PDA - Final part

SITE : http://www.sir.blois.univ-tours.fr/~mirian/
Let
\[P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \]
be a PDA. The language accepted by \(P \) by final state is:
\[L(P) = \{ w \mid (q_0, w, Z_0) \xrightarrow{*} (q, \epsilon, \alpha), q \in F \} \]
for some state \(q \) in \(F \) and any input stack string \(\alpha \).

Starting in the initial ID with \(w \) waiting on the input, \(P \) consumes \(w \) from the input and enters an accepting state. The contents of the stack at that time is irrelevant.
PDA- Acceptance by empty stack

Let

\[P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F) \]

be a PDA. The **language accepted by** \(P \) **by empty stack** is:

\[N(P) = \{ w \mid (q_0, w, Z_0) \vdash (q, \epsilon, \epsilon) \} \]

where \(q \) is any state

\(N(P) \) is the set of inputs \(w \) that \(P \) can consume at the same time empty the stack.
From final state to empty stack

Let P_N be a PDA by empty stack.

Let P_F be a PDA by final state.

Theorem:
If $L = N(P_N)$ for some PDA P_N, then there exist a PDA P_F, such that

$$L = L(P_F)$$
Equivalence of PDA and CFG

A language is

generated by a CFG

iff it is

accepted by a PDA by empty stack

iff it is

accepted by a PDA by final state
Deterministic PDA

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is deterministic iff

1. $\delta(q, a, X)$ is always empty or a singleton
2. If $\delta(q, a, X)$ is nonempty, then $\delta(q, \epsilon, X)$ must be empty

Example. $L_{w,cw} = \{wcw \mid w \in \{0,1\}^*\}$ is recognized by the following PDA

- $q_1 \xrightarrow{c, 1/1} q_1$
- $q_1 \xrightarrow{c, 0/0} q_1$
- $q_1 \xrightarrow{c, Z_0/Z_0} q_1$
- $q_2 \xrightarrow{0, Z_0/0Z_0} q_1$
- $q_2 \xrightarrow{1, Z_0/1Z_0} q_1$
- $q_2 \xrightarrow{0, 0/0} q_2$
- $q_2 \xrightarrow{0, 1/01} q_2$
- $q_2 \xrightarrow{1, 0/10} q_2$
- $q_2 \xrightarrow{1, 1/11} q_2$
- $q_2 \xrightarrow{\epsilon, Z_0/Z_0} q_2$
- $q_2 \xrightarrow{0, 0/\epsilon} q_3$
- $q_2 \xrightarrow{1, 1/\epsilon} q_3$
- $q_3 \xrightarrow{\epsilon, Z_0/Z_0} q_3$
Importance of DPDA

While PDA are by definition nondeterministic, the deterministic subcase is quite important.

Parses in general behave like DPDA

A DPDA can accept languages like L_{wcw} that are not regular, but there are CFL (like L_{wwr}) that cannot be accepted by a DPDA.

Languages accepted by DPDA all have unambiguous grammar

Theorem: If L is the language accepted by some DPDA P, then L has an unambiguous CFG.

The DPDA languages are not exactly equal the subset of CFL that are not inherently ambiguous.

Example: L_{wwr} has an unambiguous grammar and it is not a DPDA language.
Important properties

Let

- NFA: Nondeterministic finite automaton
- DFA: Deterministic finite automaton
- RE: Regular expression
- DDPA: Deterministic pushdown automaton
- DPA: Nondeterministic pushdown automaton
- CFL: Context free language

1. We know that if $L_{Regular}$ is a regular language, then there exist NFA, DFA and RE such that

$$L(NFA) = L(DFA) = L(RE) = L_{Regular}$$

2. $L(PDA) = CFL$

3. $L(DPDA) = L_1$ such that L_1 has an unambiguous CFG

4. Regular languages $\subseteq L(DPDA) \subseteq CFL$