
Automata Theory and
Languages

SITE : http://www.info.univ-tours.fr/˜mirian/

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 1/19

Introduction to Automata Theory

Automata theory : the study of abstract computing devices, or ”machines”

Before computers (1930), A. Turing studied an abstract machine (Turing
machine) that had all the capabilities of today’ s computers (concerning what they
could compute). His goal was to describe precisely the boundary between what a
computing machine could do and what it could not do.

Simpler kinds of machines (finite automata) were studied by a number of
researchers and useful for a variety of purposes .

Theoretical developments bear directly on what computer scientists do today

Finite automata, formal grammars: design/ construction of software

Turing machines: help us understand what we can expect from a software

Theory of intractable problems: are we likely to be able to write a program
to solve a given problem? Or we should try an approximation, a heuristic...

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 2/19

Why Study Automata Theory?

Finite automata are a useful model for many important kinds of software and hardware:

1. Software for designing and checking the behaviour of digital circuits

2. The lexical analyser of a typical compiler, that is, the compiler component that
breaks the input text into logical units

3. Software for scanning large bodies of text, such as collections of Web pages, to
find occurrences of words, phrases or other patterns

4. Software for verifying systems of all types that have a finite number of distinct
states, such as communications protocols of protocols for secure exchange
information

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 3/19

The Central Concepts of Automata Theory

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 4/19

Alphabet

A finite, nonempty set of symbols.

Symbol: Σ

Examples:

The binary alphabet: Σ = {0, 1}

The set of all lower-case letters: Σ = {a, b, . . . , z}

The set of all ASCII characters

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 5/19

Strings

A string (or sometimes a word) is a finite sequence of symbols chosen from
some alphabet

Example: 01101 and 111 are strings from the binary alphabet Σ = {0, 1}

Empty string : the string with zero occurrences of symbols
This string is denoted by ǫ and may be chosen from any alphabet
whatsoever .

Length of a string : the number of positions for symbols in the string
Example: 01101 has length 5

• There are only two symbols (0 and 1) in the string 01101, but 5 positions for
symbols

Notation of length of w: |w|

Example: |011| = 3 and |ǫ| = 0

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 6/19

Powers of an alphabet (1)

If Σ is an alphabet, we can express the set of all strings of a certain length from that
alphabet by using the exponential notation:

Σk: the set of strings of length k, each of whose is in Σ

Examples:

Σ0 : {ǫ}, regardless of what alphabet Σ is. That is ǫ is the only string of
length 0

If Σ = {0, 1}, then:

1. Σ1 = {0, 1}

2. Σ2 = {00, 01, 10, 11}

3. Σ3 = {000, 001, 010, 011, 100, 101, 110, 111}

Note: confusion between Σ and Σ1:
1. Σ is an alphabet; its members 0 and 1 are symbols
2. Σ1 is a set of strings; its members are strings (each one of length 1)

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 7/19

Kleen star

Σ∗: The set of all strings over an alphabet Σ

{0, 1}∗ = {ǫ, 0, 1, 00, 01, 10, 11, 000, . . .}

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .

The symbol ∗ is called Kleene star and is named after the mathematician and
logician Stephen Cole Kleene.

Σ+ = Σ1 ∪ Σ2 ∪ . . .

Thus: Σ∗ = Σ+ ∪ {ǫ}

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 8/19

Concatenation

Define the binary operation . called concatenation on Σ∗ as follows:
If a1a2a3 . . . an and b1b2 . . . bm are in Σ∗, then

a1a2a3 . . . an.b1b2 . . . bm = a1a2a3 . . . anb1b2 . . . bm

Thus, strings can be concatenated yielding another string:
If x are y be strings then x.y denotes the concatenation of x and y, that is, the
string formed by making a copy of x and following it by a copy of y

Examples:

1. x = 01101 and y = 110

Then xy = 01101110 and yx = 11001101

2. For any string w, the equations ǫw = wǫ = w hold.
That is, ǫ is the identity for concatenation (when concatenated with any
string it yields the other string as a result)

If S and T are subsets of Σ∗, then
S.T = {s.t | s ∈ S, t ∈ T}

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 9/19

Languages

If Σ is an alphabet, and L ⊆ Σ∗, then L is a (formal) language over Σ.

