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Finite State Automata (FSA)

Deterministic
On each input there is one and only one state to which the automaton can
transition from its current state

Nondeterministic
An automaton can be in several states at once
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Deterministic finite state automaton

1. A finite set of states , often denoted Q

2. A finite set of input symbols , often denoted Σ

3. A transition function that takes as arguments a state and an input symbol and
returns a state.
The transition function is commonly denoted δ

If q is a state and a is a symbol, then δ(q, a) is a state p (and in the graph that
represents the automaton there is an arc from q to p labeled a)

4. A start state , one of the states in Q

5. A set of final or accepting states F (F ⊆ Q)

Notation: A DFA A is a tuple

A = (Q, Σ, δ, q0, F )
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Other notations for DFAs

1. Transition diagrams

Each state is a node

For each state q ∈ Q and each symbol a ∈ Σ, let δ(q, a) = p

Then the transition diagram has an arc from q to p, labeled a

There is an arrow to the start state q0

Nodes corresponding to final states are marked with doubled circle

2. Transition tables

Tabular representation of a function

The rows correspond to the states and the columns to the inputs

The entry for the row corresponding to state q and the column
corresponding to input a is the state δ(q, a)
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Example: An DFA accepting strings with a

substring 01

A = ({q0, q1, q2}, {0, 1}, δ, q0, {q1})

where the transition function δ is given by the table

0 1

→ q0 q2 q0

⋆ q1 q1 q1

q2 q2 q1

Start 0 1

1

q1q1q0

0 0, 1
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Extending the Transaction Function to

Strings

The DFA define a language: the set of all strings that result in a sequence of
state transitions from the start state to an accepting state

Extended transition function

Describes what happens when we start in any state and follow any
sequence of inputs

If δ is our transition function, then the extended transition function is
denoted by δ̂

The extended transition function is a function that takes a state q and a
string w and returns a state p (the state that the automaton reaches when
starting in state q and processing the sequence of inputs w)
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Formal definition of the extended transition

function

Definition by induction on the length of the input string
Basis: δ̂(q, ǫ) = q

If we are in a state q and read no inputs, then we are still in state q

Induction: Suppose w is a string of the form xa; that is a is the last symbol of w, and x

is the string consisting of all but the last symbol
Then: δ̂(q, w) = δ(δ̂(q, x), a)

To compute δ̂(q, w), first compute δ̂(q, x), the state that the automaton is in after
processing all but the last symbol of w

Suppose this state is p, i.e., δ̂(q, x) = p

Then δ̂(q, w) is what we get by making a transition from state p on input a - the
last symbol of w

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 7/35



Example

Design a DFA to accept the language

L = {w | w has both an even number of 0 and an even number of 1}
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The Language of a DFA

The language of a DFA A = (Q, Σ, δ, q0, F ), denoted L(A) is defined by

L(A) = {w | δ̂(q0, w) is in F}

The language of A is the set of strings w that take the start state q0 to one of the
accepting states

If L is a L(A) from some DFA, then L is a regular language
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Nondeterministic Finite Automata (NFA)

A NFA has the power to be in several states at once

This ability is often expressed as an ability to “guess” something about its input

Each NFA accepts a language that is also accepted by some DFA

NFA are often more succinct and easier than DFAs

We can always convert an NFA to a DFA, but the latter may have exponentially
more states than the NFA (a rare case)

The difference between the DFA and the NFA is the type of transition function δ

For a NFA δ is a function that takes a state and input symbol as arguments
(like the DFA transition function), but returns a set of zero or more states
(rather than returning exactly one state, as the DFA must)
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Example: An NFA accepting strings that end

in 01

Nondeterministic automaton that accepts all and only the strings of 0s and 1s that end in
01

Start 0 1

0, 1

q0 q2q1
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NFA: Formal definition

A nondeterministic finite automaton (NFA) is a tuple A = (Q, Σ, δ, q0, F ) where:

1. Q is a finite set of states

2. Σ is a finite set of input symbols

3. q0 ∈ Q is the start state

4. F (F ⊆ Q) is the set of final or accepting states

5. δ, the transition function is a function that takes a state in Q and an input symbol
in ∆ as arguments and returns a subset of Q

The only difference between a NFA and a DFA is in the type of value that δ returns
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Example: An NFA accepting strings that end

in 01

A = ({q0, q1, q2}, {0, 1}, δ, q0, {q2})

where the transition function δ is given by the table

0 1

→ q0 {q0, q1} {q0}

q1 ∅ {q2}

⋆ q2 ∅ ∅

Start 0 1

0, 1

q0 q2q1
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The Extended Transition Function

Basis: δ̂(q, ǫ) = {q}

Without reading any input symbols, we are only in the state we began in

Induction:

Suppose w is a string of the form xa; that is a is the last symbol of w, and x is the
string consisting of all but the last symbol

