Abstract Geometrical Computation and the Linear Blum, Shub and Smale Model

Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, FRANCE

18-23 June 2007 - Siena, ITALY

- 1 Introduction and Definitions
- ② From Lin-ℝ-URM to Abstract Geometrical Computation
- ③ From Abstract Geometrical Computation to Lin-ℝ-URM
- 4 Conclusion

- Introduction and Definitions
- From Lin-R-URM to Abstract Geometrical Computation
- From Abstract Geometrical Computation to Lin-ℝ-URM
- 4 Conclusion

Context

- Computation on the continuum
- Analog/continuous models
- No consensus on an analog Turing thesis
- Relating various models
- Linear Blum, Shub and Smale model on \mathbb{R} (lin- \mathbb{R} -BSS) [Blum, Shub, and Smale, 1989] [Blum, Cucker, Shub, and Smale, 1998]
- Abstract geometrical computation (AGC)
 [JDL: MCU 04, CiE 05]

Goal: to relate these

Definition: Linear-R-BSS

- Variables hold real numbers
- Computing linear functions over the variables
- Branch with $0 \le test$

Definition: Linear-R-BSS on unbounded sequences

- Variables hold real numbers
- Computing linear functions over the variables
- Branch with 0 < test

To handle unbounded number of variables

- Variables ordered in an infinite array
- shift operator

Definition: Linear-R-BSS on unbounded sequences

- Variables hold real numbers
- Computing linear functions over the variables
- Branch with 0 < test

To handle unbounded number of variables

- Variables ordered in an infinite array
- shift operator

Not the easiest to handle

- Switch for an equivalent model [Novak, 1995]
- → linear-ℝ-Unlimited Register Machines

Definition: Linear-R-Unlimited Register Machines

- An accumulator
- Infinite array of registers (holding real numbers)

Basic operations

- Done on the accumulator
- Store into / load from a register
- Addition of the value of a register
- Multiplication by a constant

Definition: Linear-R-Unlimited Register Machines

- An accumulator
- Infinite array of registers (holding real numbers)
- Finitely many addresses (special registers)

Basic operations

- Done on the accumulator
- Store into / load from a register
- Addition of the value of a register
- Multiplication by a constant

Indirect addressing

- Through address registers
- Dec and Inc

Definition: Abstract Geometrical Computation and Signal Machines

 $\mathbb{R} \times \mathbb{R}^+$

Definition: Abstract Geometrical Computation and Signal Machines

Definition: Abstract Geometrical Computation and Signal Machines

- Introduction and Definitions
- ② From Lin-ℝ-URM to Abstract Geometrical Computation
- ③ From Abstract Geometrical Computation to Lin-ℝ-URM
- 4 Conclusion

Encoding of Lin- \mathbb{R} -URM configuration - 1

Real values

Scale and positions of val for values $-\pi$, -1.5, 0, $\sqrt{2}$ and e

Accumulator and registers

Accumulator (-2) and registers (-2.1, $\sqrt{2}$, $\frac{e}{2}$, $\frac{\pi}{2}$)

Encoding of Lin- \mathbb{R} -URM configuration - 2

Updating the addresses

Load and store

Multiplication

- From Lin-R-URM to Abstract Geometrical Computation
- 3 From Abstract Geometrical Computation to Lin- \mathbb{R} -URM

And Abstract Geometrical Computation to Empar-Ortivi

Encoding of Signal machine configurations

Updating

Main loop

- Find next collision date
 - Go through the configuration
 - Find minimal time to zero a distance
- Update the distances (Go through the configuration again)
- Treat the collision (Go through the configuration again)
 - Find maximal sequences of zero distances
 - Replace the signals and shift the rest if necessary

Linear URM because...

- Finite number of signals (and collision rules)
- → Bounded number of signals involved in a collision
- ¬¬ Switch (nested if) to get to the right case
- Constant speeds \rightsquigarrow Constants of the lin- \mathbb{R} -URM

- Introduction and Definitions
- ② From Lin-ℝ-URM to Abstract Geometrical Computation
- $\centsymbol{f eta}$ From Abstract Geometrical Computation to Lin- ${\mathbb R}$ -URN
- 4 Conclusion

Conclusion

Result: Equivalence

- \bullet Lin- \mathbb{R} -URM / Lin- \mathbb{R} -BSS
- Abstract geometrical computation / Signal machines

Future work: natural (extension) of the models

- Multiplication inside AGC for full ℝ-BSS
- BBM counterpart of accumulations in AGC (Zeno effect)