Language: A (possibly infinite) set of strings all of which are chosen from some
Σ∗

A language over Σ need not include strings with all symbols of Σ

Thus, a language over Σ is also a language over any alphabet that is a superset
of Σ

Examples:

Programming language C
Legal programs are a subset of the possible strings that can be formed
from the alphabet of the language (a subset of ASCII characters)

English or French

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 10/19

Other language examples

1. The language of all strings consisting of n 0s followed by n 1s (n ≥ 0):

{ǫ, 01, 0011, 000111, . . .}

2. The set of strings of 0s and 1s with an equal number of each:

{ǫ, 01, 10, 0011, 0101, 1001, . . .}

3. Σ∗ is a language for any alphabet Σ

4. ∅, the empty language, is a language over any alphabet

5. {ǫ}, the language consisting of only the empty string, is also a language over any
alphabet
NOTE: ∅ 6= {ǫ} since ∅ has no strings and {ǫ} has one

6. {w | w consists of an equal number of 0 and 1}

7. {0n1n | n ≥ 1}

8. {0i1j | 0 ≤ i ≤ j}

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 11/19

Important operators on languages: Union

The union of two languages L and M , denoted L ∪ M , is the set of strings that are in
either L, or M , or both.

Example

If L = {001, 10, 111} and M = {ǫ, 001} then
L ∪ M = {ǫ, 001, 10, 111}

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 12/19

Important operators on languages:

Concatenation

The concatenation of languages L and M , denoted L.M or just LM , is the set of
strings that can be formed by taking any string in L and concatenating it with any string
in M .

Example

If L = {001, 10, 111} and M = {ǫ, 001} then
L.M = {001, 10, 111, 001001, 10001, 111001}

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 13/19

Important operators on languages: Closure

The closure of a language L is denoted L∗ and represents the set of those strings that
can be formed by taking any number of strings from L, possibly with repetitions (i.e., the
same string may be selected more than once) and concatenating all of them.

Examples:

If L = {0, 1} then L∗ is all strings of 0 and 1

If L = {0, 11} then L∗ consists of strings of 0 and 1 such that the 1 come in
pairs, e.g., 011, 11110 and ǫ. But not 01011 or 101.

Formally, L∗ is the infinite union
S

i≥0
Li where L0 = {ǫ}, L1 = L, and for i > 1 we

have Li = LL . . . L (the concatenation of i copies of L).

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 14/19

Regular Expressions

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 15/19

Regular Expressions and Languages

We define the regular expressions recursively.

Basis : The basis consists of three parts:

1. The constants ǫ and ∅ are regular expressions, denoting the language {ǫ} and ∅,
respectively. That is L(ǫ) = {ǫ} and L(∅) = ∅.

2. If a is a symbol, then a is a regular expression. This expression denotes the
language {a}, i.e., L(a) = {a}.
NOTE: We use boldface font to denote an expression corresponding to a symbol

3. A variable, usually capitalised and italic such as L, is a variable, representing any
language.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 16/19

Regular Expressions and Languages

Induction : There are four parts to the inductive step, one for each of the three operators
and one for the introduction of parentheses

1. If E and F are regular expressions, then E + F is a regular expression denoting
the union of L(E) and L(F). That is, L(E + F) = L(E) ∪ L(F).

2. If E and F are regular expressions, then EF is a regular expression denoting the
concatenation of L(E) and L(F). That is, L(EF) = L(E)L(F).

3. If E is a regular expression, then E∗ is a regular expression denoting the closure
of L(E). That is, L(E∗) = (L(E))∗.

4. If E is a regular expression, then (E) is a regular expression denoting the same
as E. Formally, L((E)) = (L(E)).

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 17/19

The use of regular expressions: examples of

applications

Definition of lexical analysers (compilers).

Used in operation systems like UNIX (a Unix-style):

[A-Z] [a-z]* [] [A-Z] [A-Z]

represents capitalised words followed by a space and two capital letters. This
expressions represents patterns in text that could be a city and a state, e.g.,
Ithaca NY.
It misses multi-word city names such as Palo Alto CA

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 18/19

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 19/19

	small {Introduction to Automata Theory}
	small {Why Study Automata Theory?}
	small {}
	small {Alphabet}
	small {Strings}
	small {Powers of an alphabet (1)
}
	small {Kleen star}
	small {Concatenation}
	small {Languages}
	small {Other language examples}
	small {Important operators on languages: Union }
	small {Important operators on languages: Concatenation }
	small {Important operators on languages: Closure }
	small {}
	small {Regular Expressions and Languages}
	small {Regular Expressions and Languages}
	small {The use of regular expressions: examples of applications}
	small {}

