
Properties of Regular
Languages

SITE : http://www.info.blois.univ-tours.fr/˜mirian/

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 1/32

Algebraic Laws for Regular Expressions

Two expressions with variables are equivalent if whatever languages we
substitute for the variables the results of the two expressions are the same
language.
Examples in the algebra of arithmetic: 1 + 2 = 2 + 1 or x + y = y + x.

Like arithmetic expressions, the regular expressions have a number of laws that
work for them. Many of these are similar to the laws of arithmetic, if we think of
union as additional and concatenation as multiplication.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 2/32

Associativity and Commutativity

Commutativity is the property of an operator that says we can switch the order
of its operands and get the same result.

Associativity is the property of an operator that allow us regroup the operands
when the operator is applied twice.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 3/32

Associativity and Commutativity

For regular expressions, we have:

L + M = M + L

Commutative law for union: we may make the union of two languages in
either order

(L + M) + N = L + (M + N)

Associative law for union: we may take the union of three languages
either by taking the union of the first two initially, or taking the union of the
last two initially.
Together with the commutative law we can take the union of any
collection of languages with any order and grouping, and the result
will be the same.
Intuitively, a string is in L1 ∪ L2 . . . ∪ Lk iff it is in one or more of the Lis.

(L.M).N = L.(M.N)

Associative law for concatenation: we can concatenate
three-languages by concatenating either the first two or the last two initially

Clearly the law L.M = M.L is FALSE

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 4/32

Identities and Annihilator

An identity for an operator is a value that when the operator is applied to the
identity and some other value, the result is the other value.

An annihilator for an operator is value that when the operator is applied to the
annihilator and some other value, the result is the annihilator.

For regular expressions we have:

∅ + L = L + ∅ = L

ǫ.L = L.ǫ = L

∅.L = L.∅ = ∅

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 5/32

Distributive laws

A distributive law involves two operators and asserts that one operator can be
pushed down to be applied to each argument of the other operator individually

For regular expressions we have:

L.(M + N) = LM + LN

(M + N).L = ML + NL

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 6/32

The Idempotent Law

An operator is idempotent if the result of applying it to two of the same values as
arguments is that value.

Idempotent Law for union: L + L = L

If we take the union of two identical expressions, we can replace them by one
copy of the expression.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 7/32

Laws Involving Closures

(L∗)∗ = L∗

∅∗ = ǫ

ǫ∗ = ǫ

L+ = LL∗ = L∗L

Proof: Recall that L+ is defined to be L + LL + LLL + Also,
L∗ = ǫ + L + LL + LLL + Thus,

LL∗ = Lǫ + LL + LLL + . . .

When we remember that Lǫ = L, we see that the infinite expressions for LL∗

and L+ are the same. That proves L+ = LL∗. The proof L+ = L∗L is similar

L∗ = L+ + ǫ

L? = ǫ + L

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 8/32

Discovering Laws for Regular Expressions

There is an infinite variety of laws about regular expressions that might be
proposed. Is there a general methodology that will make our proofs of correct
laws easy?

This technique is closely tied to the regular-expressions operators, and CANNOT
be extended to expressions involving some OTHER operators (such as
intersection)

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 9/32

The test for a regular expression algebraic

law

The test for whether E = F is true, where E and F are two regular expressions with the
same set of variables, is:

1. Convert E and F to concrete regular expressions (i.e., one with no variables) C

and D, respectively, by replacing each variable by a concrete symbol.

2. Test whether L(C) = L(D). If so, then E = F is a true law, and if not then the
law is false
Notice that this is an ad-hoc method to decide equality of the pairs or languages.
If the languages are not the same, than it is sufficient to provide one
counterexample: a single string that is in one language but not in the other.

