
Compilers
Lexical Analysis

SITE : http://www.info.univ-tours.fr/˜mirian/

TLC - Mı́rian Halfeld-Ferrari – p. 1/36

The Role of the Lexical Analyzer

The first phase of a compiler.

Lexical analysis : process of taking an input string of characters (such as the
source code of a computer program) and producing a sequence of symbols called
lexical tokens, or just tokens, which may be handled more easily by a parser.

The lexical analyzer reads the source text and, thus, it may perform certain
secondary tasks:

Eliminate comments and white spaces in the form of blanks, tab and
newline characters.

Correlate errors messages from the compiler with the source program (eg,
keep track of the number of lines), ...

The interaction with the parser is usually done by making the lexical analyzer be
a sub-routine of the parser.

TLC - Mı́rian Halfeld-Ferrari – p. 2/36

Interaction of lexical analyzer with parser

lexical analyzer parser

symbol table

token

get next token

TLC - Mı́rian Halfeld-Ferrari – p. 3/36

Tokens, Patterns, Lexemes

Token: A token is a group of characters having collective meaning: typically a
word or punctuation mark, separated by a lexical analyzer and passed to a
parser.

A lexeme is an actual character sequence forming a specific instance of a token,
such as num.

Pattern: A rule that describes the set of strings associated to a token. Expressed
as a regular expression and describing how a particular token can be formed.
For example,

[A-Za-z][A-Za-z_0-9] *

The pattern matches each string in the set.

A lexeme is a sequence of characters in the source text that is matched by the
pattern for a token.

TLC - Mı́rian Halfeld-Ferrari – p. 4/36

Example

Token Sample Lexemes (Informal) Description of Pattern

const const const

if if if

relation <, <=,=, <>, >, => <|<=|=|<>|>|=>

id pi, count, D2 (letter .(letter | digit)∗)

num 3.1426, 0.6, 6.22 any numeric constant

literal ”core dumped” any character between ” and ” except ”

Note: In the Pascal statement

const pi = 3.1416

the substring pi is a lexeme for the token ”identifier”

TLC - Mı́rian Halfeld-Ferrari – p. 5/36

When more than one pattern matches a lexeme, the lexical analyzer must
provide additional information about the particular lexeme.

Example: pattern num matches 0 and 1. It is essential for the code generator to
know what string was actually matched.

The lexical analyzer collects information about tokens into their associated
attributes.

In practice: A token has usually only a single attribute - a pointer to the
symbol-table entry in which the information about the token is kept such as:
the lexeme, the line number on which it was first seen, etc.

Example
Fortran statement:

E = M * C ** 2

Tokens and associated attributes:
< id , pointer to symbol-table for E >

< assignOp >

< id , pointer to symbol-table for M >

< multiOp > ... TLC - Mı́rian Halfeld-Ferrari – p. 6/36

Lexical Errors

Few errors are discernible at the lexical level alone.

Lexical analyzer has a very localized view of the source text.

It cannot tell whether a string fi is a misspelling of a keyword if or an identifier.

The lexical analyzer can detect characters that are not in the alphabet or strings
that have no pattern.

In general, when an error is found, the lexical analyzer stops (but other actions
are also possible).

TLC - Mı́rian Halfeld-Ferrari – p. 7/36

Stages of a lexical analyzer

Scanner

Based on a finite state machine .

If it lands on an accepting state, it takes note of the type and position of the
acceptance, and continues.

Sometimes it lands on a "dead state," which is a non-accepting state.

When the lexical analyzer lands on the dead state, it is done. The last accepting
state is the one that represent the type and length of the longest valid lexeme.

The "extra" non valid character should be "returned" to the input buffer.

TLC - Mı́rian Halfeld-Ferrari – p. 8/36

Stages of a lexical analyzer

Evaluator

Goes over the characters of the lexeme to produce a value.

The lexeme’s type combined with its value is what properly constitutes a token,
which can be given to a parser.

Some tokens such as parentheses do not really have values, and so the
evaluator function for these can return nothing.

The evaluators for integers, identifiers, and strings can be considerably more
complex.

Sometimes evaluators can suppress a lexeme entirely, concealing it from the
parser, which is useful for whitespace and comments.

