The signal point of view: from cellular automata to signal machines

Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans, Orléans, FRANCE

Journées Automates Cellulaires 2008 — 21 au 25 avril — Uzès
1 Introduction

2 Implicit use of signals

3 Discrete signals

4 Signal Machines

5 Conclusion
1 Introduction

2 Implicit use of signals

3 Discrete signals

4 Signal Machines

5 Conclusion
Cellular Automata

Definition

(do you really need one?)

Dynamical system

Global function, $\mathcal{G} : Q^\mathbb{Z} \rightarrow Q^\mathbb{Z}$

Orbit and space-time diagram

Value in $Q^{\mathbb{Z} \times \mathbb{N}}$

Image with big pixels
Background and Signals

Background

(2-d) Pattern that may form a valid space-time diagram by bi-periodic repetition.

Signal

- Pattern that (legally) repeats 1-periodically on a background
- Pattern repeating 1-periodically and separating two backgrounds

Illustration by examples
1 Introduction

2 Implicit use of signals

3 Discrete signals

4 Signal Machines

5 Conclusion
The signal point of view: from cellular automata to signal machines
Implicit use of signals

Understanding the dynamics

FIG. 7. Rule 54. (a) Annihilation of the radiating particle. (b) The same as (a) with the mapping defined in Fig. 6. [Boccara et al., 1991, Fig. 7]

FIG. 7. The four different (out of 14 possible) interaction products for the $\alpha + \beta$ interaction. [Hordijk et al., 2001, Fig. 7]

Figure 5. Two collisions of filtons, and five free filtons supported by the FPS model; ST diagram applies $q = 1$. [Siwak, 2001, Fig. 5]
Implicit use of signals

Computing by simulating a Turing machine

Figure 4: The $k = 4$, $r = 2$ universal cellular automaton of table 4 simulated starting from a random initial state. The symbols 0, 1, ω, and + are represented by

[Lindgren and Nordahl, 1990, Fig. 4]
The signal point of view: from cellular automata to signal machines
Implicit use of signals

Generating primes

[Fischer, 1965, Fig. 2]
The signal point of view: from cellular automata to signal machines
Implicit use of signals

Firing Squad Synchronization

[Goto, 1966, Fig. 3+6]
The signal point of view: from cellular automata to signal machines

Discrete signals

1. Introduction

2. Implicit use of signals

3. Discrete signals

4. Signal Machines

5. Conclusion
The signal point of view: from cellular automata to signal machines
Discrete signals

Firing Squad Synchronization (again)

[Varshavsky et al., 1970, Fig 1 and 3]
Multiplication

The signal point of view: from cellular automata to signal machines
Discrete signals

Figure 1: A human multiplier

One cell out of two computes one time out of two:

\[C = (\alpha \land \beta) \oplus (A \lor B) \]
\[D = (\alpha \land \beta \land A) \lor (\alpha \land \beta \land B) \lor (A \land B). \]

Figure 3: Computations done on one cell out of two, one unit of time out of two

[Jack Mazoyer, 1996, Fig. 1, 3 and 4]
A whole programming system

[Figure 8: Computing $|ab|^2$.]

[Figure 9: Setting up an infinite family of regular safe grids (the darkness of the grid indicates its rank).]

[Figure 18: Characterization of the sites $(n, f(n))$.]

[Mazoyer, 1996, Fig. 8 and 19] and [Mazoyer and Terrier, 1999, Fig. 18]
1. Introduction

2. Implicit use of signals

3. Discrete signals

4. Signal Machines

5. Conclusion
Moving to the continuum

Forget about discreteness

⇝ continuous
The signal point of view: from cellular automata to signal machines

Signal Machines

Vocabulary

- Signal (meta-signal)
- Collision (rule)
New kinds of *monsters*
Computability and undecidability [Durand-Lose, 2005]

Two-counter simulation
Turing-machine can also be simulated directly

Undecidable
- total erasing
- finite number of signal
- signal/collision apparition
Scaling down and bounding the duration
Computing inside bounded room
Accumulation forecasting is Σ_0^2-complete

[Durand-Lose, 2006b]
Principe

Two different timelike half-curves such that
- they have a point in common (used to set things and start)
- one is upward-infinite and fully contained in the casual past of a point of the other

Solving recursively enumerable problems

- **Accept**
 - calcul

- **Refuse**
 - calcul

- **Does not stop**
 - calcul

Link with the Black hole model [Durand-Lose, 2006a]
Links with the Blum, Shub and Smale model

Classical BSS model

Variables hold real numbers in exact precision
- input / output
- test 0 <
- shift (to access other variables)
- compute a polynomial function

Linear BSS [Durand-Lose, 2007]

Restriction
- only linear function
- *i.e.* no inner multiplication
Encoding real numbers

- Common scale for all variables
- Sign test trivial
Encoding real numbers

Scale + distance

1
scale

2.71
ba

Common scale for all variables

Sign test trivial
Encoding real numbers

Scale + distance

- Common scale for all variables
- Sign test trivial
Addition
External multiplication

\[\text{line}_{n+1} \]

\[\text{accum} \] \[\text{val} \]

\[\text{mul} \] \[\text{mul}_a \] \[\text{mul}_b \] \[\text{mul}_c \]

\[\text{val} \] \[\text{line}_{n+1} \]
Internal multiplication [Durand-Lose, 2008]

Computation
- Pre-treatment to ensure \(0 < y < 1\)
- Binary extension of \(y\):
 \[y = y_0 \cdot y_1 y_2 y_3 \cdots\]
- Computation
 \[xy = \sum_{0 \leq i} y_i \left(\frac{x}{2^i} \right)\]

Principe
- Computation on the margin
 - the margin is scaling down geometrically
- Square rooting is also possible!
The signal point of view: from cellular automata to signal machines

Conclusion

1. Introduction

2. Implicit use of signals

3. Discrete signals

4. Signal Machines

5. Conclusion
Conclusion

- Natural filiation with CA
- Continuous time
 - Zeno effect
 - Unpredictability

Links with other models
- Black hole model
- Blum, Shub and Smale model

Future work
- Relate with CA
- Characterize the analog computing power
Particle-like structures and interactions in spatio-temporal patterns generated by one-dimensional deterministic cellular automaton rules.

Abstract geometrical computation: Turing computing ability and undecidability.

Abstract geometrical computation 1: Embedding black hole computations with rational numbers.

Conclusion

Forcasting black holes in abstract geometrical computation is highly unpredictable.

Durand-Lose, J. (2007).

Abstract geometrical computation and the linear Blum, Shub and Smale model.

Durand-Lose, J. (2008).

Abstract geometrical computation with accumulations: Beyond the Blum, Shub and Smale model.

Generation of primes by a one-dimensional real-time iterative array.

Ōtomaton ni kansuru pazuru [Puzzles on automata].

An upper bound on the products of particle interactions in cellular automata.

Universal computation in simple one-dimensional cellular automata.
Computations on one dimensional cellular automata.

Signals in one-dimensional cellular automata.

Soliton-like dynamics of filtrons of cycle automata.

Synchronization of interacting automata.