3. Examples: Prove or disprove

(a) (L + M)∗ = (L∗M∗)∗

(b) L∗ = L∗L∗

(c) L + ML = (L + M)L

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 10/32

Closure Properties of Regular Languages

Let L and M be regular languages. Then the following languages are all regular:

Union: L ∪ M

Intersection: L ∩ M

Complement: N

Difference: L \ M

Reversal: LR = wR : w ∈ L

Closure: L∗

Concatenation: L.M

Homomorphism:

h(L) = {h(w) | w ∈ L, h is a homomorphism }

Inverse homomorphism:

h−1(L) = {w ∈ Σ | h(w)L, h : Σ → ∆ is a homomorphism}

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 11/32

Closure under Union

For any regular languages L and M , then L ∪ M is regular.

Proof: Since L and M are regular, they have regular expressions, say:

Let L = L(E) and M = L(F). Then L ∪ M = L(E + F) by the definition of the
+ operator.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 12/32

Closure under complementation

If L is a regular language over alphabet Σ then L = Σ∗ \ L is also regular.

Proof: Let L be recognized by a DFA

A = (Q, Σ, δ, q0, F).

Then L = L(B) where B is the DFA

B = (Q, Σ, δ, q0, Q \ F).

That is, B is exactly like A, but the accepting states of A have become the nonaccepting
states of B and vice-versa.

Then w is in L(B) iff δ̂(q0, w) is in Q \ F , which occurs iff w is not in L(A).

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 13/32

Closure under intersection

If L and M are regular languages, then so is L ∩ M .

Proof: Let L be recognized by the DFA

AL = (QL, Σ, δL, qL, FL)

and M by the DFA

AM = (QM , Σ, δM , qM , FM)

We assume that the alphabets of both automata are the same ; that is Σ is the
union of the alphabets of L and M , if they are different.

We also assume w.l.o.g. that both automata are deterministic.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 14/32

We shall construct an automaton A that simulates both AL and AM .

The states of A are pairs of states, the first from AL and the second from AM .

If AL goes from state p to state s on reading a, and AM goes from state q to state
t on reading a, then AL∩M will go from state (p, q) to state (s, t) on reading a.

The start state of A is the pair of start states of AL and AM .

Since we want to accept iff both automata accept, we select as accepting states
of A all pairs (p, q) such that p is an accepting state of AL and q is an accepting
state or AM .

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 15/32

Formally

AL∩M = (QL × QM , Σ, δ, (qL, qM), FL × FM),

where

δ((p, q), a) = (δL(p, a), δM (q, a))

By induction on |w| it is possible to prove that

δ̂L∩M ((qL, qM), w) = (δ̂L(qL, w), δ̂M (qM , w))

But A accepts w iff δ̂L∩M ((qL, qM), w) is a pair of accepting states. That is δ̂L(qL, w)

must be un FL and δ̂M (qM , w) must be un FM .

Thus w is accepted by A iff w is accepted by AL and by AM . Thus A accepts the
intersection of L and M .

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 16/32

Closure under Difference

If L and M are regular languages, then so is L \ M .

Proof: Observe that L \ M = L ∩ M . We already know that regular languages are
closed under complement and intersection.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 17/32

Reversal

The reversal of a string a1a2 . . . an is the string written backwards
anan−1 . . . a1.

We use wR for the reversal of string w.

The reversal of a language L, written LR, is the language consisting of the
reversals of all its strings

Example:
L = {001, 10, 111}

LR = {100, 01, 111}

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 18/32

Closure under reversal

If L is a regular languages, then so is LR.

Proof 1

Let L be recognized by an fsa A. Turn A into an fsa for LR , by:

1. Reversing all arcs.

2. Make the old start state the new sole accepting state.

3. Create a new start state p0 , with δ(p0, ǫ) = F (the old accepting states).

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 19/32

Closure under reversal

Proof 2

Assume L is defined by a regular expression E.

We show that there is another regular expression ER such that

L(ER) = (L(E))R

that is, the language of ER is the reversal of the language of E.

Basis: If E is ǫ, ∅ of a, then ER = E.
Induction: There are three cases, depending on the form of E

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 20/32

Proof (continue)

1. E = F + G. Then ER = F R + GR.
Justification: The reversal of the union of two languages is obtained by computing
the reversal of the two languages and taking the union of these languages.