TLC - Mı́rian Halfeld-Ferrari – p. 9/36

Example

In the source code of a computer program the string

net_worth_future = (assets - liabilities);

might be converted (with whitespace suppressed) into the lexical token stream:

NAME "net_worth_future"

EQUALS

OPEN_PARENTHESIS

NAME "assets"

MINUS

NAME "liabilities"

CLOSE_PARENTHESIS

SEMICOLON

TLC - Mı́rian Halfeld-Ferrari – p. 10/36

General idea of input buffering

We use a buffer divided into two N-character halves.

We read N input characters into each half of the buffer with one system read
command rather than invoking a read command for each input character.

If fewer than N characters remain in the input, then a special character eof is
read.

Two pointers to the input buffer are maintained.

The string of characters between the two pointers is the current lexeme.

Initially both pointers point to the first character of the lexeme to be found.

One called the forward pointer scans ahead until a match for a pattern is found.

Once the next lexeme is determined, the forward point is set to the first character
of it.

After the lexeme is processed, both pointers are set to the character immediately
past the lexeme.

With this schema, comments and white spaces can be treated as patterns that
yield no token.

TLC - Mı́rian Halfeld-Ferrari – p. 11/36

The importance of the lexical analysis

Lexical analysis makes writing a parser much easier.

Instead of having to build up names such as "net_worth_future" from their
individual characters, the parser can start with tokens and concern itself only with
syntactical matters.

This leads to efficiency of programming, if not efficiency of execution.

However, since the lexical analyzer is the subsystem that must examine every
single character of the input, it can be a compute-intensive step whose
performance is critical, such as when used in a compiler

TLC - Mı́rian Halfeld-Ferrari – p. 12/36

Regular expressions to the lexical analysis

There is an almost perfect match between regular expressions to the lexical analysis
problem with two exceptions:

1. There are many different kinds of lexemes that need to be recognized.

The lexer treats these differently so a simple accept reject answer is not
sufficient.

There should be a different kind of accept answer for each different kind of
lexeme.

2. A DFA reads a string from beginning to end then accepts or rejects.

3. A lexer must find the end of the lexeme in the input stream. Then the next time it
is called it must find the next lexeme in the string.

TLC - Mı́rian Halfeld-Ferrari – p. 13/36

Lexical Analyzer Specification

To specify a lexical analyzer we need a state machine, sometimes called
Transition Diagram (TD), which is similar to a FSA

Transition Diagrams depict the actions that take place when the lexer is called by
the parser to get the next token

Differences between TD and FSA

FSA accepts or rejects a string. TD reads characters until finding a token,
returns the read token and prepare the input buffer for the next call.

In a TD, there is no out-transition from accepting states (for some authors).

Transition labeled other (or not labeled) should be taken on any character
except those labeling transitions out of a given state.

States can be marked with a ∗: This indicates states on which a input
retraction must take place.

To consider different kinds of lexeme, we usually build separate DFAs (or TD)
corresponding to the regular expressions for each kind of lexeme then merge
them into a single combined DFA (or TD).

TLC - Mı́rian Halfeld-Ferrari – p. 14/36

Example

[0-9]

[0-9]

[0-9]

[0-9]

other
∗

0

0 1 2

1 FSA

TD

Figure 1: FSA and a TD for integers

TLC - Mı́rian Halfeld-Ferrari – p. 15/36

Recognizing keywords

Keywords: same pattern as identifiers but do not correspond to the token
”identifier”.

Two solutions are possible:

1. We can consider keywords as identifiers and search in a table to know
whether the lexeme is an identifier or a keyword.

2. We can consider the regular expressions of all keywords and integrate the
TD obtained from them into the global TD.

TLC - Mı́rian Halfeld-Ferrari – p. 16/36

Keywords as identifiers

This technique is almost essential if the lexer is coded by hand. Without it, the
number of states in a lexer for a typical programming language is several hundred
(using the trick, fewer of a hundred will probably suffice).

The technique for separating keywords from identifiers consists in initializing
appropriately the symbol table in which information about identifiers is saved.

For instance, we enter the strings if , then and else into the symbol table
before any characters in the input are seen.

When a string is recognized by the TD:

1. The symbol table is examined

2. If the lexeme is found there marked as a keyword

then the string is a keyword
else the string is an identifier

TLC - Mı́rian Halfeld-Ferrari – p. 17/36

Example

Symbol Table

do keyword ↑

end keyword Keywords

for keyword

while keyword ↓

. . . −−−−−−−

Cont Identifier Identifiers

TLC - Mı́rian Halfeld-Ferrari – p. 18/36

Regular expressions for all keywords

Keywords can be prefixes of identifiers (ex: do and done).