Also suppose that δ̂(q, x) = {p1, p2, . . . pk, }

Let
k

[

i=1

δ(pi, a) = {r1, r2, . . . , rm}

Then: δ̂(q, w) = {r1, r2, . . . , rm}

We compute δ̂(q, w) by first computing δ̂(q, x) and by then following any transition from
any of these states that is labeled a
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Example: An NFA accepting strings that end

in 01

Start 0 1

0, 1

q0 q2q1

Processing w = 00101

1. δ̂(q0, ǫ) = {q0}

2. δ̂(q0, 0) = δ(q0, 0) = {q0, q1}

3. δ̂(q0, 00) = δ(q0, 0) ∪ δ(q1, 0) = {q0, q1} ∪ ∅ = {q0, q1}

4. δ̂(q0, 001) = δ(q0, 1) ∪ δ(q1, 1) = {q0} ∪ {q2} = {q0, q2}

5. δ̂(q0, 0010) = δ(q0, 0) ∪ δ(q2, 0) = {q0, q1} ∪ ∅ = {q0, q1}

6. δ̂(q0, 00101) = δ(q0, 1) ∪ δ(q1, 1) = {q0} ∪ {q2} = {q0, q2}
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The Language of a NFA

The language of a NFA A = (Q, Σ, δ, q0, F ), denoted L(A) is defined by

L(A) = {w | δ̂(q0, w) ∩ F 6= ∅}

The language of A is the set of strings w ∈ Σ∗ such that δ̂(q0, w) contains at least one
accepting state

The fact that choosing using the input symbols of w lead to a non-accepting state, or do
not lead to any state at all, does not prevent w from being accepted by a NFA as a whole.
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Equivalence of Deterministic and

Nondeterministic Finite Automata

Every language that can be described by some NFA can also be described by
some DFA.

The DFA in practice has about as many states as the NFA, although it has more
transitions.

In the worst case, the smallest DFA can have 2n (for a smallest NFA with n state).
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Proof: DFA can do whatever NFA can do

The proof involves an important construction called subset construction because it
involves constructing all subsets of the set of stages of NFA.

From NFA to DFA

We have a NFA N = (QN , Σ, δN , q0, FN )

The goal is the construction of a DFA D = (QD, Σ, δD, {q0}, FD) such that
L(D) = L(N).
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Subset Construction

Input alphabets are the same.

The start set in D is the set containing only the start state of N .

QD is the set of subsets of QN , i.e., QD is the power set of QN .
If QN has n states QD will have 2n states. Often, not all of these states are
accessible from the start state.

FD is the set of subsets S of QN such that S ∩ FN 6= ∅. That is, FD is all sets of
N ’s states that include at least one accepting state of N .

For each set S ⊆ QN and for each input symbol a ∈ Σ

δD(S, a) =
[

p∈S

δN (p, a)

To compute δD(S, a), we look at all the states p in S, see what states N goes
from p on input a, and take the union of all those states.
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Example

Start 0 1

0, 1

q0 q2q1

QN = {q0, q1, q2} then QD = {∅, {q0}, {q1}, {q2}, {q0, q1} . . .}, i.e., QD has 8 states
(each one corresponding to a subset of QN )

0 1

∅ ∅ ∅

→ {q0} {q0 q1} {q0}

{q1} ∅ {q2}

⋆ {q2} ∅ ∅

{q0, q1} {q0 q1} {q0, q2}

⋆ {q0, q2} {q0 q1} {q0}

⋆ {q1, q2} ∅ {q2}

⋆ {q0, q1, q2} {q0 q1} {q0, q2}
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Example: with new names

Note: The states of D correspond to subsets of states of N , but we could have denoted
the states of D by, say, A - F just as well.

0 1

A A A

→ B E B

C A D

⋆ D A A

E E F

⋆ F E B

⋆ G A D

⋆ H E F
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Avoiding exponential blow-up

We can often avoid the exponential blow-up by constructing the transition table for D

only for accessible states S as follows:
Basis : S = {q0} is accessible in D

Induction : If state S is accessible, so are the states in a
S

a∈Σ
δD(S, a).
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Theorem

If D = (QD, Σ, δD, {q0}, FD) is the DFA constructed from NFA
N = (QN , Σ, δN , q0, FN ) by the subset construction, then L(D) = L(N) 2

Proof: First we show on an induction on |w| that

δ̂D(({q0}, w) = δ̂N (q0, w)

Basis: w = ǫ . The claim follows from def.

Induction: δ̂D({q0}, x.a) = ....

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 23/35



Theorem

A language L is accepted by some DFA if and only if L is accepted by some NFA.