2. E = F.G. Then ER = GR.F R

Note: We reverse the order of the two languages, as well as reversing the
languages themselves.
Justification: In general, if a word w ∈ L(E) is the concatenation of w1 ∈ L(F)

and w2 ∈ L(G), then wR = wR
2

.wR
1

.

3. E = F ∗. Then ER = (F R)∗

Justification:

Any string w ∈ L(E) can be written as w1w2 . . . wn, where each wi is in
L(F). But wR = wR

nwR
2

.wR
1

and each wR

i
is in L(ER), so wR is in

L((F R)∗).

Conversly, any string in L((F R)∗) is of the form w1w2 . . . wn where each
wi is the reversal of a string in L(F).The reversal of this string is in L(F ∗)

which is in L(E).
We have shown that a string is in L(E) iff its reversal is in L((F R)∗).

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 21/32

Homomorphisms

A homomorphism on Σ is a function h : Σ∗ → Θ∗ , where Σ and Θ are alphabets.
Let w = a1a2 . . . an ∈ Σ∗. Then

h(w) = h(a1)h(a2) . . . h(an)

and

h(L) = {h(w) | w ∈ L}

Example: Let h : {0, 1}∗ → {a, b}∗ be defined by h(0) = ab, and h(1) = ǫ.
Now

h(0011) = abab.

h(L(10∗1)) = L((ab)∗)

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 22/32

If L is a regular language over alphabet Σ and h is a homomorphism on Σ, then h(L) is
also regular.
Proof

Let L = L(R) for some RE R.

We claim that h(R) defines the language h(L).

In general, if E is the regular expression with symbols in Σ, let h(E) be the
expression obtained by replacing each symbol a of Σ by h(a).

The proof is a structural induction that says whenever we take a subexpression E

of R and apply h to it to get h(E), the language h(E) is the same we get if we
apply h to the language L(E).

Formally L(h(E)) = h(L(E)).

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 23/32

Proof (cont.)

Basis: If E is ǫ or ∅, then h(E) = E and L(h(E)) = L(E) = h(L(E)).
If E is a, then L(E) = {a} and

L(h(E)) = L(h(a)) = {h(a)} = h(L(E))

Induction: There are three cases, depending on the form of E

Case 1: E = F + G

h(E) = h(F + G) = h(F) + h(G)

We also know that L(E) = L(F) ∪ L(G)

L(h(E)) = L(h(F + G)) = L(h(F) + h(G)) = L(h(F)) ∪ L(h(G)). by the
definition of what + means in regular expressions.

h(L(E)) = h(L(F) ∪ L(G)) = h(L(F)) ∪ h(L(G)) because h is applied to a
language by application to each of its strings individually.

By the induction hypothesis L(h(F)) = h(L(F)) and L(h(G)) = h(L(G)).

Then L(h(F)) ∪ L(h(G)) = h(L(F)) ∪ h(L(G))

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 24/32

Case 2: E = F.G

h(E) = h(F.G) = h(F).h(G)

We also know that L(E) = L(F).L(G)

L(h(E)) = L(h(F.G)) = L(h(F).h(G)) = L(h(F)).L(h(G)).

h(L(E)) = h(L(F).L(G)) = h(L(F)).h(L(G)).

By the induction hypothesis L(h(F)) = h(L(F)) and L(h(G)) = h(L(G)).

Then L(h(F)).L(h(G)) = h(L(F)).h(L(G))

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 25/32

Case 3: E = F ∗

h(E) = h(F ∗) = h(F)∗

L(h(E)) = L(h(F ∗)) = L(h(F)∗) = L(h(F))∗.

h(L(E)) = h(L(F ∗)) = h(L(F))∗.

By the induction hypothesis L(h(F)) = h(L(F)).

