Automata Theory and Languages

SITE : http://www.info.univ-tours.fr/~mirian/

Introduction to Automata Theory

- Automata theory : the study of abstract computing devices, or "machines"
- Before computers (1930), **A. Turing** studied an abstract machine (*Turing machine*) that had all the capabilities of today's computers (concerning what they could compute). His goal was to describe precisely the boundary between what a computing machine could do and what it could not do.
- Simpler kinds of machines (finite automata) were studied by a number of researchers and useful for a variety of purposes.
- Theoretical developments bear directly on what computer scientists do today
 - Finite automata, formal grammars: design/ construction of software
 - Turing machines: help us understand what we can expect from a software
 - Theory of intractable problems: are we likely to be able to write a program to solve a given problem? Or we should try an approximation, a heuristic...

Why Study Automata Theory?

Finite automata are a useful model for many important kinds of software and hardware:

- 1. Software for designing and checking the behaviour of digital circuits
- 2. The lexical analyser of a typical compiler, that is, the compiler component that breaks the input text into logical units
- 3. Software for scanning large bodies of text, such as collections of Web pages, to find occurrences of words, phrases or other patterns
- 4. Software for verifying systems of all types that have a finite number of distinct states, such as communications protocols of protocols for secure exchange information

The Central Concepts of Automata Theory

Alphabet

- A finite, nonempty set of symbols.
- Symbol: Σ
- Examples:
 - The binary alphabet: $\Sigma = \{0, 1\}$
 - The set of all lower-case letters: $\Sigma = \{a, b, \dots, z\}$
 - The set of all ASCII characters

Strings

- A string (or sometimes a word) is a finite sequence of symbols chosen from some alphabet
- Example: 01101 and 111 are strings from the binary alphabet $\Sigma = \{0, 1\}$
- Empty string: the string with zero occurrences of symbols This string is denoted by
 e and may be chosen from any alphabet whatsoever.
- Length of a string: the number of positions for symbols in the string Example: 01101 has length 5
 - There are only two symbols (0 and 1) in the string 01101, but 5 positions for symbols
- Notation of length of w: |w|Example: |011| = 3 and $|\epsilon| = 0$

Powers of an alphabet (1)

If Σ is an alphabet, we can express the set of all strings of a certain length from that alphabet by using the exponential notation:

- Σ^k : the set of strings of length k, each of whose is in Σ
- Examples:
 - Σ^0 : { ϵ }, regardless of what alphabet Σ is. That is ϵ is the only string of length 0
 - If $\Sigma = \{0, 1\}$, then:
 - 1. $\Sigma^1 = \{0, 1\}$
 - **2.** $\Sigma^2 = \{00, 01, 10, 11\}$
 - **3**. $\Sigma^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$

Note: confusion between Σ and Σ^1 :

- 1. Σ is an alphabet; its members 0 and 1 are symbols
- 2. Σ^1 is a set of strings; its members are strings (each one of length 1)

Kleen star

 Σ^* : The set of all strings over an alphabet Σ

- $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots\}$ $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \ldots$
- The symbol * is called Kleene star and is named after the mathematician and logician Stephen Cole Kleene.

 $\Sigma^{+} = \Sigma^{1} \cup \Sigma^{2} \cup \dots$ Thus: $\Sigma^{*} = \Sigma^{+} \cup \{\epsilon\}$

Concatenation

Define the binary operation . called **concatenation** on Σ^* as follows: If $a_1a_2a_3...a_n$ and $b_1b_2...b_m$ are in Σ^* , then

 $a_1a_2a_3\ldots a_n.b_1b_2\ldots b_m = a_1a_2a_3\ldots a_nb_1b_2\ldots b_m$

Thus, strings can be concatenated yielding another string: If x are y be strings then x.y denotes the concatenation of x and y, that is, the string formed by making a copy of x and following it by a copy of y

Examples:

1. x = 01101 and y = 110

Then xy = 01101110 and yx = 11001101

2. For any string w, the equations $\epsilon w = w\epsilon = w$ hold. That is, ϵ is the **identity for concatenation** (when concatenated with any string it yields the other string as a result)

If S and T are subsets of Σ^* , then

$$S.T = \{s.t \mid s \in S, t \in T\}$$

Languages

- If Σ is an alphabet, and $L \subseteq \Sigma^*$, then L is a (formal) **language** over Σ .
- Language: A (possibly infinite) set of strings all of which are chosen from some Σ^*
- A language over Σ need not include strings with all symbols of Σ Thus, a language over Σ is also a language over any alphabet that is a superset of Σ