The lexer that results from this technique is much more complex but they are
necessary when we use lexical analyzer generators from some specification.

The specification is made by regular expressions.

0 3

5

7

1 2

4

6 8 9

10

other

other

d

o n e other

digit

other

otherDigitLet

otherDigitLet

otherDigitLet

otherDigitLet

letter other
letter,digit

digit DONE

IDENTIFIER

INTEGER

∗

∗

∗

DO

∗

other

TLC - Mı́rian Halfeld-Ferrari – p. 19/36

Example: another transition diagram

TD for unsigned or negative signed integers, addition operation ”+” and increment
operator ”+ + +”

0 6

8

1

7
other

−

digit

+ other

digit

∗

digit

+ +

∗∗∗

other other
4

53

2
ADD ADD

INTEGER

INCR

TLC - Mı́rian Halfeld-Ferrari – p. 20/36

Example

Transition Table

Input

state + − D token retraction

0 1 8 6 − −

1 3 2 2 − −

2 − − − ADD 1

3 5 4 4 − −

4 − − − ADD 2

5 − − − INCR 0

6 7 7 6 − −

7 − − − INTERGER 1

8 error error − − −

TLC - Mı́rian Halfeld-Ferrari – p. 21/36

Implementation of Lexical Analyzer

Different ways of creating a lexical analyzer:

To use an automatic generator of lexical analyzers (as LEX or FLEX).

Though it is possible and sometimes necessary to write a lexer by hand, lexers
are often generated by automated tools.

These tools accept regular expressions which describe the tokens allowed in the
input stream.
Input: Specification

Regular expressions representing the patterns

Actions to take according to the detected token

Each regular expression is associated with a phrase in a programming language
which will evaluate the lexemes that match the regular expression.

The tool then constructs a state table for the appropriate finite state machine and
creates program code which contains the table, the evaluation phrases, and a
routine which uses them appropriately

TLC - Mı́rian Halfeld-Ferrari – p. 22/36

Lexical analyzer: use a generator or

construction by hand?

Lexical analyzer generator

Advantages: easier and faster development.

Disadvantages: the lexical analyzer is not very efficient and its maintenance
can be complicated.

To write the lexical analyzer by using a high level language

Advantages: More efficient and compact

Disadvantages: Done by hand

To write the lexical analyzer by using a low level language

Advantages: Very efficient and compact

Disadvantages: Development is complicate

TLC - Mı́rian Halfeld-Ferrari – p. 23/36

Remember

Regular expressions and the finite state machines are not capable of handling recursive
patterns, such as n opening parentheses, followed by a statement, followed by n closing
parentheses. They are not capable of keeping count, and verifying that n is the same on
both sides.

TLC - Mı́rian Halfeld-Ferrari – p. 24/36

Priority of tokens

Longest lexeme:

DO and DOT (DOT is taken)

> and >= (>= is taken)

First-listed matching pattern

The following regular expressions appear in the lexical specification:

w.h.i.l.e : keyword while
letter .(letter | digit): identifier

In the input we read while

The lexer considers it as a keyword

If we change the order of the specification then we will never detect a
keyword while

TLC - Mı́rian Halfeld-Ferrari – p. 25/36

The use of Lex or Flex

The general form of the input expected by Flex is

{ definitions }

%%

{ rules }

%%

{ user subroutines }

The second part MUST be present.

TLC - Mı́rian Halfeld-Ferrari – p. 26/36

Definitions and Rules

Definitions

Declarations of ordinary C variables and constants

Flex definitions

Rules
The form of rules are:

regularexpression action

The actions are C/C++ code.

TLC - Mı́rian Halfeld-Ferrari – p. 27/36

Flex actions

Actions are C source fragments. If it is compound, or takes more than one line, enclose
with braces ({ }).

