
An overview

SITE : http://www.sir.blois.univ-tours.fr/˜mirian/

Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.1/12



What about all these kinds of languages?

Chomsky-Schützenberger hierarchy

Chomsky-Schützenberger hierarchy is a containment
hierarchy of classes of formal grammars that generate formal
languages

Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.2/12



Type-0 grammars

Type-0 grammars (unrestricted grammars) include all formal
grammars.

They generate exactly all languages that can be
recognized by a TM. These languages are also known as the
recursively enumerable languages.

Note that this is different from the recursive languages which
can be decided by an always-halting Turing machine.

Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.3/12



Type-1 grammars

Type-1 grammars (context-sensitive grammars) generate
the context-sensitive languages.

These grammars have rules of the form αAβ → αγβ with A a
nonterminal and α, β and γ strings of terminals and
nonterminals.

The strings α and β may be empty, but γ must be nonempty.

The rule S → ε is allowed if S does not appear on the right
side of any rule.

The languages described by these grammars are exactly all
languages that can be recognized by a linear bounded
automaton (a nondeterministic Turing machine whose
tape is bounded by a constant times the length of the
input).

Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.4/12



Type-2 grammars

Type-2 grammars (context-free grammars) generate the
context-free languages
These are defined by rules of the form A→ γ with A a
nonterminal and γ a string of terminals and nonterminals.

These languages are exactly all languages that can be
recognized by a non-deterministic pushdown automaton.

Context free languages are the theoretical basis for the syntax
of most programming languages

Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.5/12



Type-3 grammars

Type-3 grammars (regular grammars) generate the regular
languages.

Such a grammar restricts its rules to a single nonterminal on
the left-hand side and a right-hand side consisting of a single
terminal, possibly followed (or preceded, but not both in the
same grammar) by a single nonterminal.

The rule S → ε is also here allowed if S does not appear on
the right side of any rule.

These languages are exactly all languages that can be
decided by a finite state automaton.

Additionally, this family of formal languages can be obtained
by regular expressions
Regular languages are commonly used to define search
patterns and the lexical structure of programming languages.

Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.6/12



Summary

Grammar Language Automaton Production rule

Type-0 Recursively enumerable Turing machine α→ β(no restrictions)

Type-1 Context-sensitive Linear-bounded αAβ → αγβ

non-deterministic TM

Type-2 Context-free Non-deterministic PDA A→ γ

Type-3 Regular Finite state automaton A→ a and A→ aB

Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.7/12



Chomsky hierarchy

Type-0

Type-1

Type-2

Type-0

The set of grammars corresponding to recursive languages is not a member of this
hierarchy

We have proper inclusions!

Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.8/12



Differences among all these automata

Basis: the FSA

PDA is a FSA with a stack!

TM is a FSA with a tape and the possibility of writting and
moving over this tape

Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.9/12



Important remarks about regular languages

Closure properties of regular languages

The union of two regular languages is regular

The intersection of two regular languages is regular

The complement of a regular language is regular

The difference of two regular languages is regular

The reversal of a regular language is regular

The closure of a regular language is regular

The concatenation of regular languages is regular

A homomorphism (substitution of strings of symbols) of a regular language is
regular

The inverse homomorphism of a regular language is regular

Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.10/12



Important remarks about CFL

Closure properties of context-free languages
The CFL are closed under:

Union

Concatenation

Closure (star)

Homomorphism

Inverse homomorphism

Reversal

The CFL are not closed under:

Intersection

Difference

Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.11/12



Automata Theory, Languages and Computation - MÃrian Halfeld-Ferrari – p.12/12


	What about all these kinds of languages?
	Type-0 grammars
	Type-1 grammars
	Type-2 grammars 
	Type-3 grammars
	Summary
	Chomsky hierarchy
	Differences among all these automata
	Important remarks about regular languages
	Important remarks about CFL
	