Then L(h(F))∗ = h(L(F))∗

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 26/32

Inverse Homomorphism

Let h : Σ∗ → Θ∗ be a homomorphism. Let L ⊆ Θ∗, and define

h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}

h−1(L) (h inverse of L) is the set of strings w in Σ∗ such that h(w) is in L.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 27/32

Example

Let L = L((00 + 1)∗).
Let h : {a, b}∗ → {0, 1}∗ be defined by

h(a) = 01

h(b) = 10

We claim that h−1(L) is the language of regular expression (b.a)∗, i.e.,
h−1(L) = L((ba)∗).

We shall prove that h(w) ∈ L iff w = (ba)n.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 28/32

Proof

(If) Suppose w = (ba)n for n ≥ 0.
Note that h(ba) = 1001 so h(w) is n repetition of 1001. Thus h(w) = (1001)n ∈ L.

(Only-If) We assume that h(w) is in L and show that w is of the form baba . . . ba.

There are four conditions under which a string is NOT of the form, and we shall show
that if any of them hold then h(w) is not in L.

That is, we prove the contrapositive of the statement we set out to prove.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 29/32

Proof (cont.)

So, let h(w) ∈ L and suppose w 6∈ L((a.b)∗). There are 4 cases to consider:

1. w begins with a. Then h(w) begins with 01 and 6∈ L((00 + 1)∗), since it has an
isolated 0.

2. w ends in b. Then h(w) ends in 10 and 6∈ L((00 + 1)∗).

3. w has two consecutive a, i.e., w = xaay. Then h(w) = z0101v and
6∈ L((00 + 1)∗).

4. w has two consecutive b, i.e., w = xaay. Then h(w) = z1010v and
6∈ L((00 + 1)∗).

Thus, whenever one of the above cases hole, h(w) is not in L. However, unless at least
one of items (1) through (4) hold, then w is of the form baba . . . ba.

To see why, assume none of (1) through (4) hold.
Then (1) tells us w must begin with b and (2) tells us w must end with a.
Statements (3) and (4) tell us that a and b must alternate in w. Thus the logical OR of
(1) through (4) is equivalent to the statement w is not of the form baba . . . ba.

We have proved that the OR of (1) through (4) is not in L. The statement is the
contrapositive of the statement wanted. Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 30/32

Closure of inverse homomorphism

If h is a homomorphism from alphabet Σ to alphabet Θ, and L is a regular language over
alphabet Θ, then h−1(L) is also a regular language.
Proof: Let L be the language of the DFA

A = (Q, Θ, δ, q0, F)

We construct from A and h a DFA for h−1(L) . This automaton uses the states of A but
translates the input symbols according to h before deciding on the next state.
Formally,

B = (Q, Σ, γ, q0, F)

where transition function γ is constructed by the rule

γ(q, a) = δ̂(q, h(a))

That is the transition B makes on input a is the result of the sequence of
transitions that A makes on string of symbols h(a).

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 31/32

By an induction on |w| it is possible to show that

γ̂(q0, w) = δ̂(q0, h(w)))

.

Since the accepting states of A and B are the same, B accepts w iff A accepts h(w).

Put another way, B accepts exactly thoses strings w that are in h−1(L).

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 32/32

	small {Algebraic Laws for Regular Expressions}
	small {Associativity and Commutativity}
	small {Associativity and Commutativity}
	small {Identities and Annihilator}
	small {Distributive laws}
	small {The Idempotent Law}
	small {Laws Involving Closures}
	small {Discovering Laws for Regular Expressions}
	small {The test for a regular expression algebraic law}
	small {Closure Properties of Regular Languages}
	small {Closure under Union}
	small {Closure under complementation}
	small {Closure under intersection}
	small {}
	small {}
	small {Closure under Difference}
	small {Reversal}
	small {Closure under reversal}
	small {Closure under reversal}
	small {Proof (continue)}
	small {Homomorphisms}
	small {}
	small {Proof (cont.)}
	small {}
	small {}
	small {Inverse Homomorphism}
	small {Example}
	small {Proof}
	small {Proof (cont.)}
	small {Closure of inverse homomorphism}
	small {}