[a-z]+ printf("found word\n");

[A-Z][a-z] * { printf("found capitalized word:\n");

printf(" ’%s’\n",yytext);

}

TLC - Mı́rian Halfeld-Ferrari – p. 28/36

Regular-expression like notation

a represents a single character

\a or “a′′ represents a when a is a character used in the notation

(to avoid ambiguity)

a | b represents a or b

a? represents zero or one occurrence of a

a∗ represents zero or more occurrence of a

a+ represents one or more occurrence of a

a{m, n} represents between m and n occurrences of a

[a − z] represents a character set

[∧a − z] represents the complement of the first character set

TLC - Mı́rian Halfeld-Ferrari – p. 29/36

Regular-expression like notation

{name} represents the regular expression defined by name

∧a represents a at the start of a line

a$ represents a at the end of a line

ab\xy represents ab when followed by xy

. any character except newline

TLC - Mı́rian Halfeld-Ferrari – p. 30/36

Examples of regular expressions in flex

a∗ zero or more a’s

.∗ zero or more of any character except newline

.+ one or more characters

[a − z] a lowercase letter

[a − zA − Z] any alphabetic letter

[∧a − zA − Z] any non-alphabetic character

a.b a followed by any character followed by b

rs|tu rs or tu

END$ the characters END followed by an end-of-line.

a(b|c)d abd or acd

TLC - Mı́rian Halfeld-Ferrari – p. 31/36

Definition

Format

name definition

name is just a word beginning with a letter (or an underscore) followed by zero or
more letters, underscore, or dash.

definition goes from the first non-whitespace character to the end of line.

You can refer to it via {name} , which will expand to (definition)

Examples

DIGIT [0-9]

{DIGIT} * \.{DIGIT}+ ou ([0-9]) * \.([0-9])+

TLC - Mı́rian Halfeld-Ferrari – p. 32/36

Example

%option lex-compat

letter [A-Za-z]

digit [0-9]

identifier {letter}({letter}|{digit}) *

%%

{identifier} {printf("identifier %s on line %d recognised \n", yytext,

%%

TLC - Mı́rian Halfeld-Ferrari – p. 33/36

Example

%option lex-compat

digit [0-9]

letter [A-Za-z]

intconst [+\-]?{digit}+

realconst [+\-]?{digit}+\.{digit}+(e[+\-]?{digit}+)?

identifier {letter}({letter}|{digit}) *
whitespace [\t\n]

stringch [ˆ’]

string ’{stringch}+’

otherch [ˆ0-9a-zA-Z+\-’ \t\n]

othersym {otherch}+

TLC - Mı́rian Halfeld-Ferrari – p. 34/36

Example

%%

main printf("keyword main - program recognised \n");

\{ printf("begin recognised\n");

for printf("keyword for recognised\n");

do printf("keyword do recognised\n");

while printf("keyword while recognised\n");

switch printf("keyword switch recognised\n");

case printf("keyword case recognised \n");

if printf("keyword if recognised \n");

else printf("keyword else recognised \n");

{intconst} printf("integer %s on line %d \n", yytext,yylin eno);

{realconst} printf("real %s on line %d \n", yytext,yylinen o);

{string} printf("string %s on line %d \n", yytext,yylineno);

{identifier} printf("identifier %s on line %d recognised \ n", yytext,

{whitespace} ; / * no action * /

{othersym} ; / * no action * /

%%

TLC - Mı́rian Halfeld-Ferrari – p. 35/36

Homework

Implement examples in the book!

TLC - Mı́rian Halfeld-Ferrari – p. 36/36

	small {The Role of the Lexical Analyzer}
	small {Interaction of lexical analyzer with parser}
	small {Tokens, Patterns, Lexemes}
	small {Example}
	small {}
	small {Lexical Errors}
	small {Stages of a lexical analyzer}
	small {Stages of a lexical analyzer}
	small {Example}
	small { General idea of input buffering}
	small {The importance of the lexical analysis}
	small {Regular expressions to the lexical analysis }
	small {Lexical Analyzer Specification}
	small {Example}
	small {Recognizing keywords}
	small {Keywords as identifiers}
	small {Example}
	small {Regular expressions for all keywords}
	small {Example: another transition diagram}
	small {Example}
	small {Implementation of Lexical Analyzer}
	small {Lexical analyzer: use a generator or construction by hand?}
	small {Remember }
	small {Priority of tokens}
	small {The use of Lex or Flex}
	small {Definitions and Rules}
	small {Flex actions}
	small {Regular-expression like notation}
	small {Regular-expression like notation}
	small {Examples of regular expressions in flex}
	small {Definition}
	small {Example}
	small {Example}
	small {Example}
	small {Homework}