Proof: The "if" part is the theorem before

For the "only if" part we note that any DFA can be converted to an equivalent NFA by
modifying the δD to δN by the rule

If δD(q, a) = p then δN (q, a) = {p}
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Exponential Blow-Up

There is an NFA N with n + 1 states that has no equivalent DFA with fewer than 2n

states.

q0q0q0q0q0

0, 1

0, 1
0, 1

0, 1
0, 11

L(N): the set of all strings of 0 and 1 such that the nth symbol from the end is 1.
L(N) = {x1c2c3 . . . cn | x ∈ {0, 1}∗, ci ∈ {0, 1}}

Suppose an equivalent DFA D with fewer than 2n states exists.

D must remember the last n symbols it has read.

There are 2n bitsequences a1a2 . . . an

∃q, a1a2 . . . an, b1b2 . . . bn | q ∈ δ̂N (q0, a1a2 . . . an),

q ∈ δ̂N (q0, b1b2 . . . bn),

a1a2 . . . an 6= b1b2 . . . bn
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Exponential Blow-Up

Since the sequences are different, they must differ in some position, say ai 6= bi

Case 1: i = 1

1a2 . . . an

0b2 . . . bn

Then q has to be both an accepting and a non accepting state.

Case 2: i > 1

a1 . . . ai−11ai+1 . . . an

b1 . . . bi−10bi+1 . . . bn

Now δ̂N (q0, a1 . . . ai−11ai+1 . . . an0i−1) = δ̂N (q0, b1 . . . bi−10bi+1 . . . bn0i−1)

and
δ̂N (q0, a1ai−11ai+1an0i−1) ∈ FD

δ̂N (q0, b1bi−10bi+1bn0i−1) 6∈ FD
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Finite Automata with Epsilon-Transition

We allow now a transition on ǫ, i.e., the empty string

A NFA is allowed to make a transition spontaneously, without receiving an input
symbol

This capability does not expand the class of languages that can be accepted by
finite automata, but it does give us some added programming convenience
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Example

NFA that accepts decimal numbers consisting of: an optional + or − sign; a string of
digits; a decimal point and another string of digits. Either the first or the second string of
bits can be empty, but at least one of the two strings must be nonempty.

Start
q0 q1 q2

q4

q3 q5

ǫ,+,−

0, 1, . . . , 9

0, 1, . . . , 9

0, 1, . . . , 9

0, 1, . . . , 9

.

.

ǫ
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Formal Notation

An ǫ-NFA A = (Q, Σ, δ, q0, F ) where all components have their same interpretation as
for NFA, except that δ is now a function that takes arguments:

1. A state in Q and

2. A member of Σ ∪ {ǫ}

We require that ǫ cannot be a member of Σ
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Epsilon-Closures

We define ǫ-closure ECLOSE(q) recursively, as follows:

Basis : State q is in ECLOSE(q)

Induction : If state p is in ECLOSE(q), and there is a transition from p to r labeled ǫ,
then r is in ECLOSE(q)

More precisely, if δ is the transition function of the ǫ-NFA involved, and p is in
ECLOSE(q), then ECLOSE(q) also contains all the states in δ(p, ǫ)
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Extended Transitions and Languages for

ǫ-NFA

The definition of δ̂ is :
Basis δ̂(q, ǫ) = ECLOSE(q)

If the label of the path is ǫ , then we can follow only ǫ-labeled arcs extending from state q

Induction Suppose w is of the form xa, where a ∈ Σ is the last symbol of w. We
compute δ̂(q, w) as follows:

1. Let {p1, p2, . . . pk} be δ̂(q, x)

The pi are all and only the states that we can reach from q following a path
labeled x. This path may end with one or more ǫ-transitions and may have other
ǫ-transitions.

2. Let
Sk

i=1
δ(pi, a) be the set {r1, r2, . . . , rm}

Follow all transitions labeled a from states we can reach from q along paths
labeled x. The rj are some of the states we can reach from q along paths
labeled w. The additional states we can reach are found from the rj by the
following ǫ-labeled arcs in the step below

3. Then δ̂(q, w) =
Sm

j=1
ECLOSE(rj)
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The language of an ǫ-NFA

The language of an ǫ-NFA E = (Q, Σ, δ, q0, F ) is

L(E) = {w | δ̂(q0, w) ∩ F 6= ∅}
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Eliminating ǫ-Transitions

Let E = (QE , Σ, δE , q0, FE) be an ǫ-NFA. Then the equivalent DFA
D = (QD, Σ, δD, qD, FD) is defined as follows:

1. QD is the set of subsets of QE

2. qD = ECLOSE(q0)

3. FD = {S | S is in QD and S ∩ FE 6= ∅}

Those sets of states that contain at least one accepting state of E

4. δD(S, a) is computed, for all a in Σ and sets S in QD by:

Let S = {p1, p2, . . . , pk}

Compute
Sk

i=1
δE(pi, a); let this set be {r1, r2, . . . , rm}

Then δD(S, a) =
Sm

j=1
ECLOSE(rj)
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Theorem

A language L is accepted by some ǫ-NFA iff L is accepted by some DFA.
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