Examples:

- Programming language C
 - Legal programs are a subset of the possible strings that can be formed from the alphabet of the language (a subset of ASCII characters)
- English or French

Other language examples

1. The language of all strings consisting of n 0s followed by n 1s ($n \ge 0$):

```
\{\epsilon, 01, 0011, 000111, \ldots\}
```

2. The set of strings of 0s and 1s with an equal number of each:

 $\{\epsilon, 01, 10, 0011, 0101, 1001, \ldots\}$

- 3. Σ^* is a language for any alphabet Σ
- 4. \emptyset , the empty language, is a language over any alphabet
- 5. {*ϵ*}, the language consisting of only the empty string, is also a language over any alphabet
 NOTE: Ø ≠ {*ϵ*} since Ø has no strings and {*ϵ*} has one
- 6. $\{w \mid w \text{ consists of an equal number of } 0 \text{ and } 1\}$
- 7. $\{0^n 1^n \mid n \ge 1\}$
- 8. $\{0^i 1^j \mid 0 \le i \le j\}$

Important operators on languages: Union

The **union** of two languages *L* and *M*, denoted $L \cup M$, is the set of strings that are in either *L*, or *M*, or both.

Example

If $L = \{001, 10, 111\}$ and $M = \{\epsilon, 001\}$ then $L \cup M = \{\epsilon, 001, 10, 111\}$

Important operators on languages:

Concatenation

The **concatenation** of languages L and M, denoted L.M or just LM, is the set of strings that can be formed by taking any string in L and concatenating it with any string in M.

Example

If $L = \{001, 10, 111\}$ and $M = \{\epsilon, 001\}$ then $L.M = \{001, 10, 111, 001001, 10001, 111001\}$

Important operators on languages: Closure

The **closure** of a language L is denoted L^* and represents the set of those strings that can be formed by taking any number of strings from L, possibly with repetitions (*i.e.*, the same string may be selected more than once) and concatenating all of them.

Examples:

- If $L = \{0, 1\}$ then L^* is all strings of 0 and 1
- If $L = \{0, 11\}$ then L^* consists of strings of 0 and 1 such that the 1 come in pairs, e.g., 011, 11110 and ϵ . But not 01011 or 101.

Formally, L^* is the infinite union $\bigcup_{i\geq 0} L^i$ where $L^0 = \{\epsilon\}$, $L^1 = L$, and for i > 1 we have $L^i = LL \dots L$ (the concatenation of *i* copies of *L*).



Regular Expressions and Languages

We define the regular expressions recursively.

Basis: The basis consists of three parts:

- 1. The constants ϵ and \emptyset are regular expressions, denoting the language $\{\epsilon\}$ and \emptyset , respectively. That is $L(\epsilon) = \{\epsilon\}$ and $L(\emptyset) = \emptyset$.
- 2. If *a* is a symbol, then **a** is a regular expression. This expression denotes the language {*a*}, *i.e.*, *L*(**a**) = {*a*}.
 NOTE: We use boldface font to denote an expression corresponding to a symbol
- 3. A variable, usually capitalised and italic such as L, is a variable, representing any language.

Regular Expressions and Languages

Induction: There are four parts to the inductive step, one for each of the three operators and one for the introduction of parentheses

- 1. If *E* and *F* are regular expressions, then E + F is a regular expression denoting the union of L(E) and L(F). That is, $L(E + F) = L(E) \cup L(F)$.
- 2. If *E* and *F* are regular expressions, then *EF* is a regular expression denoting the concatenation of L(E) and L(F). That is, L(EF) = L(E)L(F).
- 3. If *E* is a regular expression, then E^* is a regular expression denoting the closure of L(E). That is, $L(E^*) = (L(E))^*$.
- 4. If *E* is a regular expression, then (*E*) is a regular expression denoting the same as *E*. Formally, L((E)) = (L(E)).

The use of regular expressions: examples of applications

Definition of lexical analysers (compilers).

Used in operation systems like UNIX (a Unix-style):

```
[A-Z] [a-z]* [] [A-Z] [A-Z]
```

represents capitalised words followed by a space and two capital letters. This expressions represents patterns in text that could be a city and a state, *e.g.*, Ithaca NY.

It misses multi-word city names such as Palo Alto CA

