (µ,w) | ∃F , (F ,w) ∈ E3 ∧ µ ∈ F , Speed(µ) = s} }
∪ { (�,w) | ∃F , (F ,w) ∈ E3 ∧ ∀µ ∈ F ,Speed(µ) 6= s} }

Compatible string encodings
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Displaying the operations

Preparation

same as before

start

i
m

ai
n
∅ j m

ain ∅

j
m
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n
∅
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ain ∅

E1

E2

E3
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Very rich setting

Intrinsically universal family of signal machines

What is the complexity?

Non-deterministic signal machine are not “more powerful”

How to extract “result”?

What is the complexity?

Augmented signal machines
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conclusion

That’s all folks!

Thank you for your attention
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