PDA - Final part

SITE: http://www.sir.blois.univ-tours.fr/~mirian/

PDA- Acceptance by final state

Let

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

be a PDA. The language accepted by P by final state is:

$$L(P) = \{ w \mid (q_0, w, Z_0) \stackrel{*}{\vdash} (q, \epsilon, \alpha), q \in F \}$$

for some state q in F and any input stack string α .

Starting in the initial ID with w waiting on the input, P consumes w from the input and enters an accepting state. The contents of the stack at that time is irrelevant.

PDA- Acceptance by empty stack

Let

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

be a PDA. The language accepted by P by empty stack is:

$$N(P) = \{ w \mid (q_0, w, Z_0) \stackrel{*}{\vdash} (q, \epsilon, \epsilon) \}$$

where q is any state

 ${\cal N}(P)$ is the set of inputs w that P can consume an at the same time empty the stack.

From final state to empty stack

- Let P_N be a PDA by empty stack.
- Let P_F be a PDA by final state.

Theorem:

If $L = N(P_N)$ for some PDA P_N , then there exist a PDA P_F , such that

$$L = L(P_F)$$

Equivalence of PDA and CFG

A language is

generated by a CFG

iff it is

accepted by a PDA by empty stack

iff it is

accepted by a PDA by final state

Deterministic PDA

- **▶** A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is **deterministic** iff
 - 1. $\delta(q, a, X)$ is always empty or a singleton
 - 2. If $\delta(q, a, X)$ is nonempty, then $\delta(q, \epsilon, X)$ must be empty

Example. $L_{wcw} = \{wcw \mid w \in \{0,1\}^*\}$ is recognized by the following PDA

Importance of DPDA

- While PDA are by definition nondeterministic, the deterministic subcase is quite important.
- Parses in general behave like DPDA
- ullet A DPDA can accept languages like L_{wcw} that are not regular, but there are CFL (like L_{wwr}) that cannot be accepted by a DPDA.
- Languages accepted by DPDA all have unambiguous grammar
 - **Theorem**: If L is the language accepted by some DPDA P, then L has an unambiguous CFG.
- The DPDA languages are not exactly equal the subset of CFL that are not inherently ambiguous.
 - Example: L_{wwr} has an unambiguous grammar and it is not a DPDA language.

Important properties

Let

NFA: Nondeterministic finite automaton

DFA : Deterministic finite automaton

RE: Regular expression

DDPA: Deterministic pushdown automaton

DPA: Nondeterministic pushdown automaton

CFL: Context free language

1. We know that if $L_{Regular}$ is a regular language, then there exist NFA, DFA and RE such that

$$L(NFA) = L(DFA) = L(ER) = L_{Regular}$$

- 2. **L(PDA) = CFL**
- 3. **L(DPDA)** = L_1 such that L_1 has an unambiguous CFG
- 4. Regular languages ⊂ L(DPDA) ⊂ CFL

